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Summary	
 

Network-based diffusion analysis (NBDA) is a statistical technique for detecting the social transmission of 
behavioural innovations in groups of animals, including humans. The strength of social transmission is 
inferred from the extent to which the diffusion (spread) of the innovation follows a social network. NBDA can 
have two goals: a) to establish whether social transmission is occurring and how strong its effects are; and/or 
b) to establish the typical pathways of information transfer. The technique has been used in a range of taxa, 
including primates, cetaceans, birds and fish, using a range of different types of network.  Here I investigate 
the conceptual underpinnings of NBDA, in order to establish the meaning of results using different networks. 
I develop a model of the social transmission process whereby observation of performance of the behaviour 
offers a naïve individual the opportunity to learn that behaviour pattern for themselves. I then establish how 
NBDAs using different networks relate to this underlying process, and thus how we can interpret the results 
of each. My analysis shows that different network or networks are appropriate depending on the specific goal 
or goals of the study, and establishes how the parameter estimates yielded from an NBDA can be interpreted 
for different networks. 
 

1.0 Introduction 
 

In recent years, there has been a substantial interest in better understanding how and why non-human 

animals use social information (1-3), and particularly understanding if novel behaviour (innovations) can 

diffuse through populations as a result of social transmission (learning from others) (4). A capacity for social 

transmission has been demonstrated in many species using a traditional demonstrator-observer paradigm (5). 

In contrast, recent studies have focused on studying the diffusion of innovations in freely interacting groups 

of animals in the field (e.g. 6, 7) or in captivity (e.g. 8, 9), aiming to assess the importance of social transmission 

in the spread of behavior, and elucidate typical pathways of transmission. However, in many cases it can be 

challenging to determine whether the spread of innovations is caused by social transmission, or purely the 

product of asocial learning (see also (10)). 

One approach to this problem is to use diffusion data: time-structured data on the spread of behaviour 

through a population or group. Network Based Diffusion Analysis (NBDA), is one such approach that infers 

social transmission if the spread of an innovation follows a social network (11, 12). For example, in 1980 a few 

humpback whales (Megaptera novaeangliae) were observed displaying a novel hunting behaviour, called 

‘lobtail feeding’ whereby they would strike the water’s surface with their tail before engaging in their usual 

bubble-feeding routine. This innovation diffused through the population over the course of the next 27 years. 

NBDA was used to show that the diffusion of the innovation followed a social network providing evidence 

that it spread by social transmission (6). In this case, and most applications of NBDA the social network used 

is a pre-established association network (e.g. 6, 13) that is assumed to reflect opportunities for learning 

between each pair of individuals (12). However, a number of different types of social network (e.g. based on 
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different types of interactions between individuals) can be constructed and used in an NBDA (14) 

representing different hypothetical pathways about the pathways of social transmission. There are two main 

objectives a researcher might have in applying an NBDA: a) to establish whether social transmission is 

occurring and how strong its effects are; and/or b) to establish the typical pathways of social transmission in a 

population, group or context, However, it is not currently well established how an NBDA using each of the 

various kinds of networks relates to the underlying process of social learning. Such a conceptual foundation to 

NBDA is required if researchers are to a) know what kinds of network can be validly used to accomplish each 

goal; and b) interpret the results of an NBDA using a particular type of network. In this paper, I develop such 

a conceptual foundation, by presenting a simple, but realistic model of the social learning process, whereby 

observation of performance of the behaviour offers a naïve individual the opportunity to learn that behaviour 

pattern for themselves. I then use the model to assess the validity of different types of social network for each 

of the two goals, and establish how the results of an NBDA should be interpreted. I also use simulations to 

assess how error in the measured network impacts on the outputs of an NBDA, and assess whether error in a 

network influences the interpretation of the results. 

2.0 Network-Based Diffusion Analysis 

The basic NBDA model states that at time t an individual, i, learns a target innovation at rate: 
 

𝜆" 𝑡 = 𝜆% 1 + 𝑠 𝑎"*𝑧* 𝑡* 1 − 𝑧" 𝑡 ,        Eqn. 1 
 
where 𝜆% is the baseline (asocial) rate of learning, 𝑎"* is the social network connection from j to i, 𝑧" 𝑡  is the 
status of individual i: informed= 1 (has learned the target behaviour), or naïve= 0, and s is a parameter, fitted 

to the data, estimating the strength of social learning relative to asocial learning. The 𝑎"*𝑧* 𝑡 	*  term means 

that individuals learn at a rate proportional to their connection to informed individuals, and the 1 − 𝑧" 𝑡 	  
term means that only naïve individuals can learn. If the diffusion follows the network closely, s is estimated to 
be large. The model can be fitted to data giving only the order in which individuals learn (Order of 
Acquisition Diffusion Analysis or OADA) or the times at which they learn, in continuous time, or in discrete 
time periods (continuous/ discrete Time of Acquisition Diffusion Analysis or TADA) (11, 12). TADA has more 
statistical power, but OADA makes fewer assumptions about the time course of asocial learning (12). In all 
cases the model is compared to a null model in which there is no social transmission (s=0) to establish the 
strength of evidence for social transmission. Models can be fitted using maximum likelihood (11, 12) or 
Bayesian approaches (15, 16). In this paper, I use the former approach in simulations due to its reduced 
computational complexity. Code for implementing NBDA in the R statistical environment (17) , along with 
instructions can be found at https://lalandlab.st-andrews.ac.uk/freeware/. 
 
The basic NBDA model given in Eqn. 1 has been expanded so that potentially confounding variables can be 
included and statistically controlled for (12) and so that it can account for a non-constant rate of asocial 
learning (18). Franz and Nunn (19) have investigated the effect of inaccuracies in the times of acquisition data, 
and Whalen and Hoppitt (16) have shown that NBDA is robust to departures from the assumption of a linear 
relationship between 𝜆" 𝑡  and 𝑎"*. However, little work has been done on the effect of inaccuracies in the 
social network itself. Consequently, in this paper I assess the effect of various types of inaccuracies that might 
affect the recording of the social network 𝑎"*. But first, I develop a model of social learning that is more 
realistic than the model underlying NBDA (Eqn. 1), at the mechanistic level, and use this to establish the 
conceptual foundations for NBDA. 
 

3.0 A Realistic Model of Social Transmission 
 
Here I develop a simple model of the social transmission process, that is mechanistically realistic in groups of 
non-human animals, i.e. observation of performance of the behaviour offers a naïve individual the 
opportunity to learn that behaviour pattern for themselves. The model, and NBDA itself, may also be 
applicable to the diffusion of innovations in humans where the mechanism is relatively simple. However, the 
model is not intended to capture ‘complex contagions’ in which transmission relies on interactions with 
multiple contacts, and includes mechanisms such as judgment of credibility and legitimacy of innovations 
prior to adoption (20). I start from the assumption that each time an individual i observes the target behaviour 
being performed by individual j there is a probability, 𝑝/0123:"*, that i learns the target behaviour. Therefore, 
the rate of transmission from j to i, 𝑇"* is given by: 
 



𝑇"* = 𝑂"*𝑝/0123:"*,          Eqn. 2 
 
where 𝑂"* is the rate at which i observes j. We can further break the model down to: 
 
𝑇"* = 𝐵*𝑝89::"*𝑝/0123:"*,           Eqn. 3 
 
where 𝐵* is the rate at which j performs the behaviour, once they have learned it, and 𝑝89::"* is the probability 
that a given performance of the behaviour by j is observed by i. Thus, the rate at which a naïve individual 
acquires the novel behaviour to their repertoire, at a given time, t, will be: 
 

𝜆" 𝑡 = 𝜆% + 𝑇"*𝑧* 𝑡* = 𝜆% + 𝐵*𝑝89::"*𝑝/0123:"*𝑧* 𝑡* ,      Eqn. 4 
 
where 𝜆% is the rate of asocial learning, and 𝑧* 𝑡  gives the status of individual j at time t (1= informed, 0= 
naïve). This corresponds closely to the basic NBDA model given in Eqn. 1, where 
 

𝑠𝑎"* =
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.         Eqn. 5 

 
s is fitted to the data and scales the rate of social transmission relative to the rate of asocial learning, 𝜆%. This is 
because in Eqn. 1 the rate of transmission from j to i is given by 𝜆%𝑠𝑎"*, whereas in Eqn. 4 this is given by 𝑇"*, 
or, equivalently, 𝐵*𝑝89::"*𝑝/0123:"*. Consequently, the more closely a social network, 𝑎"*, approximates 𝑇"*, (scale 
aside) the better it will tend to predict the order and time of diffusion in an NBDA. However, the exact 
meaning of the s parameter, estimated by the NBDA, will depend on exactly what network 𝑎"* is used (e.g. 
association versus interaction networks), as will the meaning of the model itself, when compared to models 
using alternative social networks. One of the key goals of this paper is to establish how an NBDA should be 
interpreted when different types of network are used. 
 
Thus far, I assume that social transmission occurs via observation, whereas instead it could occur when i 
encounters the products of j’s behaviour, as has been observed in a number of case of non-human social 
learning (e.g. 21). In such cases the model might still apply: here instead 𝑂"* is the rate at which i encounters 
the products of j’s behaviour, and 𝑝"* is the probability of learning the behaviour from each encounter. In the 
remainder of the paper I refer to cases where social transmission occurs via observation, but analogous logic 
applies to cases where the transmission pathway does not operate via direct observation. 
 
As noted above, there are two main objectives a researcher might have in applying an NBDA. Aim 1 is to 
establish whether social transmission is occurring and how strong its effects are. For this goal, a researcher 
ideally requires a social network that captures the opportunities for social transmission as directly as possible. 
Intuitively, the extent to which the diffusion follows such a network then reflects the importance of social 
transmission relative to asocial learning. Aim 2 is to determine the particular types of relationship that are 
important in providing the opportunity to observe and learn. Here, each network can be seen as a competing 
hypothesis, with the aim of NBDA being to establish which one best approximates the patterns of 
transmission among individuals (𝑇"*). Given that part of this goal is to determine the types of relationship that 
determine opportunities to learn, a network that provides a direct quantification of such opportunities is not a 
useful predictor variable. In this paper, I will examine each aim in turn, and with reference to my simple 
model of the transmission process, look at the kind of networks that might be used to address each question. 
 
I also assess the effects error in the measured social network has on estimates of the importance of social 
transmission (i.e. Aim 1). It is well known that sampling of animal interactions and associations can be 
incomplete, often because animals are missed during a given sampling period (22). In some cases, incomplete 
sampling is likely to result in random noise applied to the network. However, of more concern is the 
possibility that individuals may be more likely or less likely to be missed when they are together than when 
they are apart, resulting in large network connections being under or overestimated relative to smaller ones. 
Hoppitt and Farine (22) show that the indexes commonly believed to correct such bias (e.g. the half-weight 
index (23)) do so by an arbitrary amount, and are likely to either under-correct or over-correct the bias. It is 
possible to calculate corrected association indexes, but this requires calibration data to assess the degree of 
error to be corrected, which may not be possible to obtain in all studies (22). Thus it is vital that researchers 
using association indexes know the effects that noise and bias might have on their findings. Whilst work has 
been conducted on the effect error can have on inferences about network structure (e.g. 24), it has not yet been 
established what effect noise and bias in the network has in an NBDA. In this paper, I conduct simulations to 
address this question. 
 
 



4.0 NBDA Aim 1: Detecting and quantifying social transmission 
 
Here the goal is to assess the strength of evidence that social transmission is operating, and to estimate the 
effect social transmission has, with confidence intervals providing a plausible range. There are two main types 
of network that could be used, depending on how closely the diffusion process was observed and 
documented. 
 
4.1 Observation networks 
 
In an ideal case, a researcher would know exactly when the innovation was performed, by whom, and who 
observed each performance. Whilst such cases might seem rare, it is possible to attain data close to this level of 
resolution in cases where the target behaviour is only performed in a specific location that can be monitored 
closely. For example, Hobaiter et al. (7) applied NBDA to show evidence of social transmission of a tool using 
innovation, moss sponging, in a group of chimpanzees. Moss sponging is the use of pieces of moss as sponges 
to obtain water from holes in trees (differing from the usual use of folded leaves), and the initial spread was 
documented at a single water hole. A similar situation may be easy to achieve empirically using a novel 
artificial foraging task (e.g. 25) which can be monitored closely by the researcher. 
 
At first glance, one might attempt to fit a model in which 𝑝/0123:"* is modelled directly- however, this model 
deviates from the form of the standard NBDA. A standard NBDA assumes that transmission occurs at a rate 
that is proportional to a network connection between two individuals, whereas the model specified in section 
3.0 assumes there is a probability of learning from each discrete observation event.  Furthermore, in order to 
fit a model in which 𝑝/0123:"* is estimated directly, we need to be able to ascertain whether learning has 
occurred as a result of a given observation event. The only way we have to infer this, is by observing i perform 
the behaviour themselves. Therefore, one has to address the question of how long after observing the 
behaviour i will perform it, given learning has occurred. A practical solution is to use an NBDA that 
approximates this process, by creating a dynamic observation network. I define a dynamic observation 
network, 𝑎"*(𝑡), as giving the number of times i has observed j performing the behaviour prior to time t. 
Hobaiter et al. (7) extend the NBDA model to allow use of a dynamic network. This model assumes that social 
transmission occurs at a rate that is proportional to the number of times the behaviour has been observed in 
the past. This model is perhaps less realistic than that specified above, since it seems improbable that an 
individual can continue to learn an innovation as a result at observing it at some time in the past, and that the 
effect of all such observations on the rate of learning would be cumulative. But the model might be used to 
approximate the case where 𝑝/0123:"* = 𝑝/0123 is constant across individuals.   
 
An alternative is to use a static network, where 𝑎"* gives the number of times i observed j up until the point at 
which i learned the behaviour (7). However, a static observation network does not fully allow for the time 
course of observations. For example, imagine a group of three individuals: A, B, and C. A learns the behavior 
first. Next, B observes A performing the behavior three times and then learns the behavior. Finally, C observes 
A performing the behavior four times and subsequently learns the behavior last. A static network would 
represent the network as having links of strength 3 from A to B and 4 to C, so an NBDA model based on this 
network would predict that C was more likely to learn second. In reality, we might expect B to be more likely 
to learn second, because B observed A performing the behavior first. A dynamic network allows us to 
incorporate this information into the NBDA. Supporting this, Hobaiter at el. (7) found that an NBDA using a 
dynamic observation network had substantially more power than an NBDA using a static observation 
network. 
 
Use of an observation network has the advantage that even when there is no social structure in the population, 
social transmission can be inferred if the chance order in which individuals observe the behaviour predicts the 
order of diffusion (this is illustrated in the simulation below). If 𝑝/0123 = 0, then we would not expect the 
diffusion to follow the observation network, and we would expect the s parameter in the NBDA not to be 
significantly greater than 0. Likewise, the greater  𝑝/0123 is, the greater our estimate of s will be, although s 
does not give an estimate of 𝑝/0123. However, one can use the estimate of s to estimate the proportion of 
learning events that occurred by social transmission (as opposed to asocial learning), allowing an interpretable 
measure of social transmission to be obtained. For each acquisition event, e, at time te, one calculates the 
probability of social transmission as: 
 

𝑝:8M"1/,0 = 𝑠𝑎"* 𝑡0 𝑧* 𝑡0 1 + 𝑠𝑎"* 𝑡0 𝑧* 𝑡0        Eqn. 6 

 
then take the mean of 𝑝:8M"1/,0 across acquisition events to  estimate the proportion that occurred via social 
transmission (see (6) for more details). 
 



To test the performance of observation networks I simulated data from the model specified in Eqn. 3 (see 
Supplementary Material for details). I found that type 1 error rate was appropriate if slightly conservative, 
with the null hypothesis being rejected in 3.1% of cases when 𝑝/0123:"* = 0. Power increased rapidly as 𝑝/0123:"* 
increased, showing that the dynamic network NBDA is able to detect social transmission occurring by the 
more realistic model even in the absence of any social structure (see Fig. S1a in the Supplementary Material; 
power is increased in the presence of underlying social structure see Fig. S2).  However, the model did tend to 
slightly overestimate the proportion of events that occurred by social learning, with the true value lying above 
the 95% confidence intervals in more than 5% of simulations (see Fig. S1b). 
 
A concern with use of a dynamic observation network arises if the target behaviour is performed in a specific 
location or locations. For example, the moss sponging documented by Hobaiter et al. (2014) was performed at 
a particular water hole. In these cases, a recorded observation for i may simply indicate that i was in the area 
appropriate for performing/learning the behaviour, and thus have been more likely to learn the target 
behaviour in the near future. Such an effect may look like social transmission in the NBDA. Hobaiter et al. (7) 
address this problem by including a variable giving each individual’s exposure to the relevant location in the 
NBDA, and thus statistically controlling for it. Ideally exposure would be included as a time-varying variable 
(e.g. proportion of time spent in the target area each day) to allow for the possibility that patterns of changing 
exposure correlate with patterns of observation.  
 
In conclusion, if detailed data are available on when the target behaviour is performed, by whom, and who 
observed each performance, use of a dynamic observation network is the most direct way to detect and 
quantify the effects of social transmission.  
 
4.2 Association networks 
 
In most cases, researchers will not be able to document every performance and observation of the target 
innovation, but have a good idea of the order in which (and potentially times at which) individuals learned 
the target behaviour. In such cases, one can use an association network, where 𝑎"* represents the proportion of 
time i spends associating with j (See (22, 26, 27) for reviews of techniques for estimating association networks). 
The assumption is that individuals can only learn from one another when they are associating, thus the rate of 
transmission from j to i, 𝑇"*, will be proportional to  𝑎"*. For this logic to be valid, the criterion for i to be 
recorded as associating with j has to be specified at the appropriate spatial scale (28). Individuals recorded as 
associating must be within a range at which observation can occur, whereas individuals not recorded as 
associating must tend to be at a distance at which observation is not possible. This is the case in Allen et al.’s 
(6) aforementioned humpback whale study, where the study was conducted over an area of approximately 
1000 square miles. In contrast, other studies on captive groups of birds (8, 29) have used a criterion for 
association based on proximity (e.g. nearest neighbour) within an enclosure of a few square meters- meaning 
that dyads not recorded as associating are still able to observe one another’s behaviour. The discussion in this 
section pertains to the former kind of association network, whereas I return to the interpretation of the second 
kind, which I refer to as ‘small-scale association networks’ in section 5.2. Note that if patterns of association 
are known to change over the course of the diffusion, a dynamic association network 𝑎"*(𝑡) could be used. 
  
In an NBDA using an appropriate association network, 𝑎"* is an estimate of 𝑝89::"*, with 𝐵* = 𝐵 and 𝑝/0123:"* =
𝑝/0123 assumed to be approximately constant across individuals (though variation in learning rates can be 
modelled using individual covariates (8)). Therefore, from Eqn. 5, the s parameter can be taken as an estimate 
of 𝐵𝑝/0123 𝜆%, the rate at which information is transmitted from an informed to a naïve individual during 
periods when they are associating, relative to the rate of asocial learning. 
 
Alternatively, there may be variation in 𝐵*, which is implicitly assumed to be constant in the standard NBDA. 
However, if data is available on the rate at which each individual performs the behaviour once they have 
learned it, this can be used to weight the association network and account for this variability (13). Here, 𝑎"* is 
replaced by 𝑊*𝑎"* where the transmission weight 𝑊* is an estimate of 𝐵*. This means that the meaning of the s 
parameter is now changed. From Eqn. 4, in a weighted NBDA s now estimates  𝑝/0123:"* 𝜆%, i.e. the probability 
of learning each time i observes j perform the target behaviour, relative to the rate of asocial learning. 
However, the estimated proportion of events can still be calculated from Eqn. 6 by replacing 𝑎"* with 𝑊*𝑎"*, 
allowing some comparison between weighted and un-weighted NBDAs. In the Supplementary Material I 
present simulations showing that inclusion of transmission weights can both increase statistic power to detect 
social learning and that models with transmission weights fit the data better, as judged by AICc. This suggests 
that if transmission weights are available, they should be included in the analysis if they decrease AICc, as this 
indicates the model is more realistic and may result in better power to detect social transmission.  However, 
these simulations also show that if transmission weights are not available, but a researcher suspects variation 
in 𝐵*, they can still use an un-weighted NBDA as a valid means to detect and quantify social transmission. 



Note that transmission weights can be used with other types of networks too, where there is measured 
variation in performance rate (see Section 5.4).  
 
4.3 Effects of error in the social network 
 
Error could potentially arise in both dynamic observation networks and, as outlined above, in association 
networks. Here I conduct simulations to assess the effect of such error on the detection of social transmission 
and the estimates of its importance using NBDA. Full details of the simulations outlined below are provided 
in the Supplementary Material. Note that the purpose of the simulations presented in this paper is not to draw 
general inferences about the power of NBDA for given values of s, or the relative power of OADA and TADA, 
which depend on sample size, network structure and whether asocial learning occurs at a constant rate (18). 
Rather, the aim is to see how NBDA responds to errors in network structure. 
 
When using an observation network researchers do not know for sure when an observation has occurred, 
since it is difficult to know what a subject is attending to (especially with non-human animals). In reality, 
some kind of proxy is used- such as: individuals within 1m, with head orientated towards the performer and 
with an unobstructed view (7). Potentially, individuals recorded as observers might not really have been 
observers, and some observers might have been missed (e.g. if they are outside the threshold distance). Critics 
of the use of observation networks might suggest that this uncertainty renders the results unreliable. I re-ran 
the simulations and analyses described in section 4.1, varying the degree of error in the network: i.e. the 
probability an individual recorded as an observer, really was an observer (𝑝89:|Q89:). For all values of 𝑝89:|Q89:, 
the type 1 error rate remained approximately constant at 2.9-3.3%, showing that error in identifying observers 
does not increase the risk of a spurious social transmission effect (see Fig. 1a,c). Instead, power to detect social 
transmission was reduced as  𝑝89:|Q89: decreased (see Fig. 1b), accompanied by a tendency to underestimate 
the proportion of events occurring by social transmission (see Fig. 1d). This counteracts the tendency of the 
dynamic network NBDA to overestimate the importance of social transmission. Only when observers are 
identified with very high reliability (which is probably unachievable in practice) are overestimates produced. 
This means that researchers using a dynamic observation network should consider their estimates to be 
slightly conservative if good data on observers is available, and highly conservative if only a crude proxy for 
observation can be obtained.  
 

[Fig. 1 about here] 
 
 
Next I investigate the robustness of an NBDA using an association network when 𝑎"* is not a perfect estimate 
of 𝑝89::"*. First I assess how the method is affected when the 𝑎"* has random noise, perhaps as a result of 
sampling error when collecting association data. Alternatively this could be due to variation in 𝑝/0123:"*, 
causing 𝑇"* not to be directly proportional to 𝑎"*. I simulated diffusion data from Eqn. 5. I then simulated an 
association network as ‘recorded’ by the researcher, by adding random noise to the network before it was 
input into the NBDA (OADA and continuous TADA variants). For all levels of noise, the type 1 error rate 
remained <5%, showing that random noise in the network does not does not result in an increased risk of 
detecting a spurious social transmission effect. As expected, power increases with increasing values of s, and 
is greater for TADA than for OADA. In the OADA power was reduced as network noise increased, however 
this effect was not seen in the TADA (see Fig. S3a-b).  When no noise was present, 95% confidence intervals 
for s contained the true value 95-98% of the time, showing these to be appropriate or slightly too wide. 
However, as noise increased, both OADA and TADA showed a tendency to underestimate the true value of s 
(see Fig 2a-b). Overall, this means that if a researcher suspects there is random noise in their association 
network: a positive result for social transmission can still be trusted, and 95% confidence intervals for s may be 
conservative (underestimate s). The same is true for the estimated proportion of events by social transmission 
(Eqn. 6) since this is calculated from s. 
 

[Fig.2 about here] 
 
Another possibility is that there is systematic bias in the network. If all connections in the network are 
overestimated or underestimated by the same factor, this has little effect on the analysis, since it merely scales 
the network. If network connections are overestimated, s will be estimated as smaller than its true value and 
vice versa. However, the proportion of learning events estimated to have occurred by social transmission will 
be unchanged, as will the fit of the model to the data. A potentially more serious concern is when  
larger values of 𝑎"* tend to be over-estimated, and smaller values underestimated, or vice versa. This could 
occur if members of each dyad are more or less likely to be observed when they are together than when they 
are alone (22). I investigate the effect of such bias by repeating the simulations described above but with 
systematic bias in the ‘recorded’ network instead of random noise. I did this by transforming each 𝑎"* as 𝑎"* =



𝑎"* + 𝑎"* − 0.5 ×𝑏𝑖𝑎𝑠, where bias< 0 means small network connections are overestimated relative to large 
ones and bias> 0 means large network connections are overestimated relative to small ones. 
 
In all cases type 1 error rate remained <5% showing that bias in the network does not result in an increased 
risk of detecting a spurious social transmission effect.  There was little effect on statistical power in either the 
OADA or the TADA (see Fig. S3c-d). When small network connections were overestimated relative to large 
ones (bias<0), 95% C.I.s contained the true value of s in >95% of cases, suggesting the 95% were too broad 
(underestimated the level of precision) (see Fig. 2c-d). In contrast, when large network connections tended to 
be overestimated relative to small ones (bias> 0) the 95% C.I.s tended to underestimate the true value of s, 
sometimes to a severe extent. e.g. In an OADA when s= 4 and bias= 0.25, in 92.4% of simulations the true value 
was below the 95% C.I. There is no indication that bias can result in confidence intervals that are too narrow, 
or a tendency to overestimate s. Overall, if a researcher suspects bias in the network it means their estimates of 
s are likely to be conservative, either in terms of estimated precision (bias< 0) or the estimated value of s (bias> 
0). 
 
None of the sources of noise or bias considered here inflated the type 1 error rate, and statistical power was 
usually not badly reduced. In some cases, confidence intervals were found to be conservative in terms of 
precision (too broad) or because they tended to underestimate s. It is worth noting that if the aim is to 
compare rates of social transmission across diffusions (e.g. across species or contexts) it is important to ensure 
that association networks are quantified in a consistent manner, so any sources of noise and bias are consistent 
across diffusions and do not generate a spurious difference in social transmission rates. 

 
5.0 NBDA Aim 2: Establishing the typical pathways of information transfer 
 
Another aim a researcher might have in an NBDA is to elucidate the typical pathways of diffusion, by 
comparing the fit of alternative NBDA models using different networks. The objective here may be to 
determine the particular types of relationship that are important in providing the opportunity to observe and 
learn. For example, in their study of common ravens (Corvus corax) Kulahci et al. (30) found that a social 
network based on affiliative interactions (e.g. allo-preening and food sharing) predicted the spread of novel 
foraging behaviour better than networks based on aggressive interactions and proximity. Alternatively, 
NBDA can be used to assess different hypotheses regarding social learning strategies (i.e. from whom do 
animals learn?) (2) or directed social learning (31). The implicit aim is to identify the network that best 
approximates 𝑇"*. The logic is that the more closely the network approximates 𝑇"*, the more closely the 
diffusion will tend to follow the network, as quantified by AICc. (Alternatively, Whalen and Hoppitt (16) 
show that the Watanabe Akaike Information Criterion WAIC can be used in a Bayesian NBDA). This logic is 
supported by the simulations conducted in section 4. For each set of simulations AICc tended to be lower 
(better) for the networks that more closely approximated 𝑇"*, with differences becoming more pronounced as 
the strength of social learning increased (see Fig. S6-7 in the Supplementary Material).  
 
A researcher might have the combined aim of detecting and quantifying social transmission, but also making 
inferences about the typical pathways of diffusion. If so, the researcher can include a model with no social 
transmission (s= 0) in their model comparison. If no network results in an AICc that is substantially lower than 
that yielded from the asocial model, there is little evidence for social transmission following any of the 
networks studied. If there is evidence for social transmission, the best fitting model can be used to generate 
estimates of the strength of social transmission, on the basis that this model is likely to best approximate the 
true 𝑇"*. There are a number of types of network that could be used the elucidate the typical pathways of 
information transfer, here I discuss them in turn. 
 
5.1 Observation networks 
 
I showed above that a network giving the pattern of observations that occurred during the course of a 
diffusion is a direct and powerful way to detect and quantify social transmission. However, if the goal is to 
find a network that approximates 𝑇"*, then an observation network will usually be of little use when used as a 
predictor in an NBDA. Part of the goal here is to find a network that predicts the pattern of observations that 
is likely to occur during a diffusion (i.e. approximate 𝐵*𝑝89::"*). The pattern of observations that happened to 
occur in a specific diffusion, when used as a predictor, cannot tell us anything about what aspects of social 
structure influence patterns of observations in general. Therefore, it will usually make little sense to use an 
observation network in an NBDA for this purpose. Instead a researcher might ask if another network, N, is 
correlated with the observation network, and thus assess the case that the relationships quantified in N are 
important in determining opportunities for observation. If N is strongly correlated with the observation 
network, and has good predictive power (low AICc relative to other networks) in an NBDA, it suggests that N 
approximates the pathway of diffusion (𝑇"*) well, and it does so, at least in part because it predicts the pattern 
of observations (approximates 𝐵*𝑝89::"*). An exception occurs if a researcher wishes to test whether social 



transmission occurs via observation of the target innovation, as opposed to an alternative, mutually exclusive 
pathway, such as exposure to the products of behaviour. In this case, an NBDA model using an observation 
network could be compared to a model with a network representing that alternative pathway. 
 
5.2 Association and proximity networks 
 
Proximity networks are derived from data on the spatial relationships among individuals: members of a dyad 
who are commonly in close proximity have strong connections between them (28). These include association 
networks, which quantify the proportion of time members of a dyad spend together. In section 4.2 above I 
argued that an association network based on data collected on an appropriate spatial scale is an estimate of 
𝑝89::"*. This leads to an interpretation of s as the rate at which information is transmitted from an informed to a 
naïve individual during periods when they are associating, relative to the rate of asocial learning. However, 
proximity networks are often collected on a small spatial scale, such that the individuals always remain in 
close proximity, such as groups housed in captivity (e.g. 8, 30) , e.g. by quantifying which individuals tend to 
be nearest neighbours, or within 5 body lengths. In such cases, association or relative proximity is not a 
necessary condition for observation to occur, e.g. an animal could quite easily observe an individual that is not 
its nearest neighbor, or within 5 body lengths. Consequently, for such small-scale proximity networks, there is 
no logical guarantee that 𝑎"* will estimate 𝑝89::"*. Instead, use of a proximity network in an NBDA represents 
the hypothesis that individuals that are often in spatial proximity to one another will learn from one another 
more frequently than individuals that are usually spatially separated. It may be that another type of network 
(see below) may predict 𝑇"* better than a proximity network (e.g. 30). Even in cases where a proximity or 
association network is a good estimate of 𝐵*𝑝89::"*, another network may approximate 𝑇"* better if it better 
captures variation in 𝑝/0123:"*. 
 
A question arises as to whether researchers should use association data that is collected during the course of 
the diffusion, or whether they should use data collected during a different period. For example, in their study 
on squirrel monkeys, Cladiere et al. (32) constructed an association network based on the amount of time 
dyads spent together in the area of the foraging task and thus were able to observe one another solving the 
task (though they did not use this for an NBDA, their aims were similar). Intuitively, such a ‘diffusion-specific 
network’ provides a better proxy for the observation network than association data collected during the 
weeks, months or years preceding the diffusion. For this reason, such data is likely to be more powerful for 
detecting and quantifying the effects of social transmission. However, for the same reasons as for the 
observation network, the diffusion-specific network is of little utility for an NBDA aiming to elucidate the 
general pathways of diffusion in the population. The diffusion-specific network will reflect the chance 
patterns of observation that happened to occur in the diffusion, and therefore cannot tell us anything about 
what aspects of social structure influence patterns of observations in general. Consequently, a diffusion-
specific association network is suitable for detecting and quantifying social transmission, but not for 
establishing the typical pathways of information transfer. 
 
5.3 Interaction networks 
 
Researchers often construct social networks based on the rate at which each dyad interacts, or show a 
particular type of interaction (e.g. grooming, fights) (14). In animal social network analysis in general, this is 
often considered to be a more direct way of quantifying patterns of interactions among animals, with 
proximity/ association networks providing an indirect proxy for interaction rate (14). However, when used in 
an NBDA, interaction networks represent a hypothesis that a particular interaction type predicts the rate at 
which individuals learn from one another. As such there is no reason to think of interaction networks as being 
preferable to proximity networks a priori for an NBDA. Instead, alternative networks can be compared against 
one another as competing hypotheses using AICc. Once a supported model is found, a researcher may wish to 
use this to quantify the importance of social transmission. The s parameter obtained will estimate the rate of 
social transmission per unit connection relative to the rate of asocial learning. Thus, s will be dependent on the 
scale of the network, and potentially difficult to interpret. Therefore, I suggest researchers transform their 
estimate of s into an estimated proportion of events that occurred by social transmission using Eqn. 6. 
 
5.4 Model networks 
 
Instead of using social networks derived from association, proximity or interaction data, a researcher could 
construct a network representing a hypothesis about the pathway of diffusion that is theoretically derived. For 
example, a hypothesis that individuals only learn from high prestige individuals (33) could be represented by 
a network, 𝑚"*, that has 𝑚"*= 1 when j is a high prestige individual and 𝑚"*= 0 otherwise (I use 𝑚"* to 
represent  a model network to distinguish it from the association network, 𝑎"*, below). This model could be 
tested against a model with a homogeneous network (all 𝑚"*=1) to test for a prestige bias in learning, or 
against other theoretically-derived networks. This allows NBDA to be used as a tool to test for evidence of 



evolved social learning strategies (2, 34, 35) in contexts and species where empirical tests (e.g. 36, 37-39) cannot 
be run. 
 
In an NBDA, a copying bias could be manifested in 𝐵*,  𝑝89::	"* , 𝑝/0123:	"* or some combination of the three. For 
illustration, imagine we have an evolved strategy ‘copy individuals of high prestige’. This may be 
implemented as a tendency to observe high prestige individuals more often, resulting in large values of 𝑝89::	"* 
when j has high prestige. Alternatively, or in addition, individuals may be more likely to copy behaviour after 
they observe it being performed by a high prestige individual, resulting in in large values of 𝑝/0123:	"* when j 
has high prestige. A similar copying bias might result if high prestige individuals tend to perform the 
behaviour more once they have learned it (high 𝐵*). This is unlikely to be a result of an evolved social learning 
strategy, but nonetheless, would result in a similar bias in favour of learning from high prestige individuals- 
i.e. high values of 𝑇"* when j has high prestige. 
 
Therefore, if a researcher uses a binary network representing a particular copying bias, and finds it is 
supported, this provides evidence of a bias in 𝑇"*, which could be a result of bias in any combination of 𝐵*,  
𝑝89::	"* and 𝑝/0123:	"*. The s parameter obtained will provide an estimate of the rate of transmission averaged 
across all relevant dyads (i.e. average	𝑇"* 𝜆% given 𝑚"*= 1). However, the analysis could be broken down 
further to investigate where the bias lies. If a researcher has transmission weights 𝑊* providing a good 
estimate of 𝐵* (see section 4.2), they can test whether 𝑊* tends to be higher for the target class (e.g. high 
prestige) of individuals, to assess whether there is bias resulting from performance rate. They can then include 
𝑊* in the the NBDA: if copying bias still remains, it suggests there is bias in 𝑝89::	"* and/or 𝑝/0123:	"*. The s 
parameter now estimates the average of 𝑝89::"*𝑝/0123:"* 𝜆% given 𝑚"*= 1. If the researcher has an association 
network, they can test whether 𝑎"* is correlated with the binary model network, e.g. whether 𝑎"* tends to be 
higher when j has high prestige, thus testing for a bias in 𝑝/0123:"*. The researcher can then include 𝑎"* in the 
NBDA. A social network with connections of strength 𝑎"*𝑚"* with transmission weights 𝑊* represents the 
hypothesis that there is (strong) copying bias in 𝑝/0123:"*. This can be compared to a weighted model using the 
unaltered association matrix 𝑎"*, representing the hypothesis of no copying bias in 𝑝/0123:"*. The s parameter 
obtained from an NBDA using the network 𝑎"*𝑚"* with transmission weights estimates 𝑝/0123:"* 𝜆% given 𝑚"*= 
1. As yet there are no studies utilizing this approach to detecting and breaking down biases in 𝑇"* (but see (40) 
for a similar approach). 
 
5.5 Multiple networks 
 
The approaches described above allow researchers to test which of a specified set of social networks best 
approximates 𝑇"*. An alternative approach is to acknowledge that social transmission might follow more than 
one pathway, but do so at different rates. To this end, one can input multiple networks into an NBDA, each 
with a separate s parameters estimated for each network (41). The NBDA model then becomes: 
 

𝜆" 𝑡 = 𝜆% 1 + 𝑠X 𝑎X,"*𝑧**X 1 − 𝑧" ,        Eqn. 7 
 
where 𝑎X,"* is the kth social network, and 𝑠X estimates the rate of social transmission through that network. This 
model can be compared to one in which s parameters are constrained, e.g. 𝑠Y = 𝑠Z, to test for evidence of a 
difference in transmission rate between different pathways. It can also be compared to models in which there 
is no transmission along a specific pathway, e.g. 𝑠Y = 0 to test for evidence of social transmission along that 
pathway. 
 
It is important to note that there are two ways a researcher might then quantify and compare the importance 
of social transmission in the different networks. The 𝑠X parameters estimate the relative strength of social 
transmission per unit of network connection. The exact interpretation of 𝑠X depends on the type of network, as 
shown above. In addition, a researcher can estimate the proportion of events occurring by social transmission 
through each network, N, by modifying Eqn. 6 as follows: 
 

𝑝:8M"1/,0 = 𝑠[𝑎[,"* 𝑡0 𝑧* 𝑡0 1 + 𝑠X𝑎X,"* 𝑡0 𝑧* 𝑡0X ,      Eqn. 8 
 
and taking the mean across all acquisition events. Unlike 𝑠X, this figure will also take into account the strength 
and number of connections in each network, in estimating the influence of each network on the diffusion. See 
(41) for further discussion of how to quantify the influence of each network in a multi-network NBDA. 
 
Multi-network NBDA might also provide an improved approach for detecting biases in social transmission. 
For instance, in the example given in section 5.4, the hypothetical prestige bias model states that only high 



prestige individuals socially transmit the target behaviour. It is perhaps more realistic to assume that all 
individuals socially transmit the behaviour, and test whether high prestige individuals do so at a higher rate. 
One network, 𝑚Y,"* would contain binary connections only from high prestige individuals, whereas another 
network 𝑚Z,"* would contain binary connections from all other individuals. If a model with 𝑠Y > 𝑠Z is favoured 
over a model with 𝑠Y = 𝑠Z, then it provides evidence of a prestige bias in 𝑇"*. The source of this bias could then 
be investigated in an analogous manner to that described in section 5.4. 
 
Farine et al. (42) used multi-network NBDA to analyze the pathways by which juvenile zebra finches 
(Taeniopygia guttata) socially learn foraging skills. Half of the juveniles had been exposed to the avian stress 
hormone corticosterone (CORT) earlier in life, mimicking the effects of developmental stress. Farine et al. 
hypothesized that different social learning strategies would be used by finches that had experienced 
developmental stress (CORT) than those that had not. They constructed 8 different association networks 
representing transmission from 1) adults to adults; 2) juveniles to adults; 3) parents to CORT offspring; 4) 
adults to unrelated CORT juveniles; 5) all juveniles to CORT juveniles; 6) parents to non-CORT offspring; 7), 
adults to unrelated non-CORT juveniles; and 8) all juveniles to control juveniles. They then compared the 
predictive power of models combining different combinations of these networks. The results suggested that 
all individuals learned exclusively from adults. Furthermore, they found evidence of a different social learning 
strategy between non-CORT treated juveniles and CORT treated juveniles. The former category relied more 
on social transmission from their parents (bigger estimate of s for network 6 than network 7) whereas the 
latter relied more (almost exclusively) on social transmission from unrelated adults (bigger s for network 4 
than network 3). This case study illustrates the potential of multi-network NBDA to quantify the relative 
importance of different pathways of information transmission. 
 
5.6 Other approaches 
 
Given its potential role as a tool for testing for transmission biases and social learning strategies, NBDA can be 
compared to experience-weighted attraction models. McElreath et al. (43) adapted these models to infer 
specific social learning strategies given data on the choices individuals make, and the choices they observe 
others making. This approach is similar to an NBDA, as it is used in section 5, insofar as both use time series of 
data to make inferences about pathways of learning. However, NBDA is solely concerned with the acquisition 
of novel behaviour (innovations) to the repertoire. In contrast, experience-weighted attraction models are 
concerned with the choices made by individuals when faced with a number of different behavioural options 
(e.g. a number of ways to solve a foraging task), and whether they adopt particular social learning strategies in 
making these choices.  Thus the approaches answer subtly different, and potentially complementary 
questions. Some combination of the two methods might also be useful: an experience-weighted attraction 
model might incorporate network data to account for who is likely to have observed each performance of the 
target behaviours. It seems likely that experience-weighted attraction models will have more power than 
NBDA to detect social learning strategies from detailed data (accurate dynamic observation networks), since 
they take into account the repeated behaviour of individuals, rather then the first time they perform a novel 
behavioural trait. However, NBDA may be applicable to sparser datasets (e.g. using only association data). 
 
6.0 Conclusion 
 
In summary, an NBDA can have two goals: 1) to detect and quantify social transmission from diffusion data, 
and/or 2) to make inferences about the typical pathways of diffusion and information transfer in a given 
species or context. Some types of social network are only generally appropriate for the first of these goals. In 
this paper, I have attempted to establish the conceptual foundations of NBDA, by showing how an NBDA 
using each type of network links to the underlying process of learning. I showed that the precise meaning of 
the estimate of the key parameter, s, depends on the type of network that is used. However, I suggested that 
quantifying the proportion of learning events that occurred by social transmission can be used as an 
additional measure that transfers more easily across analyses using different networks. I showed that 
observation networks and association networks are robust to violations of the assumptions implicit in the 
NBDA model, and that such violations are not a cause to suspect a spurious positive result for social 
transmission. However, under some circumstances, biases can arise in estimates of the importance of social 
transmission, which social learning researchers should be aware of when interpreting their results. Finally, I 
suggested how NBDA might be used to detect social transmission biases and social learning strategies using 
diffusion data. Thus, NBDA might prove a valuable addition to social learning researchers’ toolkit, in 
elucidating the taxonomic distribution of such strategies, and their relationship to the emergence of traditions 
and culture in natural settings. 
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Figure	and	table	captions	

Figure 1. Performance of NBDA (OADA variant) using a dynamic observation network, when there is error in 
identifying observers. The top panels show type 1 error rate (a) and statistical power for 𝑝/0123:= 0.2 (b) as a 
function of the reliability  of the observation proxy. The bottom panels show the proportion of simulations for 
which the real proportion of social transmission events was within the 95% C.I. (light grey), underestimated 
(dark grey) or overestimated (white) for 𝑝/0123:= 0 (c) and 𝑝/0123:= 0.2 (d). Results were similar for the TADA 
variant of NBDA. 
 
Figure 2. Performance of NBDA using an association network when there was noise (top panels) or bias 
(bottom panels) in the network. The plots show the proportion of simulations in which the true value of the s 
parameter (giving the strength of social transmission) was within the 95% C.I. (circles), overestimated (crosses) 
or underestimated (triangles). The horizontal dashed line shows 95%: ideally the true value should be within 
the 95% C.I. 95% of the time. The left panels show the performance of the OADA variant of NBDA, the right 
panels show the performance of the TADA variant. Positive bias means that large network connections are 
overestimated relative to smaller one, whereas negative bias means small network connections are 
overestimated. 
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