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ABSTRACT

This paper aims to quantitatively measure the impact of different data cesit@sking topologies on the
performance and energy efficiency of shuffling operations in Mapé&eddixed Integer Linear Programming
(MILP) models are utilized to optimize the shuffling in several data céopeiogies with electronic, hybrid,
and all-optical switching while maximizing the throughput and reducing tkempoonsumption. The results
indicate that the networking topology has a significant impact on élfermance of MapReduce. They also
indicate that with comparable performance, optical-based data centers can aclaieermge of 54% reduction
in the energy consumption when compared to electronic switching data centers.
Keywords. Data Center Networking (DCN), MapReduce, energy efficiency, completion time.

1. INTRODUCTION

The MapReduce programming model and its widely-used platform, dpadre enabling several cost-
effective cloud-based big data services [1]. These services typically require exthivall communication
between hosting servers leaditogncreased congestion and power consumptiaata centers. Moreover, they
result in the East-West traffic dominating over the South-North traffis iiéw traffic trend has become the
focus in designing statef-art production data centers [2]. These challenges are increasingly motitreging
consideration of all-optical networking in future data centersope with the increasing demands of big data
applications while improving the data centers performance and decrdasingower consumption [3].

The processingn MapReduce is composed of map, shuffle, and reduce phases.plbeéta is stored in
severakervers’ local disks and is globally managed by a distributed file system (OfS)He processing starts
by assigning map slots according to the number of input data £famk available computing resources, and
reduce slots according the user’s configurations. If chunks are more than map slots, the map phthsaniin
several waves according to thecheduling [4]. Each map slot processes it assigned chunks, preteralidble
locally, and generates intermediate results in the form of <key,value> pagr&mt€rmediate results are sheidfl
to reduce slots according to their keys where each slot is assigpescessa unique set of keys [1]. Finally,
eachreduce slot sorts its inputs, calculates final results, and savesritiee DFS.

Several optimization studies have been carried out by both academia andyirtdugnhance the
performance and energy efficiency of big data applications (e.g.4RJ21]). The performance of big data
applications and frameworks such as MapReduce is associateawiith range of factors and parameters such
as the cluster specifications (e.g. CPU, memory, networking, akd/® resources [9]), framewonksed or
version in addition to selected configurations and mechanisms for data andpjabsments and tasks
scheduling [4]-[8] Moreover, as the deployments of big data applications are evolvimgdedicated clusters to
public clouds where multi-tenants simultaneously request differenddiay services, additional challenges are
encountered to orchestrate virtualized resources an@ tfadiybrid clusters at reduced cost and power
consumption while avoiding under or over utilization [93].

Most of big data applications optimization studies neglected the ingbadata centers networking and
topologies on the performance by considering single-rack setupdguoe costs and to focus on optimizing the
framework based on CPU, I/0, and memory resources (e.g/]i4However, with growing data volumes and
increasing need for clusters scaling, networking resources are exfetiecbme a severe bottleneck [8]. Few
studies tackled optimizing data center networking and topologies fadabégapplicationg?], [17]-[21]. The
authors in [2] considered utilizing the Energy Efficient Ethernet (EféBfure enabled in modern data centers
switchesto achieve up to 60% reduction in MapReduce energy consumption. Werkétfluence on Hadoop
performancein multi-rack clusterds considered in [1]7 The energy efficiency of several switch and server
centric data centers is evaluated 18] under MapReduce traffic. MRPerf which is a widely-used MapReduce
simulator consideknetwork configurations and compared the performance of doublechastiers with DCell
architecturg19]. Camdoop is proposed i8] as a MapReduce-like system to exploit in-network aggregafion
intermediate results in CamCube which is a server-centric architectutd],lthe performance of MapReduce
is experimentally examined in hybrid electronic/optical switching data centemslya-Through and Helios.
However, their optical links were not fully utilized.

This study aims to quantitatively measure the impact of different daterse¢opologies on the performance
and energy efficiency of MapReduce shuffling operations. Different Iswgdechnologies for data centers are
considered which are electronic, hybrid and all-optical. The rest of this jgap@anized as follows. Section 2
briefly describes the data centers architectures considered. Section 3 explanopdlseg optimization models
and shows their results, while Section 4 provides the conclusions andvotlire
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Figure 1: Electronic, hybridgndall-optical-based data centers models for MapReduce shuffling ogtioniza

2. DATA CENTERSARCHITECTURES:

Data Center Networking (DCN) is an important design aspect that deg¢srithie performance and power
consumptionof data centers and defines traffic routing requirements betweknstrgers. Data centersvea
been hosting legacy web, data management, and content distribution apieatibare currently challenged
by the increasing need to host big data applications [14]-[1@&sd& hpplications introduce different computing
and routing requirements with denser seteeserver communications which cause increased congestion and
power consumption??], and R3].

2.1 Electronic Switching Data Centers:

Stateof-art production data centawere characterized by having 3-tiers of switclwese, aggregation, and
access thatypically interconnect the servers under large oversubscription ratios tres pzaar performance
[24]. To reduce the oversubscription and increase the bisection bandthieltS8pine-and-leaf architecture that
utilizes modern spine, and leaf switches with high number $ peas introduced and is commercially used as
in [24]. To achieve the same geathile utilizing commodity switchesovel architectures such as tha-tree
[25], BCube [26], and DCell [27] were proposed. Tha-tFee architecture is composed of a lagércore
switches anda pods layer composed of aggregation and access switches connected iedaGlud topology
The interconnections in Fat-tree provide multipath routes between semerhence, Fat-tree provides higher
fault-tolerance [25]. BCube and DCell are recursive architectures propogwdvide scalability and fault-
tolerance in modular data centers. Both architectures utilize Network Interface CH@) attached to the
servers in addition to few commodity switches to route tr§#fed, and[27]. Example of small deployments for
Spine-and-leaf, Fat-tree, BCube, and DCell data centers are illustrated inIF{guie c, and d) respectively.

2.2 Hybrid and All-Optical Data Centers:

To improve the performancef existing electronic switching data centers, several studies have suggested
supporting the switching fabric with Optical Circuit Switching (OCS)at®lties such ag c-Through 8] ard
Helios [29] topologiesThe high bandwidth availability of OCS is utilized for bulky transtard slovy varying
traffic, while the electronic packet switching is kept to handle bursty astivérying traffic. In these
architectures, the OCS is realized through Micro-Electro-Mechanical SyBtEMS) switches [3]. A MEMS
switches control input to output connections by moving the mirrorshraeicaly, high reconfiguration time in
the scale of few milliseconds is requirdad avoid the inherit complexitieof managing two systems in hybrid
data centers, and to further exploit the capacity and speed capabilitieScaf nptworks, several all-optical
DCN architectures were proposed.[Jhese architectures utilize optical passive and active components for
networking such as couplers, splittefgrayed-Waveguide Grating (AWG), Tunable Wavelength Converters
(TWC), and Wavelength Selective Switd{WSS). An example of all-optical data centers that MiESIS and
WSS technologiess Proteus 30]. Proteus is malleable to traffic as it adapts its optical connections and links
capacities between tagf-rack (ToR) switches according to the demands. Examples of smalhsiésiged on c-
Through, Helios, and Proteus are illustrated in Figure 1 (e, f, am$pgctively.

3. OPTIMIZING SHUFFLING OPERATIONSIN DATA CENTERS

To quantitatively assess the impact of the data center topology on rigetion time and the energy
efficiency of shuffling operations in MapRedyocee utilized Mixed Integer Linear Programming (MILP)
models. The MILP models aim to optimize the routing requiredni@rinediate data shuffling in different data
centers while maximizing the throughput (i.e. served tipffid reducing the power consumption.

3.1 Methodology

Four electronic switching data centers: Spine-and-lesfirée, BCube, and DCell, in addition to two hybrid
architectures: Helios and c-Through and an all-optical data center: Prot@asisicered. The topologies of the



aforementioned data centers are modelled as graphs where both switches/arsdase considered as graphs
nodes, while the bi-directional links are considered as graphs edges as illustiaigare 1. All bidirectional
links are considered to have 10 Gbps capacity, except for the Papthitecture where the links connected to
the MEMS are 30 Gbps WDM links with three wavelengths (i.e. 10Gbps @eelength) 30]. The power
consumption and details of the electronic and optical equipment used in edogyt@e summarized in Tables
1 and 2. In all topologies, 16 servers (allocated in 4 racks ok8 madattree) are considered to accommodate
the map and reduce workers. In the DCell model, 4 extra servers a@idered due to the requirements of
constructing the topology but are not assigned any additional workessmplify the evaluations of hybrid and
all-optical data centers, 12xMEMSs are used to ensure #&lall connectivity between ToRs without the need
for reconfigurations. Also, fixed wavelength assignmeenith all-to-all ToR connectivity are assumed for
Proteus while keeping the WSS components.

Table 1. Electronic-switching data centers characteristics and parameters.

Tooolo No. of | No. of Networking Devices characteristics
hology Servers| links Equipment Units Power Consumption per unit in Watt
Spine-and-leaf| 16 24 Nexus 3048 6 120 24]
Fat-tree 16 48 SG500XG-8F8T 20 95 [32]
SG500XG-8F8T 8 95 [32]
BCube 16 32 NIC 16 3127
SG500XG-8F8T 5 95 [32]
DCell 20 30 NIC ) 3127
Table 2 Hybrid and all-optical switching data centers characteristics and parameters
Topolo No. of | No. of Networking Devices characteristics
hology Servers| links Equipment Units Power Consumption per unit in Watt
SG500XG-8F8T 5 95 [32]
c-Through 16 24 12x12 MEMS 1 2.88 (0.24 per porG0))
. SG500XG-8F8T 5 95 [32]
Helios 16 32 12x12 MEMS 3 2.88
12x12 MEMS 1 2.88
Proteus 16 20 WSS 2 3[30]

In this evaluationl10 servers are dedicated for map functions and 6 for reduce functiools resembles a
typical tasks ratian original Google’s MapReduce [1]. In this work, the placement of map and reduce workers is
assumed to be as depicted in Figure 1. To effectively examine network édkterort workloads are assumed.
Sorting via MapReduce utilizes identity map functions to generate <wordits fpom large text files. The
entire intermediate data is to be shuffled according to words to reduce svorl@der to be sorted and finally
saved. Hence, input, intermediate, and output data are all equal in size. The votatakdzta to be sorted is
varied from 1 GBytes to 20 GBytes and is equally distributed betweenvor&prs. The workloads are assumed
to be from the Indy GraySort benchmark which have uniform inteatee#tey distributions due to balanced
words count31], and hence symmetric traffic is transferred from each map workeretduce workers.

The MILP models are utilized to minimize the energy consumption ofitii@ center while prioritizing
maximizing the throughput. The data write and read speeds frorerilegsare considered in the models where
four maximum rate/server values are used. The considered rates aB®@,0050, and 1000 MBytes/s, which
can be realized by HDD, SSD, with technologies such as Redundant Arhagependent Disks (RAID), or
with any caching capabilities in NICs. For simplicity, all map tasks argveess to finish at the same time, and
the ON/OFF power model is used for the switches. The models optimize rthtitrgffic through minimum set
of core and aggregation switches if the network is bottleneckduke dinks to/from the ToRs. Increasing the
rate/server reduces this bottleneck and allows for higher throughente, the models optimally utilize higher
number of core and aggregation switches resuitingwer shuffling completion time.

3.2 Results

Figure 2 summarizes the shuffling completion time results, whiler&i§uprovides the average power
consumption results for different rate/server values. For 100 MBytes/s hateresults indicate that the
completion time is mainly determined by the I/O bottleneck at the setwéfeR switches links leading to a
linear relation between completion time and data volume. As a result, furthigyesaving can be achieved
except for BCube, DCell, and Proteus because they call farsthef all switches to accommodate the traffic at
all rate/server valued\s the rate/server increases, the DCNSs increasingly become the bottemdei achieve
maximized throughput with lower completion time, more switches have tsd@ which leads to increased
power consumption. For all rate/server values, the best achieved performance B@slfowhich has several
serverto-server connections with properly placed map and reduce workers.
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4. CONCLUSIONS AND FUTURE WORK

In this paper, the impact of DCN topologies on the completion timeenedyy efficiency of MapReduce
shuffling is quantified through MILP models under increasing fihufaffic. The completion time results
indicate that the topology of the data center and the maximum rate/servea Isgyaficant impact on the
performance of MapReduc®oreover, utilizing optical networking technologies in DCNs can achieve an
average of 5% reduction in the power consumption when compared to electronic switching B@Ns
comparable performance. The best performance was obtained by DCelgnpwith larger DCell realizations
the performance superiority is expected to disappear as moplttonnections are required between servers in
different cells. Future work includes considering optimizing the poweswaption and completion time while
considering different workloads and more data center topologies.
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