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Time-varying system identification using an ultra-orthogonal forward
regression and multi-wavelet basis functions with applications to EEG

Yang Li, Wei-Gang Cui*, Yu-Zhu Guo, Ting-Wen Huang, Xiao-Feng Yang, and Hua-Liang Wei*

Abstract—A new parametric approach is proposed for nonlin-
ear and non-stationary system identification based on a time-
varying nonlinear autoregressive with exogenous input (TV-
NARX) model. The time-varying coefficients of the TV-NARX
model are expanded using multi-wavelet basis functions and
the model is thus transformed into a time-invariant regression
problem. An ultra-orthogonal forward regression (UOFR) algo-
rithm aided by mutual information (MI) is designed to identify a
parsimonious model structure and estimate the associated model
parameters. The UOFR-MI algorithm which uses not only the
observed data themselves but also weak derivatives of the signals
is more powerful in model structure detection. The proposed
approach combining the advantages of both the basis function
expansion method and the UOFR-MI algorithm is proved to
be capable of tracking the change of time-varying parameters
effectively in both numerical simulations and the real EEG data.

Index Terms—B-splines, EEG, mutual information (MI), ultra-
orthogonal forward regression (UOFR), time-varying system
identification, parameter estimation.

I. INTRODUCTION

ONSTATIONARY signals or systems are commonly

encountered in many areas of science and engineering.
Non-stationary system identification is an important and chal-
lenging problem and has been drawing significant attentions
[1-4]. An approach for processing such systems is to establish
a time-varying nonlinear autoregressive with exogenous input
(TV-NARX) model, which has been shown to work very well
for many real-world processes [5-7]. A challenging task in
time-varying system identification is to detect parsimonious
model structures and estimate the associated time-varying
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coefficients based on experimental data [8, 9]. Some methods
have been proposed for time-varying system identification,
which can roughly be classified into three groups: multiple
modeling [8], adaptive recursive estimation [9] and basis
function expansion methods [10, 11].

In the multiple modelling strategy, the input and output data
are divided into several intervals or subspaces by a time shift-
ing window. In each of the intervals, the system is considered
to be a stationary process. Thus conventional time-invariant
modelling approaches such as ARMAX (autoregressive mov-
ing average with exogenous inputs) and NARMAX (nonlinear
autoregressive moving average with exogenous inputs) can be
used to identify an individual model defined in each of the
intervals or subspaces [12, 13]. However, the performance
of resulted models depends on the window size, and there
is no general criterion for selecting a proper window size.
This limits the practical application of such approaches. In the
adaptive recursive estimation scheme, model parameters are
treated as random processes with certain properties [14]. The
most popular algorithms for processing time-varying models
include least-mean squares (LMS), recursive least squares
(RLS) and Kalman filtering algorithms [9, 15, 16]. These
conventional adaptive methods perform reasonably well when
system coefficients vary slowly with time. However, when
the time-varying coefficients change rapidly or abruptly, these
approaches may fail to track the model parameters because of
the slow convergence speed.

Recently, a new class of methods combining basis function
expansion and linear regression approaches have been pro-
posed for nonlinear time-varying system identification, where
time-varying parameters are approximated using some pre-
defined basis functions (e.g. wavelets) [17-20]. The imple-
mentation of such methods is as follows. Firstly, a basis func-
tion expansion approach is used to transform the original time-
varying system model to a time-invariant regression problem.
Note that the initially transformed time-invariant regression
model may involve a huge number of model elements or
basis functions, and therefore could be very complicated for
practical applications. So, the second step is to apply a model
structure selection algorithm e.g. the traditional orthogonal
forward regression (OFR) algorithm to the transformed time-
invariant regression model, to search for a parsimonious and
easy-to-use model which can be represented by a relatively
small number of elements or basis functions. [21, 22]. In prac-
tice, an appropriate choice of the basis functions is important
to ensure the identified model performance [11]. For example,
the Legendre polynomials can be used for smooth-changing
parameters, and Walsh functions are appropriate for piecewise
stationary time-varying parameters [23]. For systems with
sharp or fast changing parameters, wavelets are a suitable
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choice [10, 22, 24]. Several wavelets based approaches have
been proposed for the implementation of a basis function
expansion scheme. For example, in [19] a method combining
the cardinal B-splines basis function with the LMS and OFR
algorithms was proposed for effectively tracking both slow
and rapid changes of time-varying coefficients in time-varying
linear systems. This method was extended to nonlinear cases
and obtained promising results for nonlinear time-varying
modelling problems [25].

Although multiple wavelet basis functions combined with
the classic OFR algorithm provide a general method for system
identification of nonlinear time-varying systems, the identifi-
cation of the correct model structure can still be challenging
for some systems, especially when the system is either non-
persistently excited or disturbed by color noises. In these cases,
the classical OFR algorithm may produce suboptimal model
with spurious model terms [26], or an over-parameterized
model with some possible redundant or insignificant model
terms [27]. Subsequently, the estimated model parameters can
be biased, and thus the resultant model may lack generalization
ability.

In this study, a new method for the identification of TV-
NARX model is proposed, where time-varying parameters
are approximated using a finite number of multi-wavelet
basis functions, and the model structure and parameters are
determined using a more powerful ultra-orthogonal forward
regression (UOFR) algorithm combined with mutual infor-
mation (MI) [28-30]. Multi-wavelet function based approach
has been proved efficient for tracking both the overall global
trend and transient local changes in signals [10, 19, 24]. The
ultra-orthogonal forward regression (UOFR) algorithm is a
recently proposed method that outperforms the conventional
OFR algorithm in model structure determination in many
cases. The UOFR algorithm is more efficient than the OFR
in that it evaluates not only the classical dependent relation of
the desired signal on the potential explanatory variables, but
also makes use of the dependent relation of the associated
weak derivatives [26]. For the new ultra-least squares loss
function used in the UOFR algorithm, the MI index works
more effectively for model term selection [28]. The redun-
dant model terms confused by the traditional OFR algorithm
become less significant under the new criterion and can thus
be excluded from the model. An obvious advantage of the
proposed procedure, which combines the multi-wavelet basis
function expansion approach and the UOFR-MI method, lies
in its ability to track rapidly and even sharply time-varying
processes. The proposed method is thus more suitable for
parameter estimation of inherently non-stationary systems. It
is also of good robustness, i.e., it can capture the time-varying
characteristics well even when the data are contaminated with
color noises. One of the main contributions of the study is that
for the first time the newly developed UOFR-MI algorithm is
introduced to the multi-wavelet based modelling framework
for time-varying system identification. It is expected that
the proposed approach can inspire further development of
more powerful algorithms for nonlinear time-varying system
identification.

The remainder of this paper is organized as follows. In

Section II, the identification methodology is introduced in
three subsections: a TV-NARX model implemented using a
multi-wavelets basis function expansion method in subsection
A, an ultra-least squares criterion for the basis function ex-
panded model in subsection B and the UOFR-MI algorithm
in subsection C, respectively. Three numerical simulations are
given to illustrate the effectiveness of the proposed method in
Section III. A case study for a real EEG signal identification
problem is presented in Section IV. Finally, the work is
summarized in Section V.

II. METHODOLOGY

A. TV-NARX Model Identification Using Multi-Wavelet Basis
Functions

Many nonlinear dynamic systems can be represented by
the NARMAX (Nonlinear autoregressive moving average with
exogenous inputs) model [31] as

y (t) :f(y(t—l)j--.,y(t—ny),u(t—l),---,
uw(t—ny),e(t—1),-e(t—ne)) +e(t)

where y (t), u(t) and e (t) denote the system output, input
and noise sequences, with maximum lags n,, n, and n.,
respectively; f (+) is a suitable nonlinear function which is gen-
erally unknown for many practical modelling problems. Variant
types of model structures can be used to approximate the
nonlinear function f (-) in (1), for example rational models,
fuzzy logic-based models, neural networks, and so on. The
most commonly used expression is the polynomial regressions,
which has been widely used for a diverse range of nonlinear
systems [25].

Many application scenarios focus on revealing the deter-
ministic input-output relationship, for such an application the
NARX model, as a relatively simple and special case of the
NARMAX model, is often employed without considering the
moving average (MA) noise terms. The NARX model has been
proven to be capable of capturing nonlinear characteristics
of real systems [31]. For many non-stationary systems, the
TV-NARX model can often be formulated as a linear-in-the-
parameter representation by expanding the nonlinear function
f () using a number of time dependent terms [25]:

y(t) =" (t)0(t) +e(t) )

where ¢ (t) contains monomials of lagged output and input
terms, # is the corresponding parameter vector, and e (t) is
a zero mean noise sequence. The power-form polynomial
representation of TV-NARX model can be written as follows:

ey

M n K
y(t)zzz Z Cp,q (dlv"' >d;0+q>t)
n=1p=0dy, -+ ,dpyq=1
P p+q 3)
x[[vt—d) J] wt—di)+e(t)
i=1 i=p+1

=" (1)0(t) +e()

where M is the degree of the nonlinearity, with p+¢q = n, d; =
K K K

1,2, - K, 3 =y >~ . The vector 0 (t) =
dy,dpyq=1 d1=1 dp+q=1
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[00’1 (1,t), ,C()’l (K,t),CLQ (1,t), ,CM,Q(K,'-’ ,K,
t)] " are time-varying parameters to be determined.

When using the TV-NARX model (3) to represent a non-
linear time-varying system, the identification process involves
selecting significant terms from a candidate term dictionary
and estimating the corresponding parameters. Note that most
algorithms developed for time-invariant model identification
cannot directly be applied to a time-varying model iden-
tification due to the assumption that the individual model
parameters are constants.

In this study, multi-wavelet basis functions are used to ap-
proximate the variation of model parameters in the TV-NARX
model, and in this way the identification of time-varying model
is converted to solving a time-invariant regression problem
which can be solved by means of a conventional model
structure detection algorithm such as the OFR algorithm. It
follows that wavelet basis functions can easily track rapid
parameter variation in time-varying processes [19, 20, 32].

A wavelet function 1 (z) is a function whose integral
value is zero for the integral interval (—oo,+00), that is

+oo
[ ¢ (z)dx = 0. A shifted and dilated version (e.g. with a
—0o0
shift parameter [ and dilation scale 27) of a basis function ¢ (z)
is normally denoted as 1 ; (v) = 29/%4 (27x — 1), j,1 € Z.
An arbitrary function f(z) € L?(R) can be expressed
using the basis functions as:

oo

Z a,j ¥ (z) “

l,j=—00

f(z) =

where parameters q; ; are called expansion coefficients.

From wavelet theory, an arbitrary function f (x) € L? (R)
can be approximated by the multi-resolution wavelet decom-
position as follows:

<
— r T
= > ai b (@

r=11el',

+Z SO B ) )

r=1j>jo l€T,

where ¢ is the maximum number of basis sequences,
[, -+ ,4°] are a number of wavelets, and [¢', .-+, ¢°] are
the associated scaling functions; o7 , (z) = 2//2¢" (272 — 1)
and ¢ (z) = 20/2¢" (2/°x —1), with the shift indices
l €T, T, = {l:—r<1<2 —1} and wavelet scale j,
aﬁ Jo and /3[ ; are coefficients of the wavelet decomposition,
Jo 1s an integer to represent the coarsest scale level. When the
resolution scale level jg is sufficiently large, the function in

i > a0, (@)

This study proposes using multlple wavelet basis functions
to approximate time-varying parameters in (3) as below:

(5) can be approximated by f (x) =

t
ep,q (di, s dptqst) = Z Z “;,q,z (d1,--+ ,dp+q) Qof,j (N) ©)

r lely
where a;, ., represent expansion parameters which are time
invariant, o; j (+) are wavelet basis functions, t = 1,2,--- | N,

and N is the number of data used for model estimation. The
variable = t/N is defined in [0, 1].
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Cardinal B-splines are an important class of basis functions
that can be used to construct multi-resolution wavelet decom-
positions, which enable the operation of the decomposition to
be more convenient [20, 33]. The first order cardinal B-spline
is the well-known Haar function defined as

1,z €[0,1)
By (7) = x0,1) = { @)

0, otherwise

The explicit formulae for the second, third, fourth and fifth
order cardinal B-splines B (x), Bs(z), By (z) and Bj (z)
can be found in [34]. Taking the cardinal B-splines as the
basis function, the ¢ ; () can be expressed by the r-th order
B-spline B, as ¢j ; (r) = 2i/2B, (29z — 1), where j, [ are the
dilated and shifted versions of wavelet B,. Some criteria to
determine the value of j are given in detail [35]. Generally
j = 4 is an appropriate choice for many applications using
cardinal B-splines. If the value of j is higher, more basis
functions will be involved in approximating the time-varying
parameters, this may improve the resolution but would increase
the computational cost. Additionally, a practical selection of
the wavelets are the third, fourth and fifth order cardinal B-
splines B3 (7), By (z) and Bs (z), ¢ ;,7 = 3,4,5, and the
detailed discussion of B-splines properties can be found in
[36].

By expanding time-varying parameters with multi-wavelet
basis functions, the TV-NARX model (3) becomes

H=3% z S g (e

’ dp+q)

n=1p=0 dy, - ,dptq=1 7 l€l,
n 14 p+q
<oty () vt —a TT wie—d e
i=1 i=p+1
=0T (t)yn+e(t

®)

where U7 () is the expanded term vector at time ¢ and 7 is
the corresponding time-invariant parameters vector.

It can be seen from (8) that the basis function expansion
method reduces the time-varying model (3) to a time-invariant
linear-in-the-parameter form. However, the model may not be
ready for use not only because of its complexity but also the
difficulty to estimate the model parameters due to the large
number of candidate expanded terms. Hence, reducing the
number of expanded terms and detecting the correct model
structure are vital steps in the model identification. A novel
algorithm to deal with this problem will be introduced in the
following section.

B. The Ultra-Least Square Method for TV-NARX Model

The linear-in-the-parameter problem (8) can be solved using
a least squares type of algorithm by minimizing the associated
loss function:
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RS 75 5 S SIID 55 >

n=1p=0 dy, ,dpyq=1 7 IET, (9)

Uy, g1l (di,- - dptq) Ty il (di, - dptq)
2
B
whete a7 (dh, i) (1) = o, () Ty (= di)
Ptq B
[I w(t—d;)is an expanded term, and a}, _,(d1,- -+ ,dpiq)
1=p+1

is the corresponding time-invariant parameter. In (8), the
output and regression terms are time dependent and defined on
the Lebesgue space L?([0, '), where [0, T'] is the time span of
signals. The task of model identification is to find an optimal
model which minimizes the square of the L? norm (9). In
fact, the signals in (8) behave as a low-pass filter essentially
and are more regular than general L? functions. These signals
actually can be defined on some subspace of L2([0,77), for
example, the Sobolev space H™ ([0, T]) = W™2([0,T)]),
or more specially, H™([0,T]) = {z(t) € L?([0,T))
|D*z € L*([0,T]),z =1,2,--- ,m}, where D? is the weak
derivatives and L? is integrable. The weak derivatives D*z (t)
satisfies

[ z(t)D*w(t)dt=(-1)°" [ w(t)D?*x(t)dt (10)
[0,7] [0,77]

for any test function w (t) € C§° ([0,7]) that is smooth and
has compact support on [0, T]. As shown in [26], models fitted
by means of weak derivatives in the Sobolev space, with a
number of test functions, are more effective. In this study, test
functions are used to smooth the observed signals, it would be
desirable for such functions to have a bell shape similar to a
Gaussian function. In fact, the commonly used test functions
are not necessary to be infinitely differentiable [26]. The (m+
1)th order B-spline functions, which has finite support and
continuous mth order derivatives, will be adopted as the test
functions in this work.

The distance ||z — Z||, defined by the L? Lebesgue integral,
only measures the differences between functions x (¢) and
Z(t) on the interval [0,7]. Generally, it cannot find the
differences at each individual time instance. Hence, the L2
norm commonly neglects the detail or closeness in shape and
only focuses on the similarity as a whole. System identification
is to discover unknown rules from the observations essentially.
A particularly challenging issue in system identification is
how to get the underlying dynamics or a best model when
the system is disturbed by color noises or not persistently
excited, and thus many significant characteristics may be
hidden in a small amount of data. Any piece of information
is crucial to discovering the important rules. When using the
L? norm as the criterion, some spurious information may
not be distinguished easily [26]. The loss function defined
in L? may not be able to exclude spurious information and
effectively make use of most important information for system
identification purpose. Hence, a stricter criterion which can
accurately discover more useful rules needs to be introduced.

In the Sobolev space H™([0,T]), a stricter metric is the

H™ norm that is defined as xym = ||Dza:|\§ Based on
1

z=

this norm, a new criterion for model (8) is defined as

M n K
2 ol ol s
n=1p=0 dy,,dpyq=1 7 I€D,
2
a;,q,l (diy- -+ s dpiq) x;,q,z (dy,--- ,dp+q)
>oan
m M n K
IIEEED ) DRSS IS
z=l1 n=1p=0 dy, - ,dpyq=1 7 €l
2
g (di, - dpg) Dy 4, (dy,- - s dpiq) } 2

The lost function (11) consists of two parts: the first part
is the same as in the standard least squares criterion that
emphases the overall agreements between two time series;
the second part is the weak derivatives. It is the second part
that makes it different to most conventional model detection
and selection methods which only emphasize the agreement
in shape of signals. In the new lost function (11), any detailed
changes in the distribution can be reflected in the second part.
Therefore, the new criterion Jg is more effective for system
identification. Based on the H™ norm, the objective becomes
to solve a new least squares problem

yl M K
D'y "
D n=1p=0 dy,- ,dpyq=1 7 I€T,
my
p (12)
gip"q’l (di, -+ dptq)
DY2” (dy, - dpiq)
ay 1 (diy  dpyg) pat (4 -

Dmx;;%l (dl» cee dp+q)

This is referred to as the ultra-least squares (ULS) problem
[26], which results in a solution that is normally different to
that for (8).

Note that (11) and (12) cannot directly be applied to a
data-driven system identification problem, and some work
needs to be done first. For example, the weak derivatives
cannot be obtained from data in a straightforward way, and
the contribution of each individual component donated as

M n K
D= > X XY apg(d
n=1p=0 dy,--- ,dpyq=1 1 lET,
D2z (di,- - ,dptq) ||§ in (12) may be imbalanced mainly
due to the different magnitudes of the weak derivatives of
signals, therefore the effect of the noise in the criterion Jg
can be magnified.

The distribution of signals y and z}, ,; (d1, -+ ,dptq) Will
be introduced to evaluate the contribution of every unknown
weak derivative. A way to fairly evaluate the contribution
of each weak derivative is using the distribution information
of the target signal y and the expanded candidate model
terms @) ; (d1, -+ ,dptq). Define the associated distribution

’ dp-‘rq)
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of the signal y (¢) as T,, : C§° ([0,T]) — R, and (T}, w) =

[ y(®)w(t)dt for allw € C§°([0,T7). The weak derivatives
0,7]
are defined by
(DT, w) = (-1)° [y (Hdt  (13)
(0,77

Similarly, the distribution corresponding to z;, ., (dl7 cee
dp+q) is given as:

<TI;.q.l(dlv"' vdp+q)7w> = f Tp7q7 (dl’ o
. [0,7]

sdpyq) w () dt

(14)

By defining these distributions, the problem now becomes
to find the relationship between the distributions Tj and
Tyr  (dy, - dps+,)- Lherefore, the ultra-least squares problem

beg(;lnlms
Y
RS 5 S S 3 >
n=1p=0 dy, - ,dpyq=1 v Il€l,
(DT, w)
m;qJ (dh 3 dp+q)
Dlng q l(d17 '7dp+q)’w

<D T z(dllx p+q)’w>
(15)

All data used to solve (15) can be obtained by comput-
ing the values of the distributions for every test function
w € C§°(]0,T]). However, it should be pointed out that it
may need a huge number or infinite number of functions to
form a basis of C§° ([0, 7). So the accurate evaluation of these
distributions over the whole space C§° ([0, T1) is very difficult
if not possible. Hence, a trade-off needs to be considered
between the computational efficiency and the incorporation
of all the distribution information in the ULS problem.

The weak derivatives of functions based on a test function
w(t) defined locally reflect the local information of these
functions. When the test function is shifted along the time
axis, the corresponding weak derivatives of the signal will
give the corresponding local information of the function at
new positions. Instead of using all test functions in the space
C§° ([0,T)), test functions w(t) defined locally and the shifted
versions w (t — 7) will be used in the ULS problem.

For a given test function w (¢) with a finite support on [0, Tp]
(To < T), the distribution (D*T,,w (t — 7)) can be denoted
as

y* (1) =
T
:CJVgMUJ”@—TMtTEMT—TM

(D*Ty,w(t—T1))
(16)

where y* (7) is the convolution of y (t) with the derivative of
the test function. Define g () =w (—t), g'*) (t) can be viewed
as a linear filter impulse response and y* () is the corre-
sponding output of the input y (¢). According to the Leibniz
integral rule, interchanging the order of the differentiation
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and the integral is permitted. Specifically, the integral has the
following property

t z

dtzfy( T)g(t—71)dr = [y(7) F=g(t — ) dr

0

' . a7
({y(T)Wg(t—T)dT

So now the function y*(7) has a new physical inter-

pretation. Similarly, the function (Lpgr,le)z () can also be
represented by
(x;,qﬁl (dly" <D Tr l(dl p+q),w(t—7—)>

vdptq) ()0 (¢ = 7)dt

s dptq))* (

= (=17 ({(:c;,q,l (di,--
(18)

Then, the ULS problem (15) becomes:

Yy
yl M n K
: n=1p=0 dy, ,dprq=1 ™ IET,
ym
s (19)
Lpq,l L
(h.q.)
p7ql(d1» a vdp—&-q) p.q
(m;,q,l)m

where y* and (z7 T, .. ;)7 are signals defined by (16) and (18).

Another significant issue that needs to be considered in the
ULS problem is that the magnitude of the difference of the
derivatives may be much larger than the differences arising
from the observations themselves. As a consequence, the value
of the criterion could be dominated by the differences arising
from the derivatives. A good criterion must be robust to the
noise. Some further modifications to the test function and the
associated derivatives should be made. In doing so, the test
function and its derivatives are normalised as

g0 0 am (20)
)],

where all signals generated by (16) have the same weight
in the ULS criterion. The normalised functions will be used
to replace the function w(*) to modulate signals in the ULS
problem. Given a test function w (t), the ULS criterion of the
problem (8) becomes

Y Y TS

Jurs = Hy -
n=1p=0 dy,,dprq=1 7 IET,
2
p q,l (d17 T 7dp+q) ‘T;,q,l (dl‘ e vdp+q)
: 2 e
z=1 n=1p=0 dy, ,dpyq=1 7 €T,
2
p q,l (dl? T 7dp+q) (j;,q,l (d17 T 7dp+q))z
2
where .
7 () = Jy®) o) (t —7)dt 22)
0
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t
(f;,qﬁl (d17 T 7dp+q))z = gx;,q,l (d17 T 7dp+q) (t)w(Z) (t - T) dt
(23)

Given sampled data, the discrete-time form of the modula-
tion process can be described as

s+ng
7 ()= yma® (n—s)

s+ng

versa [28, 29]. It can be used to measure the amount of the
information one variable shares with another.

Consider the identification problem of the model (25),
where Yyps is the system output vector and ®yrg is a
matrix whose columns are the candidate regressor vectors,
denoted as D = {¢1, d2,...,0¢r}. Note that the candidate
set D is usually redundant. The modelling problem is to
select significant regressors Dy, = {my,ma, - , 7} (h < L)

(@p,q,0 (d1s -y dprq))™ (s) = Z_: T g1 (diy o dpig) () &) (= 5) from the library D, so that the output y can be satisfactorily

24
where ng is the support of the test function and s =
1,2,--- N —ny.

The ULS problem can now be written as
Yurs = ®urs®© (25)
where
YULS:[y(l)v"'7y(N)7g1(1)7"'g1(N_n0)7 (26)
_m —m T
Y (1)77y (N_no]
"ES,L[ (d1) (1) ‘TRI,O,Z (d1,- -+ ,dar) (1) i
Bype | Tl (V) Thrg (1o dar) (N)
TEST (@0, () (1) (Thy0. (d1, - dar)) (1)
| @ ()™ (V) (&g 00 (s dar))™ (N) |
@7
r r T
O = [“0,1,1 (di),--- » 01,0, (dy,- - »dM)] (28)

C. The UOFR-MI Algorithm for TV-NARX Model Identifica-
tion

The identification of the TV-NARX model mainly consists
of two key steps: model structure detection (i.e. model reduc-
tion and refinement), and parameter estimation. In this study,
we follow [28-30] to use a mutual information to measure
nonlinear correlation between two signals (i.e. the system
output and the individual candidate model terms), and the MI
based measure is incorporated to an ultra-orthogonal forward
regression procedure to lead to a new method called the
ultra-orthogonal forward regression with mutual information
(UOFR-MI),which is described below in detail.

Given two random discrete variables z € x and y € T,
with marginal probability mass functions p(x), p(y) and a
joint probability mass function p (z, y), the mutual information
I (z,y) is defined as

B p(z,y)
lwy)=F {log (p (w)p(y)>}
p(7,y) (29)
=> > plz.y 10g(—’()

S& p(z)p(y)

The mutual information I (x,y) is the reduction in the
uncertainty of y due to some knowledge of x and vice

approximated by the linear combination of my, g, -+ , 7 as
y = 0ym + -+ + Opmy + e or the matrix form y = [10© + e,
where the matrix IT = [my, 7o, -+, 7] is of a full column
rank, © = [0y, ,Qh]T is a parameter vector, and e is the
approximation error, respectively.

Following [28, 29], and denoting o = y, the selection pro-
cedure begins to calculate p; = {arg 11t<nja<xL{I (ro, ¢;)}, where

I(-,-) is the mutual information. The first selected regressor
can be determined as 71 = ¢,,. Select it as the ﬁTrst associated
orthogonal basis q; = ¢,,, and set r; = rg — %ql.

In general, the Ath selected regressor can be chosen as
follows. At the (A—1)th step, let Dy_1 = {my, 72, -+ ,Tx_1}
be the set of regressors selected so far, it can be transformed
into orthogonal bases g1, g2, - - - , g\—1 Vvia an orthogonal trans-
formation. The next selected regressor can be determined via:

A — ¢qu
(J§)=¢j—z 0 (30)
=1 i 4k

- o)) o
P arg#pkglggg_l{ TA-1,4; 3
where ¢; € D — Dy_q, and ry_; is the residual vector
obtained from the (A — 1)th step. The Ath selected regressor
is chosen as m\ = ¢,,. The residual vector r is defined as

(7{—1‘1/\)2

(32)
aiqn

TAx=Tx-1—"

All significant regressors can be selected step by step, one
at a time. Since vectors ) and ¢, are orthogonal, so

T 2
2 > (Lio)
X = ||Tx=1 - (33)
[rall™ = llra—1ll T
By summing (32) and (33), yields
"0
y=> 22 q+r, (34)
=1 gy dx
Irall® = 1wl i(’“rf—l”)z (35)
Tl =Yl — — 7T
= an

The residual sum of squares ||r,,||* can be used to form a
model selection criteria. Furthermore, the Akaike Information
Criterion (AIC) will be adopted to terminate the UOFR-MI
procedure when an appropriate number of model terms are
included in the model [37]. A popular version of AIC can be
written as

AIC (n) = Nlog [ral*/N| +2n (36)
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If the AIC reaches the minimum at n = h, the term selection
procedure can be terminated, and resulting in an A-term model.
The selected regression matrix P, = [m, 72, -, 7] will be
full rank in columns and it can be orthogonally decomposed
as P = QpRy, where Ry, is a b X h unit upper triangular
matrix and @, is a N X h matrix with orthogonal columns
q1,92, - ,qn. The corresponding unknown coefficients vector
© = [61,02, -+ ,0;] in the original non-orthogonalized space
can be calculated from the formula R;,© = G, where G =
(Q¥YQ1) 'RTY. In addition, some measures can be applied
to avoid selecting model terms which are strongly correlated.
At the Ath step, a subset Dy_; containing A — 1 orthogonal
bases has been selected. If ¢; is strongly correlated with some

T
bases in Dy_q, it can then be shown that ( §)‘) ()‘) =0

[13, 28, 29]. So the proposed algorlthm can automatlcally
discard the candidate basis ¢; if (g < 6, where 0 is a
predetermined positive number that is closed to 0, for example,
0 = 107" and r > 10. In this way, any ill-conditioning or
severe multicollinearity can be avoided [13].

The new proposed algorithm for TV-NARX model identifi-
cation can now be summarized as follows:

(a) Set up the TV-NARX model (3) to be identified and
expand all time-varying coefficients of nonlinear terms by
using B-spline basis functions, and construct the problem (8).

(b) Construct a test function w (¢) and calculate its deriva-
tives wm) (t),w® (t),---,w™ (t). Normalise the deriva-
tives according to (20) and get the normalized modulating
function @(%).

(c) Calculate 7°s and (), (d1,- - ,dpiq))*s by modu-
lating the dependent variables and expanded terms using the
normalized function @(*) according to (24) and then obtain
the new problem (25).

(d) Calculate the mutual information between the output
vector and expanded terms, and select the significant term with
the largest value of the mutual information as the first term.
Then remove the expanded terms which have been selected
from the dictionary.

(e) At the Ath step, orthogonalise all expanded terms still
in the dictionary with the A — 1 selected terms. Calculate the
mutual information with the residual vector ry_; and select
the term with the largest value as the Ath selected term.

(f) Determine the number of significant model terms using
for example the AIC or other criterions.

(g) Estimate coefficients of the selected model terms, and
achieve the estimation of time-varying parameters using Equa-
tion (6).

III. SIMULATION EXAMPLES

Identification of nonlinear time-varying systems essentially
involves the determination of the model structure and the
estimation of the corresponding time-varying parameters [38].
A correct model structure is important for not only repro-
ducing the system behaviours but also revealing the underly-
ing mechanisms. In this section, three numerical simulations
are used to illustrate the effectiveness of the new UOFR-
MI algorithm in both model structure detection and time-
varying parameter tracking. Specifically, the first example is to
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illustrate the performance of the UOFR-MI algorithm for the
detection of the time-varying model structure. Then we test the
proposed UOFR-MI, using B-splines as the building blocks
(basis functions) to approximate time-varying parameters of
two simulated non-stationary systems, and compared with two
conventional methods: RLS and OFR methods. The data in the
second example are generated from a known simulated linear
time-varying system. It is demonstrated that the new proposed
procedure can identify the system structure accurately and
track the true piecewise varying parameter variations very
well. Furthermore, the third example involves the modelling
problem of a second-order discrete-time TV system with the
second-order nonlinearity. The objective here is to illustrate
the capability of the proposed procedure for fast tracking and
adaptively capturing the abrupt changes of piecewise varying
parameters.

A. Example 1: Detection of the Time-Varying System Structure

Consider the non-persistently excited time-varying system
below

w(t) = (Dy (i~

1) +ag (1) y* (t — 2)
+b1 () u )

(t—1)+by(t)u(t—2) 37)

y(t) =w(t) + —5=re(t)
where ¢e(t) ~ N (0,0?) with ¢ = 0.05, and the input signal

is generated by an AR process

w(t) = 0.25
T 1—-162"140.64z2

where v (t) is a Gaussian distributed noise v(k) ~ N (0, 1).
Time-varying parameters are given as

0.1, 1<¢t<500,

v(t) (38)

ap (t) =
0.2, 501 << 1000,

as(t) = —0.05 + 0.02 cos(107¢/1000), 1 < ¢ < 1000,
0.8, 1<t< 400,
b (t) =14 1, 401 <t <700,
0.6, 701 <t < 1000,
—0.6, 1<t< 200,
by () ={ —0.8, 201 <t < 800,
~0.5, 801 < ¢ < 1000.
(39

For the system (37), the candidate model inputs are chosen
to be the following delayed input and output variables:{y(t —
1), y(t—2),y(t—3),y(t—4),u(t—1),u(t—2),u(t—3),u(t—
4)}. Totally 45 candidate model terms are included in the term
dictionary (the nonlinear degree of the polynomial model is
chosen to be 2). The third-, fourth- and fifth-order B-spline
functions are used to expand time-varying parameters. The
identification results produced by the classic OFR algorithm
are presented in Table I where the correct model terms are
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TABLE I
SELECTED TERMS BY THE STANDARD OFR ALGORITHM FOR EXAMPLE 1.

No. Terms ERR; x 100%

1 el (t/N) x u?(t—1) 383638
2 Sl (t/N) xy(t—1) 287975
3 Yop(t/N) x y?(t — 1) 24.1366
4 Y ep i (t/N) x y?(t—2)  3.1795
5 Sl (t/N) xu(t—2) 23389

Note: terms in bold indicate the correct model terms.

TABLE II
SELECTED TERMS BY THE UOFR-MI ALGORITHM FOR EXAMPLE 1.

No. Terms ERR; x 100%

1 Y ep(t/N) x u?(t—1) 779702
2 Sl (t/N) xy(t—1) 76505
3 Sl (t/N) xy2(t—2) 71419
4 Tel(t/N)xut—2) 48754

Note: terms in bold indicate the correct model terms.

denoted in bold. Notice that the OFR algorithm selects a
redundant term y? (¢ —1). It is also not straightforward to
reasonably explain why the correct terms y? (t — 2), u (t — 2)
are less significant than the redundant term. This probably
could be explained that the traditional OFR algorithm may
converge to the suboptimal solution when the system is not
persistently excited. The UOFR-MI algorithm is also used to
identify the model structure. The output signal and candidate
terms are modulated by the first and second order derivatives
of the cubic B-spline test function. The model identified by
the UOFR-MI algorithm is given in Table II. It is obvious
that all the system model terms are correctly selected. This
indicates that under the ULS criterion, the significance of
redundant terms is reduced, and does not appear in the
identified model. So the UOFR-MI algorithm correctly detects
the correct structure of the time-varying system.

B. Example 2: Linear Time-Varying Parameter Estimation

Consider the system

wt)=a1(t)yt—1)+az () y(t —2)
+or (ut—1)+ba (B)u(t—2) (40)
y(t) =w(t) + r=gg=re ()

where e (t) is a Gaussian distributed noise with a variance 0.1,
and time-varying parameters are given as:

0.32cos (1.5 — cos (4nt/N + 7)) ,1 <t < N/4,

0.32cos (3 — cos (4nt/N +7/2)) ,N/4+1 <1< 3N/4,
0.32cos (1.5 — cos (4nt/N + 7)) ,3N/4+1 <t < N,

az (t) = 0.4cos (4nt/N),1 <t < N,

0.65,1 <t < N/4,

—0.5,N/4+1<t<NJ2,

0.65,N/2+1<t<3N/4,

~0.5,3N/4+ 1<t <N,

by (1) = 0.6,1 <t <N,

a1 (t) =

b1 (t) =

(41)

where N = 512 is the length of data. The input u (¢) is a
Pseudo-Random Binary Sequence (PRBS).

estimated and true a_(t) estimated and true a,(t)
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(c) UOFR-MI method with B-splines

Fig. 1. Identification results of the TVARX (40) using different approaches.
Blue curve indicates the true value of TV parameters, and red curve represents
estimates of the parameters. (a) The RLS algorithm with forgetting factor
p = 0.9. (b) The OFR method with B-splines. (c) The UOFR-MI method
with B-splines.
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The third, fourth and fifth order cardinal B-splines (7 ;,7 =
3.4,5) with scale index 7 = 4 are adopted to approximate
piecewise varying coefficients. The output data and all can-
didate expanded terms are modulated by the first and second
order derivatives of the cubic B-spline basis functions. The
UOFR-MI algorithm is then applied to select significant model
terms from candidate terms expanded by the B-spline function-
s and estimate the corresponding coefficients. The constructed
model parameters are shown in Fig. 1(c). For comparison,
the standard RLS algorithm with forgetting factor p = 0.90
and the conventional OFR algorithm with B-splines are also
applied to identify the time-varying system, and the results
of parameter estimates are given in Fig. 1(a) and Fig. 1(b),
respectively.

Fig. 1(a) shows that the RLS algorithm obtains smooth esti-
mates but fails to track rapidly varying piecewise parameters.
Fig. 1(b) presents the results of parameter estimates using the
OFR algorithm with B-splines. The estimates can track abrupt
variations in time-varying parameters well but the estimation
of the constant model parameter bo(t) is not good. In contrast,
the UOFR-MI approach can better track the variation of the
parameters and more effectively capture major features of
different waveforms: the constant value, smooth changes and
abrupt changes.

In order to verity the effectiveness of the proposed method,
three noise data (corrupted by color noises) are generated with
different signal-to-noise ratio (SNR) of 20dB, 15dB and 10dB,
respectively. The value of the mean absolute error (MAE),
normalized root mean squared error (RMSE) and the standard
deviation (Std) of the time-varying parameter estimates for
these three cases are given in Table III. It is obvious that
the calculated MAE, RMSE and Std of the proposed method
are smaller than other two methods, this statistically confirms
that the proposed procedure is more adaptive and possesses
better ability for tracking the time-varying parameters even
with color noise contamination. Particularly, it is worth noting
that the superiority of the proposed method is more significant
when the noise level increases. Note that in this study MAE
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and RMSE are defined as
1 N
MAE = + D le) —c()] (42)
t=1
1 on [e(t) —e()]
RMSE = ,| =y —/2 43
¥ ; 07 43)

where ¢ (t) represents the estimates of coefficients ¢ (t) in the
TV-NARX model, N is the length of the observations.

The efficiency of the proposed algorithm can be further
evaluated by the 10-fold cross validation method. Specifically,
the testing and training data subset are randomly sampled from
the B-splines-based expansion model. Time-varying parame-
ters are estimated by the three compared algorithms on the
training data, and the prediction results from different methods
are tested by the testing data subset. Totally five rounds 10-
fold cross validation are performed and the average of the
test results are shown in Table IV. It can be observed that
the prediction error from the proposed algorithm is smaller
than the other two parameter estimation methods, indicating
excellent prediction power of the proposed method.

TABLE IV
AVERAGE PREDICTION ERRORS BY CROSS VALIDATION FOR EXAMPLE 2
10dB 15dB 20dB
Approach RMSE Std RMSE Std RMSE std
RLS (1 = 0.90) 1.8504 0.4114 1.6787 0.3210 1.5054 0.2966

OFR with B-splines 0.8630 0.2935 0.7079 0.2076 0.6862 0.1395
UOFR-MI with B-splines 0.8081 0.2454 0.6987 0.1670 0.4925 0.1050

where bold values indicate the best results.

C. Example 3: Nonlinear Time-Varying Parameter Estimation

To test a more severe situation, the data in the third example
are produced from a TV-NARX model below:

TABLE III
A COMPARISON OF THE ESTIMATION RESULTS FOR EXAMPLE 2 (SNR=10, 15, 20dB)
. . 10dB 15dB 20dB
Approach Estimated coefficients
MAE RMSE Std MAE RMSE Std MAE RMSE Std
ay(t) 0.2574  2.0201 0.1963  0.1397 12336 04170 0.0984 1.9865 0.1397
RLS (4 = 0.90) az(t) 0.1067 0.3713 0.2024 0.1007 0.4079 0.2309 0.0801 0.3533 0.1892
b1 (¢) 0.1160  1.2509 0.1662  0.0902 1.1909  0.1573  0.0747 1.1702  0.0916
ba(t) 0.1532  0.3290 0.1956 0.0927 0.3039 0.1813 0.0622 0.1502  0.0827
a1 (t) 0.2524  1.8889 0.1646 0.1216 1.1085 0.1028  0.0913 1.0267  0.0810
OFR with B-splines as(t) 0.1035 0.2564 0.1431 0.0651 0.1749 0.1149 0.0456 0.1463  0.0827
b1 (t) 0.1362  1.2864 0.1684 0.0849 0.8595 0.0662 0.0501 1.0067 0.0562
ba(t) 0.1499  0.3159 0.1873  0.0774 0.1499 0.0899 0.0603 0.1322  0.0772
a1 (t) 0.1563 1.4998 0.1269 0.0842 0.0925 0.0725 0.0712  0.9009 0.0781
UOFR-MI with B-splines az(t) 0.0622 0.1687 0.0953 0.0580 0.0929 0.1118 0.0435 0.1416 0.0816
bi(t) 0.1009 1.1802 0.1323 0.0596 0.0521 0.0646 0.0307 0.4143  0.0426
ba(t) 0.1044  0.2223 0.1335  0.0603 0.0559 0.0665 0.0436  0.0982  0.0580

where bold values indicate the best results.
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w(k)=c1o(L,k)y(k—1)4+c102,k)y(k—2)+
€o,1 (1 k) U (k - 1) + €o,2 (27 2a k) U’(k - 2)2

1
y (k) =w k) + =55 e
(44)
where the piecewise varying parameters are given as
1,0 < kAt < 0.2s,
C1,0 (1,k) = 0.4,0.2 < kAL < 0.4s,
0.8,0.4 < kAt < 1s.
c10(2,k) = —0.3,
10 (2,) )
CO,l (1, k) = 0.1,
0.2,0 < kAt < 0.6s,
co2(2,2,k) = 0.5,0.6 < kAt < 0.8s,

0.3,0.8 < kAt < 1s.

The input u(¢) is a Gaussian random sequence with variance
1. e(k) is Gaussian distributed with variance 0.062, that is,
e (k) ~ N(0,0.06%). The sampling time At is 0.0025s which
indicates f; = 400Hz.

Fig. 2(a) shows the estimation results of TV coefficient
using the RLS algorithm with forgetting factor p = 0.95. It
shows that the results cannot track the abrupt changes in the
time-varying parameters due to the limited convergence speed.
Fig. 2(b) shows the estimation results of the OFR method
with B-splines. The performance of the proposed algorithm is
slightly better than that of the OFR (with B-splines) but much
better than that of the RLS in terms of the overall variance of
the parameter estimates. Similar to the previous example, the
MAE, RMSE and Std of time-varying parameter estimates are
presented in Table V. Compared with other two methods, it
is obvious that the proposed procedure has a better tracking
performance even with a high level of noise, namely, a low
signal-to-noise ratio, which indicates the proposed UOFR-MI
with B-splines method can be an effective tool for analysing
noise contaminated signals.

Table VI shows the cross validation results of the proposed
UOFR-MI with B-splines method and other two compared
methods, i.e. the RLS algorithm and OFR with B-splines
method. The smaller prediction errors indicate that the pro-
posed algorithm can achieve better predictive performance
than other two methods; this demonstrates the advantage of the
proposed algorithm in model structure detection and tracking
system changes for the time-varying system.

TABLE VI
AVERAGE PREDICTION ERRORS BY CROSS VALIDATION FOR EXAMPLE 3

10dB 15dB
RMSE Std RMSE Std

20dB
RMSE Std

Approach

RLS (1 = 0.95) 1.7073 0.2183 1.2051 0.1583 1.3406 0.1760
OFR with B-splines 0.8545 0.2147 0.6786 0.1194 0.6363 0.0754
UOFR-MI with B-splines 0.7507 0.1434 0.5133 0.0877 0.5907 0.0564

where bold values indicate the best results.
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Fig. 2. Identification results of the TV-NARX (44) using different approaches.
The true time-varying parameters are shown as dashed lines, and the estimates

are solid lines. (a) The RLS algorithm with forgetting factor ;. = 0.95. (b)
The OFR method with B-splines. (c) The UOFR-MI method with B-splines.

IV. APPLICATION TO REAL DATA: EEG DATA MODELLING
AND ANALYSIS

The UOFR-MI has been successfully used for the identifi-
cation of time-varying systems in the previous simulations.
In this section, the proposed method is applied to a real
EEG recording to illustrate its applicability and efficiency for
real data modelling problem. The EEG dataset used here is
available publicly from University of Bonn [39]. Fig. 3 shows
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TABLE V
A COMPARISON OF THE ESTIMATION RESULTS FOR EXAMPLE 3 (SNR=10, 15, 20dB)
. , 10dB 15dB 20dB
Approach Estimated coefficients —y ™ pNUSE S MAE  RMSE  Sd MAE  RMSE S
01,0(1) 0.1245 0.3584 0.1758 0.1346  0.5212 0.4007 0.1002 0.3205 0.1634
RLS(( = 0.95)) c1,0(2) 0.0203  0.2763 0.0258 0.0230 0.5108 0.0733 0.0158 0.3137 0.0311
co,1(1) 0.0922  0.4048 0.1216 0.0722 0.2483 03189 0.0583 0.2913  0.0807
c0,2(2,2) 0.0533 04687 0.1147 0.0322 0.3054 0.0822 0.0277 0.1509 0.0628
c1,0(1) 0.1125 0.2215 0.1183 0.0939 0.2318 0.1133  0.0466 0.1207 0.0684
. . c1,0(2) 0.0302 0.3718 0.0366 0.0231 0.3117 0.0309 0.0154 0.2019 0.0202
OFR with B-splines ’
co,1 (1) 0.1099  0.5161 0.1515 0.0676  0.3068 0.0905 0.0319 0.1384  0.0408
c0,2(2,2) 0.0599 0.3067 0.0760 0.0293 0.1712 0.0449 0.0236  0.1249  0.0355
c1,0(1) 0.0774  0.1747  0.0963  0.0790 0.2060 0.1019 0.0431 0.1125 0.0612
UOFR-MI with B-splines c1,0(2) 0.0193  0.2225  0.0223 0.0183 0.2880 0.0285 0.0109 0.1525  0.0152
co,1(1) 0.0776  0.3596 0.1059 0.0465 0.2088 0.0626  0.0299 0.1298  0.0389
co,2(2,2) 0.0335 0.1912  0.0433 0.0253 0.1580 0.0382 0.0161 0.0905 0.0283
where bold values indicate the best results.
. . . . TABLE VII
a snapshot of the EEG signal in a time scale of 6 seconds, with AVERAGE PREDICTION ERRORS BY CROSS VALIDATION FOR EEG
a sampling rate of 173.61 Hz. The initial candidate NARX RECORDINGS
model structure for the EEG signal is chosen to be Method RMSE Std
RLS (©=0.95) 0.9749  8.9631
OFR with B-splines 0.4743  7.4936
) =co + ey (D ylt—1i)+ co (1, 7) — 4 UOFR-MI with B-splines 03749  7.4712
Z Z D p

y(t—3)+e()

The initial model involves a total of 66 candidate model
terms. The UOFR-MI algorithm is applied to identify a
compact TV-NARX model from the initial candidate model.
According to the AIC criterion, a model structure with 5
significant model terms is preferred and the model is as
follows:

t— i)+ (1,1, )2t — 1)

3
_ . : 2
—;CI(Z>t)y( y L, U)Y (47)

—3) +e(t)

The third, fourth and fifth order cardinal B-splines with a
scale 7 = 4 are adopted to expand time-varying parameters,
and the cubic B-spline basis functions are employed as the
modulate function. The estimates of five time-varying coeffi-
cients are presented in Fig. 4. The recovered signal, calculated
from the TV-NARX model (47) and associated original EEG
recordings are shown in Fig. 5.

Additionally, five rounds of 10-fold cross validation is
conducted to evaluate the effectiveness of the proposed UOFR-
MI with B-splines method. In this study, the testing data
are randomly sampled from the multi-wavelet basis function
expansion model. The average prediction error, measured by
RMSE and Std, is given in Table VIIL. Clearly, in comparison
with the models given by the RLS method and the OFR
with B-splines method, the TV-NARX model established by
the UOFR-MI algorithm is more flexible and adaptable for
capturing the sharp variations of the time-varying EEG signal.

where bold values indicate the best results.
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Fig. 3. The EEG signal recorded during 6 seconds with a sampling rate of
173.61 Hz.
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Fig. 4. The time-varying coefficient estimates of nonlinear constructed model
(47) for the EEG recordings.
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Fig. 5. A comparison of the recovered signal from the identified TV-NARX
model (47) and the original EEG observations. Blue line indicates the EEG
observations and the red dashed line indicates the recovered signal from the
TV-NARX model. For a clear visualization only the date points in the period
from 2.5 to 4s are displayed.

V. CONCLUSION

A new UOFR-MI algorithm combined with the basis func-
tion expansion framework has been proposed, where time-
dependent parameters were approximated by a set of multi-
wavelet basis functions. Three numerical case studies were
performed to test the performance of the proposed method.
In these case studies, several different types of time-varying
parameters were considered, including both smooth and abrupt
changes. Several criteria were used to measure the perfor-
mance of the estimated parameters, and 10-fold cross valida-
tion method was also employed to further verify the efficiency
of the constructed models. The proposed algorithm shows a
good ability and flexibility in capturing time varying properties
of interest. The results of simulation examples indicate that the
proposed method can determine the model structure effectively
and give more accurate estimates for either rapid or smooth
piecewise varying parameters. Furthermore, the parameter
estimation and prediction results on EEG recordings show
that the proposed procedure is more powerful in tracking fast
changes of time-varying biomedical signals.

An advantage of the proposed method over traditional
methods for example Kalman filtering and adaptive recursive
estimation approaches, is that it does not need to assume
some stochastic model types for time-varying coefficients
themselves, but only need to specify a set of basis functions
that can be used to approximate the change of time-varying
coefficients. In comparison with similar existing functional
series expansion methods, the proposed method can produce
more efficient model structure by making use of extra informa-
tion characterized by the weak derivatives of relevant signals.
The main drawback of the proposed method is its heavy
computational load, which may be much higher than existing
functional series expansion methods, this is because the ultra-
least squares problem (12) is different from traditional least
squares approach and involves the calculation of a number
of simultaneous equations. This computational issue, however,
becomes less critical when a high performance PC is available.
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