

This is a repository copy of A New Breed of Sustainable Ultra-lightweight and Ultra-Shallow Steel-Concrete Composite Flooring System: Life Cycle Assessment (LCA) of Materials.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116632/

Version: Presentation

Proceedings Paper:

Ahmed, I, Tsavdaridis, KD orcid.org/0000-0001-8349-3979 and Neysari, F (2017) A New Breed of Sustainable Ultra-lightweight and Ultra-Shallow Steel-Concrete Composite Flooring System: Life Cycle Assessment (LCA) of Materials. In: CESARE '17 Proceedings. International Conference Coordinating Engineering for Sustainability and Resilience (CESARE'17), 03-08 May 2017, Dead Sea, Jordan. Jordan University of Science and Technology .

This is an author produced version of a paper published in the Proceedings of CESARE'17.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Institute for Resilient Infrastructure

A NEW BREED OF SUSTANIABLE ULTRA-LIGHTWEIGHT AND ULTRASHALLOW STEEL-CONCRETE COMPOSITE FLOORING SYSTEM: LIFE CYCLE ANALYSIS

Research Student: Inas M. Ahmed¹

Supervisor: Dr. Konstantinos Tsavdaridis, Associate Professor of Structural Engineering²

Co- supervisors: Prof J. Forth, Professor of Concrete and Structures &

Mr F. Neysari (external) CADS Ltd. Scia,

Email: ¹ cnima@leeds.ac.uk ²K.Tsavdaridis@leeds.ac.uk

OUTLINE

- INTORDUCTION
- AIM
- NEW FLOORING SYSTEM
- METHODOLOGY
- RESULTS
- CONCLUSIONS

INTRODUCTION

- Sustainability and the reduction of CO₂ emission have taken an important attention in all industries.
- The construction industry is influenced due to the extensive use of materials and the large amount of waste generated.
- Buildings account 40% from the global material flow (Dong et al., 2015).
- Concrete has been identified as a carbon intensive material (Meyer, 2009).
- The on-site construction process is another source of carbon emission.
- An enormous contribution to sustainable design can be made by changing the design of traditional members and systems and integrating new or under-developed materials from the initial stages.

Institute for Resilient Infrastructure

Table 1:Summary of LCA of building sector

Building materials and construction process	Problems	Solutions	ultra-light ultra-shallow flooring system
Concrete	 Higher energy consumption from the production of cement Higher CO₂ emissions from the production of cement 	 Using alternative materials (lime mortars instead of cement mortars) Using foamed concrete Using green concrete Using precast units 	Using foamed concrete
Steel	 Higher energy consumption from the production of steel Higher CO₂ emissions from the production of steel 	 Using optimized steel elements Using lightweight steel elements Manufacturing small metal components without any scraps Re-use steel elements without recycling 	Using lightweight steel elements
On-site construction process	 Higher energy consumption from the fuel consumption in material transportation and heavy equipment, waste treatment management Higher CO₂ emissions from the fuel consumed in material transportation and heavy equipment, waste treatment management 	Prefabrication construction process	Fully fabricated flooring system
Building through its entire life	 Higher energy consumption for heating, cooling and lighting Higher CO₂ emissions for heating, cooling and lighting 	• An energy saving buildings by using insulation materials to obtain better thermal performance	Using insulation material

AIM

- Developing a new composite flooring system which exercises the sustainability approach in the selection of its components.
- Evaluating this new ultra-light ultra-shallow flooring system through Life Cycle Assessment (LCA) methodology.
- Conducting a comparative LCA of the new ultra-light ultra-shallow flooring system and an existing state-of-the-art shallow flooring system (CoSFB with Cofradal 260 mm) (Braun et al., 2011), which is based on three stages:
 - (i) production of materials used in flooring systems,
 - (ii) transportation of materials, and
 - (iii) end of life of the materials of the flooring systems themselves.

NEW FLOORING SYSTEM

- The ultra-light ultra-shallow flooring system consists of two main structural components, which are lightweight concrete floor and lightweight steel beams.
- The concrete floor, which is in the form of T ribbed slab sections, has been constructed using reinforced lightweight concrete(foamed concrete).
- The lightweight steel edge beams encapsulate the floor slab in the middle and provide a clean and straight finish edges.
- This flooring system will be fully prefabricated in the shop.

Institute for Resilient Infrastructure

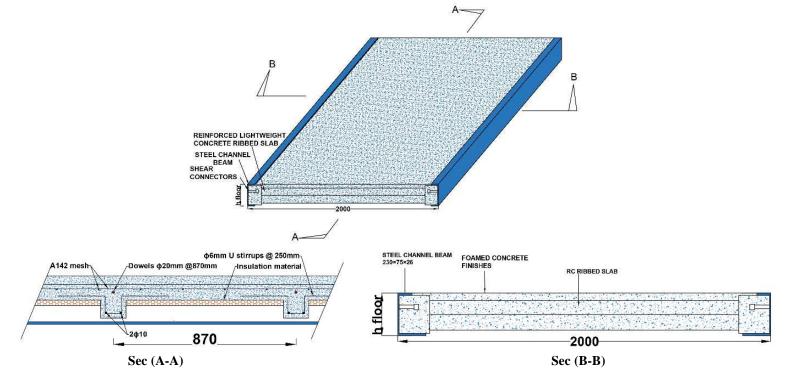


Figure 1: ultra-light ultra shallow flooring

METHODOLOGY

- LCA is a method widely used to estimate the ecological impact of processes, products, and designs over the whole life cycle.
- This study focuses on two impact categories only: (a) embodied carbon, and (b) embodied energy impacts for the three stages.
- LCA has been applied to calculate the embodied energy and embodied carbon of the flooring systems for a typical grid of 8.10m×8.10m.

Institute for Resilient Infrastructure

Production Stage:


$$EE_{-P} = \sum_{i=1}^{n} (W_i \times EE_{(i)-LCI})$$
(1)
$$EC_{-P} = \sum_{i=1}^{n} (W_i \times EC_{(i)-LCI})$$
(2)

Transportation Stage:

$$EE_{-T} = \sum_{i=1}^{n} (W_i \times D_i \times EE_{(i)-LCI(TR)})$$
(3)
$$EE_{-T} = \sum_{i=1}^{n} (W_i \times D_i \times EC_{(i)-LCI(TR)})$$
(4)

• End of life Stage:

$$EE_{-ST-EOL} = \sum_{i=1}^{n} (W_i \times RC \times EE_{(i)-LCI}) + \sum_{i=1}^{n} (W_i \times D_i \times EE_{(i)-LCI(TR)})$$
(5)
$$EE_{-ST-EOL} = \sum_{i=1}^{n} (W_i \times RC \times EC_{(i)-LCI}) + \sum_{i=1}^{n} (W_i \times D_i \times EC_{(i)-LCI(TR)})$$
(6)

Institute for Resilient Infrastructure

Table 2: Embodied carbon and embodied energy coefficients for the production of materials (Hammond et al., 2008)

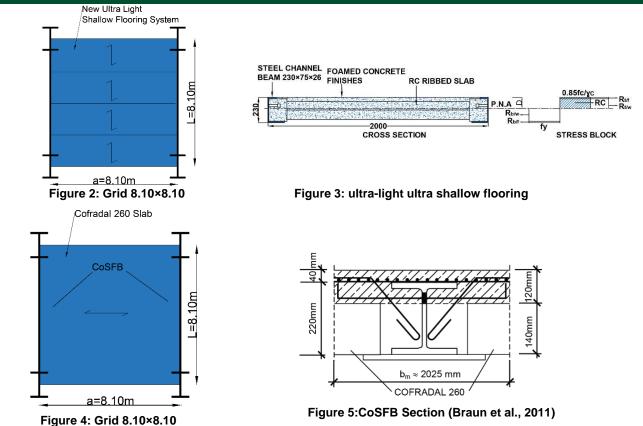

Material	Embodied Energy Coefficient (MJ/kg)	Embodied Carbon Coefficient (kgCO ₂ e/kg)	Table 3: Er for en
Cement	5.5	0.93	
Sand	0.081	0.0048	
Gravel	0.083	0.0052	
Water	0.01	0.001	Ste
Fly ash	0.1	0.008	Rein
Silica fume	0.1	0.014	bar
Super-plasticizer	9.0	0.25	dei
Reinforcing steel bar	17.4	1.31	R
Metal Deck	22.6	1.54	Ins
Steel Section	21.50	1.42	E Pol
Rock wool Insulation	16.8	1.12	FOL
Expanded Polystyrene	88.6	3.29	

Table 3: Embodied carbon and embodied energy coefficientsfor end of life of materials (Hammond et al., 2008)

Material	Embodied Energy Coefficient (MJ/kg)	Embodied Carbon Coefficient (kgCO₂e/kg)	
Steel recycling	13.1	0.75	
Reinforcing steel bar recycling	11	0.74	
Concrete demolition	0.007	0.00054	
Rock wool Insulation	N.D.A	N.D.A	
Expanded Polystyrene	N.D.A	N.D.A	

Institute for Resilient Infrastructure

Institute for Resilient Infrastructure

UNIVERSITY OF LEEDS

RESULTS

 Table 4:Embodied Carbon and Embodied Energy of flooring systems

Stage	Embodied Energy (GJ)	Embodied Carbon (tonne CO ₂ e)	Embodied Energy (GJ)	Embodied Carbon (tonne CO ₂ e)	% Reduction in Embodied Energy	% Reduction in Embodied Carbon
	CoSFB with Cofradal 260mm flooring system		Ultra-light ultra shallow flooring system		Lifergy	
Production	106.25	8.69	90.19	8.67	15	0.23
Transport	5.24	0.32	3.01	0.19	42	40
End of Life	46.63	3.10	36.54	2.12	21	31

CONCLUSIONS

- The results from the LCA study revealed that lower embodied energy and embodied carbon values of the new ultra-light ultra-shallow flooring system from production, transportation, and end of the life stages compared with the results of CoSFB with Cofradal 260 mm.
- The results indicated that the new ultra-light ultra-shallow flooring system is an ideal solution towards the right direction.
- The ultra-light and ultra-shallow flooring system has proved an effective, a sustainable, and a valuable alternative solution for the construction industry in terms of both <u>environmental performance</u> and <u>speed of construction</u> while <u>reducing site work and site risks</u>.

Institute for Resilient Infrastructure

REFERENCES

- Dong, Y.H., Jaillon, L., Chu, P. and Poon, C.S., (2015), "Comparing carbon emissions of precast and cast-in-situ construction methods-A case study of high-rise private building". Journal of Construction and Building Materials, Vol. 99, pp. 39-53.
- Meyer, C. (2009), "The greening of the concrete industry", Journal of Cement and concrete composites, Vol 31, No.8, pp. 601-605.
- Yang, K.-H., J.-K. Song, and K.-I. Song, (2013), "Assessment of CO₂ reduction of alkali-activated" concrete". Journal of Cleaner Production, Vol. 39, pp. 265-272.
- Hammond, G., Jones, C., Lowrie, F. and Tse, P., (2008), Inventory of carbon & energy: ICE. Bath: Sustainable Energy Research Team, Department of Mechanical Engineering, University of Bath.
- Braun, M., Hechler, O., Hauf, G. and Kuhlmann, U., (2011), "Embodied energy optimization by innovative structural systems". Proceedings of the 25th Final Conference of the Cost Action C., Austria. 2-3February 2011.

Institute for Resilient Infrastructure

Thank you for your attention Questions?

Co-funded by:

