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Abstract 

Purpose: To evaluate an interleaved MRI sampling strategy that acquires both high temporal 

resolution (HTR) dynamic contrast-enhanced (DCE) data for quantifying breast tumor blood 

flow (TBF) and high spatial resolution (HSR) DCE data for clinical reporting, following a 

single standard injection of contrast agent. 

Methods: A simulation study was used to evaluate the performance of the interleaved 

technique under different conditions. In a prospective clinical study, eighteen patients with 

primary breast cancer due to undergo NACT, were examined using interleaved HTR and 

HSR DCE-MRI at 1.5T. Tumor regions of interest (ROI) were analyzed with a two-

compartment tracer kinetic model. Paired parameters (n=10) from data acquired before and 

post-cycle 2 of NACT were compared using the nonparametric Wilcoxon signed-rank test.  

Results: Simulations demonstrated that TBF was reliably estimated using the proposed 

strategy. ROI analysis revealed significant changes in TBF (0.81 to 0.43 ml/min/ml; 

P=0.002) following 2 cycles of NACT. HSR data were reported in the normal way and 

enabled the assessment of tumor volume, which decreased by 53% following NACT 

(P=0.065). 

Conclusion: TBF can be measured reliably using the proposed strategy without 

compromising a standard clinical protocol. Furthermore, in our feasibility study TBF 

decreased significantly following NACT whereas capillary permeability surface-area product 

did not.  

Key Words: DCE-MRI; tracer kinetic model; breast; tumor blood flow; chemotherapy; high 

temporal resolution;  
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Introduction  

Breast cancer is the most common cancer in women worldwide. Survival rates for women 

who are diagnosed early have improved, but this is not the case with late stage disease (1). 

Patients with advanced breast cancer often undergo neoadjuvant chemotherapy (NACT), with 

the aim of reducing tumor size. Nevertheless a significant proportion of patients do not 

benefit from the treatment (2), but still suffer from its side effects (3,4). It is important to 

identify these patients at an early stage of treatment and, where possible, change their 

therapy.  

Treatment response is currently assessed by a combination of clinical examination and 

imaging techniques such as mammography, ultrasound and MRI. However, these techniques 

are typically limited to evaluating morphological changes, such as tumor diameter (5) and 

volume (6). It is recognized that changes in physiology, such as tumor blood flow (TBF), 

precede morphological changes and this allows an assessment of treatment response at an 

earlier stage of therapy (7,8). Since 1990 several studies have demonstrated that it is possible 

to estimate physiological processes using dynamic contrast enhanced (DCE)-MRI and many 

studies have exploited this approach to monitor NACT response, either by semi-quantitative 

signal-time curve characterization or by measurement and modeling of tumor contrast uptake 

(9-13).  

Despite the promise of DCE-MRI to monitor treatment response, there has been limited 

adoption of quantitative MRI techniques into clinical practice. Accurate modeling of tracer 

kinetic time series requires the use of imaging protocols with high temporal resolution (HTR) 

and such data are usually acquired at the expense of high spatial resolution (HSR) (14). The 

American College of Radiology guidelines recommend the acquisition of HSR data: a slice 

thickness of less than 3 mm with in-plane spatial resolution of 1 mm (or less), suggesting that 

a temporal resolution of less than 4 minutes will suffice for “accurate capture of lesion 

kinetics” (http://www.acr.org/Quality-Safety/Standards-Guidelines). In the case of TBF 

measurement however, the sampling interval plays a major role with the necessity of 

acquiring data in both the breasts and a feeding artery (15-17). A sampling rate of 1 imaging 

volume every 2 or 3 s is needed to capture the temporal characteristics of the arterial input 

function (AIF) during the early passes of the contrast agent bolus though this sampling rate 

can be relaxed later in the time-course (16,17).  

Some studies simply neglect HSR images or breast coverage to improve the sampling rate 

(14,18,19) while others have proposed different approaches to meet these conflicting 

http://www.acr.org/Quality-Safety/Standards-Guidelines
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requirements. A two-bolus technique was proposed to allow for separate HSR and HTR 

imaging however it significantly increases scanning time and reduces the contrast dose that 

can be used in each bolus (20). Song et al demonstrated a technique that allows acquisition of 

HTR images (12-15 s) while simultaneously allowing the reconstruction of HSR images from 

the same datasets (21). Saranathan et al proposed an acquisition technique that switched 

between HTR with moderate spatial resolution (9 s; 1.1×2.5×4 mm) during the contrast agent 

wash-in phase and low temporal resolution but HSR (120 s; 1.1×1×1.2 mm) during the wash-

out phase (22). Despite these proposals, acquisition rates for estimation of TBF remain 

suboptimal (16,17). 

An alternative approach to that of Saranathan et al. is to acquire HSR and HTR images in an 

interleaved manner. The use of a dual-echo multi-slice acquisition by Grovik et al (23) 

hampered measurement of the AIF but enabled DCE-MRI at HTR while retaining HSR 

images for clinical use. The purpose of this study is to evaluate the feasibility of quantifying 

tumor blood flow (TBF) in patients with advanced breast cancer undergoing neoadjuvant 

chemotherapy (NACT), using an interleaved dynamic contrast-enhanced (DCE) MR imaging 

technique. 

Methods  

Tracer kinetic model and sampling requirements  

A two-compartment exchange model (2CXM) describes the transport of contrast agent 

through a tumor in terms of TBF (Fb), capillary permeability surface-area product (PS), blood 

volume fraction (vb) and extracellular extravascular space (EES) volume fraction (ve). The 

following time-domain solution was used for analysis of the signal-time data: ܥሺݐሻ ൌ ௕ሺͳܨ െ ሻݐܿܪ ή ሻݐ௣ሺܥ ٔ ሾܣ ή ݁ିఈ௧ ൅ ሺͳ െ ሻܣ ή ݁ିఉ௧ሿ            [1] 

where, Cp(t) is the AIF, the blood plasma concentration of contrast agent, C(t) is the 

concentration in the tumor and ٔ is the convolution symbol (15,24). The fit parameters (Fb, 

A, Į and ȕ) can be used to derive the required tracer kinetic parameters as follows ݒ௕ ൌ ܣ௕Ȁሺܨ ή ሺߙ െ ሻߚ ൅ ܵܲ      , ሻߚ ൌ ሺͳ െ ሻݐܿܪ ή ሾݒ௕ሺߙ ൅ ߚ െ ௕ሻܨ௕Ȁݒߚߙ െ  ,௕ሿܨ
௘ݒ    ൌ ܲܵǤ ܧ     , ௕ሻݒߚߙ௕Ȁሺܨ ൌ ܲܵȀሾܲܵ ൅ ௕ܨ ή ሺͳ െ  ,[ሻݐܿܪ

௧௥௔௡௦ܭ     ൌ ܧ ή ௕ܨ ή ሺͳ െ  ሻ                       [2]ݐܿܪ
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where Hct is the large vessel hematocrit, E is the extraction fraction and Ktrans is the volume 

transfer constant. Quantitative analysis requires a signal from the tumor and the lumen of a 

feeding artery (the AIF). The proposed interleaved imaging scheme (Fig. 1) starts by 

acquiring a HSR volume that serves as a baseline reference for clinical reporting. During 

contrast agent administration, the acquisition scheme continues with HTR sampling to 

capture the rapid changes of the AIF and tissue curve during the early bolus passes. The 

acquisition then alternates between HSR and HTR for a further 6 minutes.  

Simulations  

In order to evaluate the performance of the interleaved strategy, a simulation study was 

undertaken. A realistic AIF (25) was simulated at HTR (0.1 s) and convolved with the tissue 

model given in Eq. 1 (using model and acquisition parameters presented in Table 1) to 

generate 3 typical tumor curve types – 3, 4 & 5 (26).  

The HTR relative signal intensity (RSI) time curves generated were regridded to match the 

temporal resolution of our proposed MR technique (2.2 s). Tumor curves and the AIF were 

further processed to include random Gaussian noise at four different signal-to-noise ratios 

(SNR) of 20, 30, 50 and 80. SNR was defined as the maximum signal intensity in the time 

series divided by the standard deviation of the baseline signal (27,28). 1000 tissue curves 

were generated for each of the tumor curve types at each SNR level. 

The time series were cropped to simulate three sampling strategies (see Fig. 1); method 1- 

continuous HTR imaging for approximately 8 minutes, method 2 - as method 1 with gaps for 

HSR imaging as in the clinical protocol and method 3 - as method 2 with the initial burst of 

HTR data shortened (method 2: 36 volumes, method 3: 21 volumes) to remove the second 

pass of the AIF and simulate a protocol which allows earlier HSR acquisition.   

Patients  

Eighteen female patients (mean age, 48.7 years) who had locally advanced breast cancer, due 

to undergo NACT and have been referred for an MRI scan for treatment assessment, were 

eligible to this prospective study and imaged at least twice during their course of NACT. The 

study was approved by a research ethics committee and written informed consent was 

obtained. Blood samples from each patient were used to estimate the large vessel Hct before 

each MRI scan. Patients with contraindications to MRI were excluded from the study. Table 

2 shows the histological and molecular markers acquired from core sample biopsies obtained 

at baseline and the subsequent NACT regimen for each patient. 
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MR imaging  

All patients were scanned on a 1.5 T Avanto MR scanner (Siemens, Erlangen, Germany), 

positioned head first prone, using a bilateral breast coil for signal reception. To enhance 

signal from the descending aorta (which was used for the AIF (14) as there is no local artery 

of sufficient diameter that can be reliably measured in the imaging volume) a flexible matrix 

coil was also positioned on the patients' back.  

The clinical protocol began with a T1-weighted 3D spoiled gradient echo (FLASH) and a T2-

weighted turbo spin echo (TSE) sequence each in the transverse plane covering both breasts. 

Following this, axial images (FOV: 340×340×150 mm, reconstruction matrix: 128×128×30) 

were acquired using a 3D inversion recovery (IR) prepared balanced steady state free 

precession sequence (TrueFISP) at four inversion times (TI: 400, 680, 1200 and 2000 ms) to 

measure the baseline T1 relaxation times of blood and tumor (IR-TR: 3000 ms, TR/TE: 

2.7/1.3 ms, FA: 70°, GRAPPA parallel factor: 2, Tacq: 1 min per volume). 

For HTR and HSR DCE-MRI, standard vendor-supplied 3D FLASH sequences were 

employed. No modification was made to the HSR DCE-MRI images used in our institution 

for clinical reporting. These were preset to run in an interleaved manner as illustrated in Fig. 

1. The system was setup to traverse through the sequences in an automated mode, without re-

shimming or re-tuning procedures in-between. For the HTR imaging the same geometry as 

the T1 mapping was used (TR/TE: 2.7/0.8 ms, FA: 21°, GRAPPA factor 2, Tacq = 2.2 s). For 

the HSR images a 3D fat-suppressed FLASH sequence was used to generate axial images 

(TR/TE: 4.1/1.2 ms, FA: 10°, FOV: 340×340×146 mm, reconstruction matrix size: 

384×384×104, GRAPPA factor: 2, Tacq = 34 s). A dose of 0.1 mmol/kg Gd-DOTA (Dotarem, 

Guerbet Laboratories, Aulnays Sous Bois, France) was administered at 3 ml/s followed by 20 

ml saline at the start of HTR imaging. The total acquisition time of the dynamic data was 

approximately 8 minutes during which 84 HTR volumes and 8 HSR volumes were acquired. 

Postprocessing  

All MRI data were processed using PMI (Platform for Research in Medical Imaging, version 

0.4 (29)) and Matlab (Mathworks, Nattick, MA, USA). The IR images were used to obtain 

baseline T1,0 relaxation time maps by fitting Eq. 2 to the signal intensity data using a non-

linear least-squares optimization algorithm, on a voxel-by-voxel basis ܵ ൌ ܵ଴൫ͳ െ ʹ ή ݁ି்ூȀ భ்ǡబ൯     [3] 
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where S0 is the steady state signal. PMI was used to draw ROIs in the descending aorta and 

tumor in order to obtain the AIF and the corresponding tumor curve. For AIF selection, ROIs 

that covered several slices within the 3D volume of HTR data for each patient were first 

created. The 3D ROIs were then trimmed to include only voxels that had a maximum RSI 

value between 50 and 95% of all RSI maxima (chosen empirically). A 2nd criterion for AIF 

selection was that voxels were only included if the corresponding T1,0 estimates were within 

1.1 and 1.7 s. These steps were followed to minimize potential errors in the AIF such as 

partial volume, inflow or motion artifacts. The median number of voxels included in the AIF 

ROI was 426 (range 105 – 576).  

Tumor 3D ROIs were selected on both HSR and HTR images. For the HSR data, a 

radiologist examined all MRI datasets (T1 and T2-weighted volumes as well as the 

postcontrast dynamic data) and delineated the tumor. Both enhancing and non-enhancing 

areas within the tumor were selected and these ROIs were used for tumor volume estimation. 

The 3D ROIs for the HTR images only included regions that exhibited contrast enhancement. 

The RSI data were converted to longitudinal relaxation rate changes (ǻR1) using the mean 

precontrast T1,0 estimate and the signal intensity obtained with a FLASH sequence (Eq. 3) ܵ ൌ ܵ଴ ή ቀ ଵି௘ష೅ೃȀ೅భଵିୡ୭ୱሺி஺ሻή௘ష೅ೃȀ೅భቁ ή sin⁡ሺܣܨሻ ή ݁ି்ாȀ మ்[4]   כ 

where S0 is proportional to the proton density and given the short TE used, the term exp⁡ሺെT�ȀTଶכሻ was assumed to remain unchanged at a value of 1 throughout. The resulting 

time series were subsequently used for tracer kinetic modeling. The model was initially fitted 

with five parameters, the four parameters defined in Eq. 1 and bolus arrival time (BAT) that 

accounts for the delay between arrival of the contrast at the aorta and the tumor. A second fit 

was performed with BAT fixed at its best-fit value. The analysis was performed in Matlab 

using a constrained non-linear least-squares optimization algorithm (Fb, A, Į and ȕ were 

constrained to be positive and A<1). To fill the gaps in the AIF left by the acquisition of HSR 

data, interpolation was achieved using a best-fit decaying bi-exponential function (30). The 

analysis was performed blinded to any clinical results. 

To compare T1,0, tumor volume and tracer kinetic parameter estimates before and following 

treatment (for paired data only, n=10), a non-parametric Wilcoxon signed rank test was used, 

since the parameter estimates were not normally distributed (Shapiro-Wilk test, p>0.05). In 

addition, Spearman’s rank correlation coefficient was used to assess the relationship between 
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parameters (for paired data only). For the analysis of the simulated data, percentage error was 

calculated for each parameter ܲ݁ݎ݋ݎݎܧ⁡݁݃ܽݐ݊݁ܿݎ ൌ ⁡ ௫ି௫೟ೝೠ೐௫೟ೝೠ೐ ൈ ͳͲͲΨ   [4] 

where ݔ and ݔ௧௥௨௘ are the estimated and the simulated value of the parameter. 

Results  

Simulations  

Simulated data for all three curve types at four SNR levels were fitted and parameter 

estimates were generated. Due to the large quantity of data generated in the simulations (3 

curve types, 4 SNR levels and 4 estimated parameters per fit), we only present the results for 

a SNR of 50 (Fig. 2), which is closest to the mean SNR calculated from the subsequent MRI 

experiments.  

The most reliable parameter estimate was Fb. Fig. 2 demonstrates that all three sampling 

strategies generate similar median estimates for Fb. However, interquartile range (IQR) in Fb 

estimates was narrowest for method 1, wider for method 2 and widest for method 3. 

Furthermore, IQR of Fb estimates for all sampling strategies becomes larger as the curve type 

changed from type 3 to type 5. Similar effects were observed for both PS and vb estimates. In 

contrast, ve estimates showed a larger IQR for type 3 and 5 curves compared to type 4. The 

results for the remaining SNR levels followed similar trends, but the IQR of the parameter 

estimates increased as SNR decreased. 

Scatter plots for combinations of parameter estimates (Figs. 3&4) illustrate that some fit 

errors occurred with type 3 and 5 curves. In general, these failures become more frequent as 

SNR decreased and as the number of data points used to fit the data decreased. Fig. 3 

demonstrates the low precision in ve estimates for type 3 curves at a SNR of 20, and how this 

improved at a SNR of 50 and as more data points were used in the fitting process (i.e. 

methods 1 and 2 outperform method 3).  

Fig. 4 (bottom row) shows that fitting a type 5 curve acquired with sampling method 3 and, to 

a lesser extent, with method 2, leads to fit failures. In particular, 2% and 27% of the fits 

generate a PS estimate close to 0 for method 2 and method 3, respectively and the number of 

fits failures increased as SNR decreased. The inability to estimate PS from these data leads to 

arbitrary ve estimates, an overestimation of vb and an underestimation of Fb. The 

corresponding scatter plots for type 4 curves (Fig.4, top row) indicate that the distribution of 
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the parameter estimates is more homogeneous, without fit errors and with the parameter 

estimates confined to a narrower range.  

Clinical application  

In this cross-sectional feasibility study we analyzed 25 MRI data sets from 15 of the 18 

patients recruited; those 15 had baseline MRI scans and 10 of them went on to have MRI 

scans following 2 cycles of EC. Three patients have missed their baseline scan due to a lack 

of scanner availability at the time and were excluded from the study. Five patients missed 

their post-cycle 2 MRI scan due to technical failures or variations in oncology requests for 

MRI. At surgery following the completion of NACT, 3 of these 10 patients (patient no. 1, 3 

and 14) showed a complete pathological response and 7 showed evidence of partial 

pathological response. 

Examples of the HSR and HTR images acquired are shown in Figs. 5 and 6, along with the 

corresponding signal-time curves. Example model fits for patients at baseline and post-cycle 

2 are illustrated in Fig. 7. Median values and ranges of the resulting parameter estimates are 

shown in Table 3. There was a significant change between baseline and post-cycle 2 in Fb, 

BAT and Ktrans estimates at the 95% confidence level (P = 0.002, 0.020 and 0.037, 

respectively). There were no significant changes in the remaining parameters. Tumor volume, 

determined from the HSR data, decreased by 53% following 2 cycles of NACT but this 

change was not significant at the 95% confidence level (P = 0.065).  

Ktrans (calculated as EήFbή(1-Hct)) correlated better with PS (ȡ = 0.94, p<0.001) than with Fb 

(ȡ = 0.69, P = 0.011) and shows a borderline significant change in response to treatment 

compared to Fb. Conversely if, as is common, a one compartment model (1CM) is used to 

estimate Ktrans  (though an F-test suggests that the 2CXM model is preferred14; data not 

shown), it correlates strongly with Fb (ȡ = 0.94, P<0.001), weakly with PS (ȡ = 0.47, P = 

0.037) and shows a more significant reduction following NACT (32%, P = 0.010).  

Discussion  

In this study, we have evaluated the performance of the interleaved acquisition strategy 

introduced in Fig. 1. The protocol was compared to a conventional HTR protocol in the 

absence of interleaving through simulations and clinical feasibility was subsequently tested 

through application in patients undergoing NACT.  
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Simulations  

The performance of the proposed interleaved strategy (sampling method 2) was comparable 

to method 1 (HTR without gaps). The IQR of the parameter estimates varied with curve type 

but improved as SNR increased. Fb was the parameter that could be estimated with the 

highest accuracy and precision, irrespective of curve type or SNR.  

Simulations using sampling method 1 revealed the sources of error expected when a 

continuous HTR series is acquired. For type 3 curves, all parameter estimates (except ve) are 

confined to a narrow range. When PS is low (type 3) there is slow contrast agent 

extravasation and the curve continues to rise. The overall acquisition time is suboptimal for 

this curve type with insufficient time for contrast agent to fill the EES. This leads to 

difficulties in estimating ve and an uptake model may be more appropriate (15). Nevertheless, 

the accuracy and precision of ve estimates improves as SNR increases (Fig. 3). 

The performance of the proposed interleaved acquisition strategy (method 2) was comparable 

to method 1 in most cases. Similar characteristics were observed for type 3 curves, but ve 

estimates were more variable. The main difference between the two methods was observed in 

fitting type 5 curves. Here extravasation (PS) is high, and makes it difficult to differentiate 

contrast agent in the vascular and EES compartments. This may lead to imprecise PS, ve and 

vb estimates, worsening as the SNR and number of points used to sample the time series 

decrease. In the limit PSĺ∞, the model collapses to a 1CM, where the estimate of blood 

plasma volume fraction (vp) is equal to ve + vp, and ve no longer has an impact on the curve 

and can take any value as seen in ~2% of the fits at SNR 50. The number of fit errors reduces 

as the SNR increases. 

Sampling method 3 was evaluated through simulations in order to examine the importance of 

acquiring all rapid temporal changes of the AIF during the first minutes of dynamic 

acquisition. The results of the simulation suggest that reducing the number of data points can 

have a significant impact on the parameter estimates. Method 3 generated a higher number of 

imprecise ve estimates in the case of type 3 curves. Moreover the percentage of fits that result 

in fit failure in type 5 curves was appreciably higher (27% of fits for an SNR of 50, 

increasing as SNR decreases). 

Based on the simulations we concluded that the proposed interleaved acquisition scheme was 

able to generate sufficiently reliable parameter estimates compared to those obtained with a 
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conventional HTR protocol. It appears to be important to sample all the early signal changes 

in the AIF. 

Clinical application  

The acquisition technique proposed offers the potential to derive separate estimates for TBF 

and PS, and at the same time maintain the acquisition of HSR data necessary for clinical 

reporting. Since the basic structure of the routine protocol was maintained (other than a 

delayed acquisition of the first post-contrast HSR volume), our radiologists were able to 

follow the normal breast MRI reporting system (31). Figs. 5 and 6 show examples of type 5 

and type 4 curves with data from the HSR images which match the kinetic curve type derived 

from the HTR images.  

Our estimates of baseline tumor and blood T1 using the inversion recovery sequence are in 

the range of previous results (19,32-34). To our knowledge, only Brix et al. previously 

provided Fb estimates for breast tumors using DCE-MRI techniques and these compare well 

with our Fb estimates for untreated tumors (regional blood flow: ~0.61±0.25 ml/min/ml (14)). 

There is also good agreement between vb estimates (0.25±0.10), whereas ve reported by Brix 

(0.34±0.16) is somewhat higher than our median estimate. In other studies using PET and O-

15 labeled water, whole tumor mean Fb estimates in breast tumors range from 30-60 

ml/min/100 g (8,35-37) but may be systematically underestimated due to limitations in 

spatio-temporal resolution.  

We measured a significant reduction (47%, P = 0.002) in median Fb following 2 cycles of 

NACT (n=10). A similar reduction following NACT was also reported using PET imaging by 

Mankoff et al7. Ktrans has been used in previous MRI studies to monitor treatment response 

but this parameter is often measured in different ways and misinterpreted (38). The 

physiological interpretation of Ktrans reflects a combination of TBF and PS (15). However the 

contribution of each process, and hence the sensitivity of the analysis is likely to be 

dependent on model selection. These findings in conjunction with our simulations suggest 

that Fb is a good choice for measuring treatment induced changes. 

Limitations  

Although 18 patients were initially recruited only 10 had both baseline and post-cycle 2 MRI 

scans. Within the study cohort patients were treated with a variety of NACT regimens and 

this complicates any attempt to derive a correlation between TBF change and pathological 

response.  
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Although the first segment of HTR data was prolonged in order to capture the rapid temporal 

changes in the blood concentration of contrast agent during the first minutes following 

administration, there were examples of AIF time series with visible first, second and third 

passes before the acquisition switched. This should have minimal effect on Fb estimates, but 

may, in some cases, have an impact on PS and vb estimates. Furthermore, a better sampling 

strategy for the HTR images could further improve the accuracy and precision of parameter 

estimates in general. Additional simulations (data not shown) demonstrated that more 

frequent but shorter sampling intervals could improve these metrics. 

It is important to note that a 2CXM is a gross-simplification of the true distribution of 

contrast media in breast cancers. For example a study has shown that contrast media 

accumulate within the ducts, 2 minutes post-contrast administration (39). Nevertheless, the 

application of complex models is not always the best approach since this depends on several 

requirements such as noise in the time series, temporal sampling rate, accuracy of AIF 

measurement (40). In this study the data did not support a model with more than 4 

parameters. 

Conclusions 

To our knowledge this is the first study that presents an acquisition strategy to acquire both 

HSR images for clinical reporting and HTR images for quantitative DCE-MRI, with the 

ability to derive separate estimates of TBF and PS. The interleaved approach was evaluated 

using simulation studies and tested through application in patients undergoing NACT. These 

techniques will allow radiologists to adapt similar protocol strategies without significantly 

compromising the data used for clinical reporting and encourage other investigators to 

examine the physiological characteristics of tumors and their associated changes during 

treatment.   
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Tables: 

Table 1: Parameters used in Simulations 

Tracer Kinetic Model Parameters Physiological Parameters 

Tumor 
Curve 

Fb 
(ml/min/ml) 

PS 
(ml/min/ml) 

ve 
(ml/ml) 

vb 
(ml/ml) 

Blood 
T1,0 (ms) 

Tumor 
T1,0 (ms) Hct 

Type 3 0.17 0.03 0.35 0.09 

1400 1000 0.42 Type 4 0.43 0.08 0.25 0.26 

Type 5 0.86 0.15 0.15 0.43 

T1,0: Precontrast longitudinal relaxation time, Hct: Hematocrit 
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Table 2: Patient Histological Data and chemotherapy regime 

Patient 
No. Age 

Lymph 
nodes Tumor Type Grade ER status PR status 

HER 2 
Status 

NACT 
Regime 

1 58 -  Ductal NST 2,3 - - + 4×EC + 4×DC 
3 40 +  Ductal NST 2 + - + 2×EC + 4×DC 
4 47 -  Ductal NST 2 + + + 6×EC  
5 40 +  Ductal NST 2 + + - 4×EC + 2×DC 
6 49 +  Ductal/Lobular 1 + + - 2×EC + 6×DC 
7 50 -  Ductal NST 3 - - - 4×EC + 4×DC 
8 42 +  Ductal NST 2 + + - 3×DC + 3×FEC 
9 47 +  Ductal NST 3 + - - 3×DC  
10 50 -  Ductal NST 2 + + - 3×EC + 4×DC 
11 61 +  Ductal NST 3 + - + 4×EC + 4×DC 
12 42 +  Ductal NST 2 + + - 4×EC + 4×DC 
13 45 +  Ductal NST 3 - - - 4×EC + 4×DC 
14 54 +  Ductal NST 3 - - + 4×EC + 3×DC 
15 61 +  Ductal NST 3 - - - 4×EC + 4×DC 
16 60 + Basal Features 3 - - - 4×EC + 4×DC 
17 38 +  Ductal NST 2 + - + 2×EC + 4×DC 
18 53 +  Ductal NST 2,3 + - - 3×EC + 4×DC 
20 40 +  Ductal NST 3 + - - 4×EC + 2×DC 

Ductal NST: ductal carcinoma of no specific type, ER: estrogen receptor, PR: progesterone receptor, HER 2: human epidermal 
growth factor receptor 2, EC: epirubicin & cyclophosphamide, DC: docetaxel & cisplatin, FEC: fluorouracil & EC. 
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Table 3: Values of Estimated Parameters  

    Paired Data 

Parameters Baseline MRI (n=15) Baseline MRI (n=10) Post-Cycle 2 MRI (n=10) p-value 

  Median (range) Median (range) Median (range)   

Volume (ml) 13.67 (0.61 - 108.37) 16.33 (2.32 - 108.37) 7.69 (0.19 - 68.47) 0.065 

Tumor T1 (ms) 1074 (948 - 1196) 1070 (948 - 1196) 1113 (962 - 1273) 0.432 

Blood T1 (ms) 1335 (1241 - 1489) 1324 (1241 - 1489) 1384 (1317 - 1560) 0.053 

Hct 0.40 (0.35 – 0.46) 0.40 (0.37 – 0.46) 0.40 (0.28 - 0.47) 0.625 

BAT (s) 3.60 (1.80 - 9.60) 3.60 (1.80 - 5.40) 4.80 (3.00 - 8.14) 0.020a 

Fb (ml/min/ml) 0.68 (0.16 - 1.36) 0.81 (0.34 - 1.36) 0.43 (0.19 - 0.84) 0.002a 

PS (ml/min/ml) 0.08 (0.01 - 0.37) 0.10 (0.05 - 0.37) 0.08 (0.05 - 0.15) 0.106 

ve (ml/ml) 0.22 (0.09 - 0.39) 0.26 (0.16 - 0.39) 0.25 (0.14 - 0.33) 0.625 

vb (ml/ml) 0.25 (0.01 - 0.59) 0.24 (0.04 - 0.49) 0.23 (0.07 - 0.45) 0.695 

E (no units) 0.19 (0.02 - 0.44) 0.19 (0.11 - 0.44) 0.25 (0.11 - 0.46) 0.322 

Ktrans (/min) 0.06 (0.01 - 0.25) 0.09 (0.04 - 0.25) 0.06 (0.04 - 0.10) 0.037a 
aA difference, at 95% significance level, using a non-parametric Wilcoxon signed rank test. 
Median parameter estimates (range) for the tracer kinetic model, tumor volume and T1 for tumor and blood ROIs. A 
non-parametric Wilcoxon signed rank test was used to compare the baseline and post-cycle 2 parameter estimates 
who attended both MRI sessions (paired data). Hct = Haematocrit, BAT = bolus arrival time, Fb = tumor blood flow, 
PS = permeability surface-area product, ve = interstitial volume fraction, vb = blood volume fraction, E = extraction 
fraction, Ktrans = volume transfer constant. 
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Figures 

 

Figure 1: Schematic of the interleaved acquisition with example simulated AIF and three 

tumor curve types. The solid lines represent the simulated time series (without gaps or noise) 

and the marker points illustrate the data acquired with the interleaved technique (with noise). 

Red and blue segments represent high spatial resolution (HSR) and high temporal resolution 

(HTR) acquisitions, respectively. At the first burst of HTR imaging (segment A) 36 volumes 

were acquired for method 2, to encompass the first two passes of the contrast agent bolus. For 

method 3, this was reduced to 21 volumes (acquisition stops at the dotted line) to exclude the 

2nd pass of the AIF. During the following bursts (segments B, C and D) 16 time points were 

acquired, each segment occupying the acquisition time of a single HSR volume. There were 

eight HSR volumes acquired in total.  
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Figure 2: Box and whisker plots of the simulation results for a signal to noise ratio (SNR) 50. 

Each parameter plot groups the results by curve type (3, 4 and 5) and sampling strategy, 

method 1 (green), method 2 (red) and method 3 (black). Note the variation in y-axis scale. 

The box represents the middle 50% of values for the group (inter-quartile range) and the 

upper and lower whiskers represent the complete range beyond the middle 50%. 
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Figure 3: Scatter plots of combinations of parameter estimates from the simulation of type 3 

tumor curves and a signal to noise ratio (SNR) of 20 (top row) and 50 (bottom row). The 

middle panel (ve vs PS plot) demonstrates that the optimization process generates imprecise ve 

estimates, particularly for method 3 (grey circles). However, as the SNR increases the 

precision increases. Note that Fb, PS and vb are estimated with a higher accuracy and 

precision than ve. The white cross indicates the ground truth of the parameters. 
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Figure 4: Scatter plots of combinations of parameter estimates from the simulation of type 4 

(top row) and type 5 tumor curves (bottom row) and a signal to noise ratio (SNR) of 50. The 

simulation results indicate that the performance of the optimization process is excellent for 

the type 4 curves for all methods. On the other hand, for type 5 curves PS estimates are 

imprecise and using method 3 (grey circles), the tracer kinetic model sometimes breaks down 

and returns PS estimates close to zero. This causes an overestimation of vb, underestimation 

of Fb and a wide range of ve estimates. The white cross indicates the ground truth of the 

parameters. 
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Figure 5: High temporal resolution (HTR) 3D FLASH MR image during the first segment of 

HTR acquisitions in patient 12 (post-contrast), with the corresponding signal intensity time 

series from the tumor in the left breast. In the right column, high spatial resolution (HSR) 3D 

FLASH image acquired shortly after contrast agent administration with the respective signal 

time series.  This figure illustrates the ability of the interleaved technique to preserve HSR 

images that can be used for clinical reporting. The tumor was reported as an abnormally 

enhancing 27 mm mass exhibiting a type 5 curve with 150% enhancement.   
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Figure 6: High temporal resolution (HTR) 3D FLASH MR image during the first segment of 

HTR acquisitions in patient 3 (post-contrast), with the corresponding signal intensity time 

series from the tumor in the left breast. In the right column, high spatial resolution (HSR) 3D 

FLASH image acquired shortly after contrast agent administration with the respective signal 

time series. The time series generated from both the HSR and HTR images indicate a type 4 

tumor curve. Also note that low enhancement areas within tumor can be identified on both 

HSR and HTR images. This tumor was reported as a large abnormal rim enhancing 45 mm 

mass exhibiting a type 4 curve with 120% enhancement.  

 

 

 

 

 

HTR HSR

HTR HSR



27 
 

 

Figure 7: MR data acquired at baseline and post-cycle 2 with respective fits and parameter 

estimates for patient 14 (A) who showed complete pathological response following 7 cycles 

of neoadjuvant chemotherapy (NACT) and patient 17 (B) who showed partial pathological 

response following 6 cycles of NACT.  

 


