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LIFTING N-DIMENSIONAL GALOIS REPRESENTATIONS TO
CHARACTERISTIC ZERO

JAYANTA MANOHARMAYUM

ABSTRACT. Let F' be a number field, let N > 3 be an integer, and let k
be a finite field of characteristic £. We show that if p : Gp — GLy(k) is
a continuous representation with image of p containing SLy (k) then, under
moderate conditions at primes dividing £oo, there is a continuous representa-
tion p : Gp —» GLN(W(k)) unramified outside finitely many primes with
P ~ p mod £. Stronger results are presented for p : Go — GL3(k).

1. INTRODUCTION

A celebrated result of Khare and Wintenberger, [8], proves that every odd, ir-
reducible, continuous representation p : Gg — GLa(Fy) is modular i.e. p is the
mod-¢ reduction of an f-adic Galois representation Gg — GL2(Q,) attached to
a modular form. The statement, commonly referred to as Serre’s (modularity)
conjecture, was initially known only when p had solvable image following work of
Langlands and Tunnell. A key evidence for Serre’s conjecture was provided by
Ramakrishna in [13] by proving the existence of an f-adic lift of p. Ramakrishna’s
construction and subsequent refinements (see [1], [2], [15]) play a crucial role in
Khare and Winterberger’s proof; for earlier applications of Ramakrishna’s lifting
resutls to modularity of GLy(F7) and GL2(Fy) valued representations, see [9] and
[6].

Now let F' be a number field, let NV > 3 be an integer, and suppose we are given
a continuous representation p : Gp — GLN(Fe). Just as in the 2-dimensional
case, we then expect p to satisfy some version of modularity. In particular, we
should be able to find a finite extension K of Q; and a continuous representation
p: Gp — GLN(Og) with values in the integer ring of K which is unramified
outside finitely many primes and whose reduction modulo the maximal ideal of O
is equivalent to p. In this article, we generalise the method of Ramakrishna, [13],
to N > 3 and provide an answer to the finding such characteristic zero lifts when
the image of p and the residue characteristic ¢ are ‘big’.

Before we describe the main result, we recall some terminology. Let A be a
commutative ring and let p : Gp — GLy(A) be a representation. Then adp is
the A[Gr]-module consisting of N x N matrices over A with the action of g € Gp
on a matrix M given by p(g)Mp(g)~t, and ad®p denotes the A[Gg]-submodule
of N x N matrices over A with trace 0. Also, we will call the representation
p: Gp — GLN(A) totally even if the projective image of the decomposition
group at each infinite place of F' is trivial. (Equivalently, any choice of complex
conjugation acts trivially on adp.)
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2 JAYANTA MANOHARMAYUM

We now state the main result of this article; for definitions of terms involved,
see section 2. Essentially, the result states that a residual Galois representation
with big image (including the assumption that ¢ is large) and good properties at ¢
admits characteristic zero liftings.

Main Theorem. Fiz an integer N > 3. Let k be a finite field of characteristic ¢,
and let p: Gp — GLy(k) be a continuous representation of the absolute Galois
group of a number field F. Let W := W (k) denote the Witt ring of k, and fix a
continuous character x : Gp — W™ lifting the determinant of p (i.e. x (mod £) =
detp). Assume that:

(1) The image of p contains SLy(k);

(2) P is not totally even;

(3) If v is a place of F lying above ¢ then H°(GF,), adoﬁ(l)) = (0).

Suppose that £ > N3N There then exists a global deformation condition D with
determinant x for p such that the universal deformation ring for type D deforma-
tions of p is a power series ring over W in at least N — 2 variables. In particular,
there is a continuous representation p : Gp — GLn(W') with determinant x sat-
isfying the following properties:

e p (mod ¢) ~ p; and,

e p is unramified outside finitely many primes.

We can remove the local hypothesis at £ and say more when the number field is
Q@ and N = 3. More precisely, let p: Gg — GLs(k) satisfy the first two conditions
of the main theorem (so p is odd and its image contains SLz(k)). Then p has a
lifting to G'Lz(W (k)) whenever £ > 11, or £ = 7 and the fixed field of ad 5 does
not contain cos(2m/7). See Theorem 6.2.

The basic organisational principle underlying our approach is a beautiful result of
Bockle relating the structure of a universal deformation ring to its local (uni)versal
components. See [1], [2]; for a precise statement of the result we need, see Theorem
2.2 in section 2.2. The problem thus becomes one of finding a global deformation
condition with smooth local components and trivial dual Selmer group. It is perhaps
worth noting here that the two requirements are not completely independent of
each other (as can be seen from the discussion in section 2.2). Ramakrishna’s great
insight, in the GLy case, is to show how to reduce the size of the dual Selmer
group by a clever tweaking of the global deformation condition at some primes. We
will adapt Ramakrishna’s strategy so that the sizes of dual Selmer groups can be
controlled (and reduced) when N > 3.

There are two key ingredients in being able to make such an extension. Firstly,
we prove a cohomological result which gives conditions under which a subspace of
H 1(G r, M) can be distinguished by its restriction at a prime. This provides us
with a collection of primes where an adjustment of the local condition can result
in a smaller dual Selmer group. The second component is local: for each prime
v { £, we need to produce a smooth deformation condition of sufficiently large
dimension for the restriction of p to a local decomposition group at the prime v.
There are complications when the residue characteristic of F, is relatively small (for
instance, when the residue characteristic is not bigger than V), and we avoid these
by assuming [F,(¢;) : F,,] > 3N. (See Theorem 4.3.) The condition ¢ > N3[FQUN jg
an easy—but not an economic—bound that allows us to avoid local complications
at small primes for general N, /.
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While the hypothesis at primes above ¢ ensures that we do not have to deal with
the more difficult problem of studying local deformations at ¢, it does still cover
a wide range of examples. Note that the hypothesis at a prime v|¢ is equivalent
to the assumption that the only G, -equivariant homomorphism from 5 to p(1) is
the zero map. The exceptions can be easily classified for small N, and we do so
for the case when N = 3 and F = Q. We do not attempt to put any geometric
condition as the representations we are looking at might not even have the right
duality property (to link up with automorphic forms).

A similar generalisation of Ramakrishna’s lifting technique to GLy was also
obtained by Hamblen, [7], about the same time when an earlier version of this
article was first prepared. Even so, we hope that this article still carries an interest
for the following reasons. Firstly, the study of local deformations presented here, in
particular the existence of smooth deformations of right dimension, has independent
merit. Although some of the local analysis also appears in [4], there is a difference
in approach (for instance in the study of tamely ramified deformations and also in
the role of tensor product of deformations). Secondly, there is a slight difference in
the method: we rely on Bockle’s result to produce smooth universal deformation
rings, and make use of different local conditions. Consequently we are able to prove
existence of characteristic 0 lifts for general number fields, and strong lifting results
when the base field is Q and N = 3.

This paper is organised as follows. After setting out the requisite terminology,
Section 2 describes the overall strategy of the proof following Bockle’s result (see
Theorem 2.2 and the ensuing paragraphs). Section 3 then establishes a result
in Galois cohomology (see Theorem 3.1) which allows us to show that the new
deformation conditions we consider reduce the size of the dual Selmer group, while
Section 4 proves the existence smooth local deformation rings. These two sections
are independent of each other. Section 5 then applies the results of Section 3 and
Section 4 to produce deformation conditions with trivial dual Selmer group. Finally
we complete the construction of characteristic 0 liftings in Section 6, and show how
our earlier discussion extends to proving stronger lifting results for GLs.

Notation. The ¢-adic cyclotomic character is always denoted by w and @ is the
mod /-cyclotomic character. The term ‘prime’ on its own always indicates a finite
prime except when the context makes it clear that we are also including infinte
primes. If F is a number field, we assume we are given fixed embeddings F — F,
for each prime v (including the infinite ones). If F is unramified at the prime
v we shall view Frob, as element of Gy via the embedding F — F,. If A is a
topological ring and p : Gr — GLy(A) is a continuous representation, we shall
denote the restriction of p to a decomposition group at v by p,,. We shall frequently
use H*(F, M) to denote H*(G, M). The group of unramified cohomology classes
at a prime is indicated by the presence of a subscript (as in H,).

If k is a finite field then the Witt ring of k will be denoted by W (k) and 7 € W (k)
denotes the Teichmiiller lift of z € k. A CNL W (k)-algebra, or simply a CNL algebra
if the finite field k is clear, is shorthand for a complete, Noetherian, local algebra
with residue field k. If x (resp. p) is a W (k) valued character (resp. homomorphism)
then we will use the same letters for their extension to a CNL W (k)-algebra.
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2. PRELIMINARIES

In this section, we give a brief summary of deformation theory and recall the
definitions of some of the key objects used in the analysis of universal deformation
rings attached to global deformation conditions. This leads on to a description of
Bockle’s result and an outline of the main steps needed to prove our main theorem
(see Theorem 2.2 and the paragraphs following it). Aside from setting out key
terminology and notation, we hope that the discussion in this section will make
transparent the basic argument and structure of this article.

2.1. Deformation conditions in general. We begin with a sketch of deforma-
tion theory for group representations as developed by Mazur (see [11],[10]). The
presentation closely follows §23, §26 of [10] apart from some minor adjustments.
In particular, we specify what the term ‘a deformation condition’ precisely means
since, for the most part, we shall be involved in checking that the properties we
specify at a local decomposition group determine a deformation condition. (See
[4] for a slightly different approach using more explicit descriptions of the condi-
tions (DCO), (DC1), and (DC2) below. For pro/near representability in a general
context, see [14].)

Let II be a profinite group satisfying the “finiteness at ¢” property of Mazur (§1
of [10]). For our purposes, a representation of II is a continuous homomorphism
p: I — GLx(A) where A is a topological ring. The underlying free A-module on
which II acts will be denoted by V(p). Given two representations

pa:Il — GLy(A), pp 11 — GLN(B)

and a morphism f : A — B in the relevant category, we say that p4 is a lift of pg
if fpa = pB.

If pp : I — GL,(A), p2 : I — GL,;,,(A) are two representations then
Hom(V (p1),V(p2)), or just simply Hom(p1, p2), is shorthand for the A[II]-module
of A-linear maps from V(p1) to V(p2). As a representation Hom(p;,p2) can
be described as the group of m x n matrices over A with II action given by
(g9, M) — pa(9)Mpi(g)~". We shall take p; ® ps : Gp — GLyn(A) to mean
the representation (gotten from V(p1) ® V(p2)) expressed with respect to the basis
VI RW, ..,V Wiy« v vy Up QUWY, ..., Uy Wy, Where vy, ...,v, and wy, ..., w,, are
the bases for p; and po respectively. Note that Hom(pi, p2) is naturally isomorphic
to p] ® pa where pJ is the dual representation for p;.

Let Repy (IT; k) denote the following category:

o Objects are pairs (A, p4s) where A is a CNL W (k)-algebra and p4 : II —
GLy(A) is a representation;
e A morphism from (4, p4) to (B, pp) is a pair (f, M) where f : A — B is
a morphism of local rings and M € GLx(B) satisfies fpa = MppM ™.
Given a representation p : I — G Ly (k), a deformation condition D for p is a full
subcategory D C Repy (II; k) satisfying the following properties:

(DCO) (k,p) € D, and if (A,pa) € D then p~ pgy mod my.
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(DC1) If (A, pa) is an object in D and (f, M) : (4, pa) — (B, pp) is a morphism,
then (B, pg) is also in D.

(DC2) Let «: A — C and : B — C be morphisms of Artinian CNL algebras.
Assume that [ is a small extension i.e. §: B — C is surjective and ker 3
is a non-zero principal ideal killed by the maximal ideal mp.

Then, in the cartesian diagram

AxeB 24 B

ml ﬂl ,

A ——C

an object (Ax¢ B, p) of Repy(IT; k) is in D if and only if (A, map), (B, mpp)

are in D.
We say that p : II — GLxN(A), or (A, p), is of type D if (A,p) is in D. If x :
II — W™ is a character, we say that D has determinant y if det p = x for any
(A, p) € D. The deformation condition D is said to be smooth if for any surjection
f A — B and an object (B, pg) of type D, there is an object (A, p4) in D
such that fpa = pp. It is sufficient to verify the smoothness condition for small
extensions only. The tangent space of D will be denoted by T'D, and will be viewed
as a k-subspace of H'(II,adp) (it is a subspace of H'(II,ad p) if the determinant
is fixed).

In practice, conditions (DC0), (DC1), and the only if part of condition (DC2),

will almost always be immediate. If D is a deformation condition for p : II —
GLy(k), the functor

D(A) := {type D liftings p : Il — GLx(A) of p} /strict equivalence

is nearly representable. If D is smooth then the (uni)versal deformation ring is a
power series ring.

Our objective is to produce (uni)versal deformation rings which are power series
rings. In view of the following lemma, one can make use of extension of scalars to
produce such (uni)versal deformation rings.

Lemma 2.1. Let kg C ki be finite fields of characteristic ¢, and let py : II —
GL, (ko) be a representation. Denote by p; : I — GL, (k1) the extension of
scalars of py to GLy,(ky).

Given a deformation condition D1 C Rep, (Il; k1), let Dy be the full subcat-
egory of Rep, (IT; ko) consisting of those objects (A, p) € Rep, (Il; ko) such that
(A QW (ko) W(k‘l), P& W(kl)) € D1. Then:

(1) Dy is a deformation condition for py, and dimy, TDy = dimy, TD;.

(2) Let Ry, Ry be the (uni)versal deformation rings of type Do, Dy. Then there

is an isomorphism R1 — Ro @ (ko) W (k1). In particular, if Ry is a power
series ring then so is Ry.

Proof. Checking that Dy is a deformation condition is straightforward. Extension
of scalars give a natural isomorphism between H'(IT,adp,) ® k; and H'(II,adp, ).
Thus there is a subspace L C H'(IT,adp,) such that L ® k; = TD;. One then
checks that L has to be the tangent space for Dy.

For the second part, there is a surjection Ry —> Ro®@W (k7). Since the extension
W (k1)/W (ko) is smooth, the tangent space for Ry ® W (k1) has the same dimension
as the tangent space for Ry. Hence the surjection is an isomorphism. O



6 JAYANTA MANOHARMAYUM

2.2. Global deformations. Now let F' be a number field and let k be a finite field
of characteristic £. Fix an absolutely irreducible representation p : Gp — GLn (k)
and a character x : Gp — W™ such that x (mod ¢) = det p.

Informally, a global deformation condition specifies that we consider liftings of
p : Gp — GLy(k) with prescribed local behaviour. More precisely: Suppose
we are given, for each prime v of F, a deformation condition D, for p|, with
determinant y. Furthermore, we require that the deformation condition D, is
unramified (i.e. all representations in D, are unramified) for almost all primes v.
The global deformation condition {D,} with determinant x for p is then the full
subcategory of Repy (G r; k) consisting of those objects (4, p) € Repy(GrF; k) such
that det p = x and (4, p|,) € D, for all primes v.

For a global deformation condition D with determinant x for p, we shall denote
the local condition at v by D, (so D = {D, }). We define the ramification set ¥(D)
to be the finite set consisting of those primes v of F where D,, is not unramified,
primes lying above ¢ and oo, and primes where p and x are ramified. Thus D is pre-
cisely a deformation condition for p|gai(m, 0/ F) with prescribed local components
(cf. §26 of [10]). The tangent space for D is the Selmer group

Hlrpy (F,ad%p) = ker (Hl(GF, ad°p) — [[ H'(F.,ad%) /TDU> .

The dual Selmer group for D is defined as follows. For each prime v of F the pairing
ad s x ad°p(1) — k(1) obtained by taking trace induces a perfect pairing

H' (F,,ad’p) x H' (F,,ad’p(1)) — H*(F,,k(1)).

Let TD}F C H! (Fmadoﬁ(l)) be the annihilator of 7D, under the above pair-
ing. The dual Selmer group H%TDL} (F, ad Oﬁ(l)) is then determined by the local

conditions {TD}} i.e.
Hlppsy (Foad’p(1)) = ker (Hl(GF,adOp(l)) — HHl(E,,adOp(l))/TDj) .

While the tangent space for D is a very difficult object to get a handle on, re-
markably a quantitative comparision with the dual Selmer group is possible by the
following formula of Wiles (Theorem 8.6.20 in [12]):

(2.1)  dim H{pp,y (F,ad’p) — dim H{ppoy (F,ad*p(1))
- Z (dimTD, — dim H°(F,,ad"p)) .

Note that the summation runs over all primes, including the primes at infinity.
We now describe a beautiful result of Bockle which allows one to relate the global
(uni)versal deformation ring in terms of local deformation rings. Let p, x and D
be as above. For each prime v, let R, be the (uni)versal deformation ring for type
D, deformations, and let R be the (uni)versal global deformation ring for type D
deformations of p.
Now choose presentations

R, =W(E)[Tv1,. - Ton)l/Jv, REW(K)T,...,T,]]/J

of R,, R as quotients of power series rings in minimal number of generators. Thus
n, = dim7TD, and n = dimH%TD1)}(F, ad"p); the ideal J, = (0) if v ¢ (D).
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Restriction of the (uni)versal deformation to a decomposition group at v induces a
map R, — R which can be then lifted to a map

ay : W(R)[[Ty,]] — W(K)[[T:]]
of local rings. Of course «,,, and even R, — R, might not be unique at all.

Theorem 2.2. (Bdickle, Theorem 4.2 of [2]) With notation as in the preceding
paragraphs, the ideal J is generated by the images on,J, together with at most
dim H{lTDL}(F, ad’p(1)) other elements. Thus

(2.2) gen(J) < Z gen(Jy) + dim H{lTDvL}(F’ ad’p(1))
veX(D)

where gen(J) (resp. gen(Jy)) is the minimal number of elements required to generate
the ideal J (resp. Jy).

Theorem 2.2 above allows us to prove our main theorem provided we can find a
global deformation condition with smooth local conditions and trivial dual Selmer
group. For in this case, the right hand side of (2.2) is 0; consequently, the global
deformation ring has trivial ideal of relations and therefore is smooth. The question
now is how to get to such nice global deformation conditions.

Suppose we start off with a global deformation problem D with smooth local
deformation conditions. By (2.2) the number of global relations is then bounded
by the dimension of the dual Selmer group. The critical step then is to tweak one
of the local conditions D, at some prime so that the new deformation condition
has smaller dual Selmer group. We shall show that this can be done in Section 5
provided

(2.3) dim H{zp,y (F,ad’p) > N = 2 4 dim H{pp1y (F,adp(1)) .

We then need to resolve two issues. For our choice of primes where the local
deformation condition should be—and how it should be—changed, we use a direct
generalisation of the one used in [13]. However, the verification that this choice
indeed reduces the size of the dual Selmer group requires effort. The relevant
result, established in Section 3, follows from a careful analysis of the cohomology
of G with coefficients in various modules associated to the residual representation

p.
The second issue is that by Wiles’ formula (2.1), the above inequality (2.3) will

fail if the local deformation conditions are ‘small’. To ensure this doesn’t happen, we
make sure that D, is smooth in dim H °(F,,, ad °p) variables at primes not dividing
{. The required constructions are carried out in Section 4; the precise statement
we need is presented in Theorem 4.3. Given these local conditions, the hypotheses
at ¢ and oo allows us to ensure that (2.3) is satisfied.

3. GALOIS COHOMOLOGY

Our aim in this section is to prove a result in Galois cohomology which allows
us to show how sizes of dual Selmer groups can be controlled, and be decreased, by
careful changes in local conditions. But before we proceed any further, we record
the following running assumption in place for the rest of the section:

Throughout this section, K/F is a finite Galois extension of number fields
with Galois group G := Gal(K/F) and k be a finite extension of Fy.
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The main result of this section, stated below, gives conditions under which a sub-
space of H'(Gp, M) can be distinguished by its restriction at a prime.

Theorem 3.1. Let My,..., M, be n mutually non-isomorphic, absolutely irre-
ducible k[G] modules with H (G, M;) = 0, 1 < i < n. We assume that we are
given a place v of F and k-subspaces V; C H (G p, M;) with the following proper-
ties:

o My P& M, is unramified at v, and that Frob, acts semi-simply on each

Mi;'
e dimV; <dim H, (F,, M;) fori=1,...,n.
Under the above assumptions, we can find infinitely many places w such that:

o My ®---® M, is unramified at w and the images of Frob,,, Frob, in G are
the same;

e Any cohomology class in V; is unramified at w;

e The restriction map Vi @ --- @ V,, — H: (Fy, My)&--- & H} (F,, M,)
18 1njective.

For clarity, we record the following (generally standard) notation. If M is a
k[G]-module and ¢ € H'(Gp, M) then the restriction of ¢ to Gy is a group
homomorphism. We denote by K (&) the field through which this homomorphism
factorises. Note that the extension K(¢)/F is Galois. For & € H'(Gr, M),
i =1,...,n, the compositum of K(&;),...,K(&,) will be denoted by K(&1,...,&)-

We will derive Theorem 3.1 from two propositions, the first of which is as follows.

Proposition 3.2. Let M be a finite k[G]-module satisfying the following two con-
ditions:

o M is a simple F[G r]-module with Endg,ic.|(M) = k;

e HY(G, M)=0.
If Y, s, ... ¥y aren linearly independent classes in the k-vector space Hl(GF, M),
then K (1), K(¥2), ..., K (1) are linearly disjoint over K.

The proof of the above proposition relies on the following observation, recorded
as a lemma.

Lemma 3.3. Let M be as in Proposition 3.2, and let 0 # ¢ € HY(Gp, M). Then:

(a) The restriction & : Gal (K (§)/K) — M is an isomorphism of G-modules.
(b) If L is a Galois extension of F with K C L then either K(§) C L or

K NL=K.
Proof. The images of Gal(K (§)/K) and Gal(K (§)/(K(§)NL) under & are subspaces
of M stable under the action of G. The lemma follows as M is simple. O

Proof of Proposition 3.2. We first do the case n = 2. If K (1) and K (1) are not
linearly disjoint over K, then by the above lemma K (1) = K(t2). The composite

M 2 Gal(K (61)/K) = Gal(K (12)/K) 22 M

is a G-module automorphism of M. Since k is the endomorphism ring of M, the
composite 1) ! must be a non-zero element of k, and so v; and 1 are linearly
dependent—a contradiction.

We use induction for the general case. Suppose we have proved that the fields
K(1),...,K(t,_1) are linearly disjoint. We then need to show that K(t,) and
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K(1,...,0,—1) are linearly disjoint over K where K (11,...,%,_1) is the com-
positum of K (v1),..., K(t,_1).

Suppose they are not linearly disjoint. Then Lemma 3.3 implies that K ()
is a subfield of K(¢1,...,%¥,—1) with Gal (K(¢,)/K) = M. If we can now show
that K(¢) = K(a1Y1 + -+ 4+ an—19n—1) for some ay,...,a, € k then, appealing
to the case n = 2 of the proposition, we see that 1, is a linear combination of
P1,...,¥n_1—which is a contradiction.

Let £ be the set of Galois extensions E/F with K C E C K(t1,...,%n-1)
and Gal(E/K) isomorphic to M as G modules, and let V' be the k-subspace of
HY(Gp, M) spanned by 1, ...,¢,_1. We claim that the map P(V) — &£ given
by ¥ — K (%) is a bijection. This will complete the proof of the inductive step as
K(y,) € €.

That the map P(V) — £ is an injection follows from the case n = 2 of the
proposition. Now, by our hypothesis, we have identifications

Gal (K (¢4, 1)/ K) = Gal (K (11)/K) x - - x Gal (K (th,_1)/K) = M"!

of G-modules. Using the simplicity of M, we observe that elements of £ correspond
to G-submodules of M~ ! which are isomorphic to M™ 2 i.e. kernels of non-trivial
G module homomorphisms from M"~! to M. Since
Homg (M x - x M, M) =2 Homg (M, M) x -+ x Homg (M, M)
2kx---xk,

we deduce || = [P(k")| = |P(V)|, and this establishes the claim. O

The second proposition needed to prove Theroem 3.1 requires a small degree of
preparation. We fix an absolutely irreducible k[G]-module M with H'(G, M) =0,
along with an element g € G which acts semi-simply on M. We denote by MY
the kernel of multiplication by g — 1 on M. Note that we have a decomposition
M=M & (g—1)M.

Let us also fix a non-trivial subgroup L C M invariant under Gp with minimal
dimension as an Fy-vector space. It is then straightforward to check that L is
simple, that & contains Endp,(q,(L) =: k' (say), and that M = L ®j k. Further,
we have M9 = L9 @y k and (g — 1)M = (g — 1)L @y k.

Proposition 3.4. With assumptions and notations as in the previous two para-

graphs, let V be a finite dimensional k-subspace of H' (G, M). If dim MY > dim V/
we can find a lift g € Gp of g such that the restriction map

Ve HY(Gp, M) — H'({g), M)
18 1njective.
Proof. Set n:=dimV. Since H'(Gr, M) = H'(Gp, L) @ k, we can find:
e a basis &1,...,&, of V,
e m linearly independent cocyles ¢y, . . . , 1, in the k’-vector space H' (G, L)
with m > n and such that ; := wi—l—z ai;; forsome a;; € k, i =1,...,n.
i>n
Fix a lift ¢’ € Gp of g. We can identify H'((¢'), M) with MY. For ease of
notation, we set

KO = K(%,J > TL), and Kl = K(wlawja] > n)? i = ].,...,71.
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By Proposition 3.2, the extensions K;, ¢ =1,...,n are linearly disjoint over K.

For each 1 < i < n, the cocyle &; restricts to ¥; on K. Since 9;(Gal(K;/Ky)) = L
and & (zg") = ¥;(z) +&(g') for any z € Gal(K;/Ky), we see that the k-subspace of
M generated by ;(zg’) is M.

We claim that we can find z; € Gal(K;/Kjy), 1 <i < n,such that & (z19), ..., ¢n(Tng’)
generate an n-dimensional subspace of M/(g — 1)M. To see this, first pick xz; €
Gal(K1/Kjp) such that & (z1¢") is non-trivial when projected to M/(g—1)M. Having
found z; € Gal(K;/Ky), i = 1,...,j with j < n and such that & (z1¢'),...,&(z;9")
generate a j-dimensional subspace of M/(g—1)M we can find an z1; € Gal(Kj41/Kp)
with the property that &;11(zj+14") does not lie in the subspace of M spanned by
& (zig'), ..., &(xj9") and (g — 1)M. This is possible as this latter subspace has
dimension j + dimy (g — 1)M < dimy M.

Finally, using Proposition 3.2, we can find = in the Galois group of K which acts
as x; on each extension K;/Ky. Set g = xg’. Then as £,(g),...,&.(9) generate an
n-dimensional subspace of M/(g—1)M, we see that the images of &; when restricted
to H'((g), M) are linearly independent. O

Proof of Theorem 3.1. Denote by K(V;) the splitting field for V; over K, and by
K(Vi,...,V,) the compositum of K(V;). We claim that the extensions K(V;) are
linearly disjoint over K. To see this, we observe that each Gal(K (V;)/K) is isomor-
phic to a subgroup of M; as a G-module and therefore Gal(K (V;)/K)®F, k is a direct
sum of copies of M; as a k[G]-module. Thus if K(V;) and K(V;) are not linearly
disjoint over K for some i # j, then the semi-simplifications of Gal(K(V;)/K) ®r, k
and Gal(K(V;)/K) ®r, k will have a common irreducible factor. But this cannot
happen as M; and M; are absolutely irreducible and non-isomorphic.

Take g € G to be an element which Frob, lifts and let ¢’ € Gal(K (V4,...,V,,)/F)
be a lift of g. By Proposition 3.4, we can find x; € Gal(K(V;)/K) such that
V; — H'((x;¢), M;) is injective. Using disjointness of the K (V;)’s, we can find
an z € Gal(K(Vy,...,V,,)/K) such that = acts on K(V;) as z;. By the Chebotarev
density theorem, we can then find a place w of F lifting x¢g’ and unramified in
K(V,...,V,). It is now immediate such a w satisfies the properties asked for. O

4. LOCAL DEFORMATION CONDITIONS

Our objective in this section is to construct examples of local deformation con-
ditions which admit a sufficiently large (uni)versal deformation ring. Throughout
this section, k is a finite field of characteristic £ and p is a prime different from £.

Definition 4.1. Let F' be a finite extension of Q, and let 5 : Gp — GLn(k) be
a representation. We say that a deformation condition D for p is well-behaved if D
is smooth and dim 7D = dim H°(Gr,adp).

Example 4.2. Let F be a finite extension of Q, and let  : Gp — GLn(k)
be a representation. If p is unramified then the class of unramified liftings is a
well-behaved deformation condition. The unrestricted deformation condition is
well-behaved if H?(Gr,adp) = (0).

We can now state our main result asserting the existence of well-behaved defor-
mation conditions.

Theorem 4.3. Let F be a finite extension of Q,, let k be a finite field of char-
acteristic £ # p, and let p : Gp — GLN(k) be a representation. Assume that
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all irreducible components occurring in the semi-simplification of p are absolutely
irreducible. If p < N and p is wildly ramified assume that [F((y) : F] > 3N where
Co is an L-th root of unity. Then the following hold:

(a) There exists a well-behaved deformation condition D.

(b) Suppose x : Gp — W™ is a character lifting detp. Assume that N,/
are co-prime. Then liftings of type D and determinant x is a smooth
deformation condition for p and the dimension of its tangent is equal to
dim H°(Gr, ad’p).

To construct a well-behaved deformation condition D as claimed (and also to
outline the structure of this section), we proceed as follows:

(I) We would like to build up D from well-behaved deformation conditions
for some decomposition of p. In section 4.1 we show that a good way
of decomposing p is to make sure that the basic blocks have no common
irreducible components, even after taking Tate twists.

(IT) The blocks can then be analysed separately. There are essentially three
cases we need to consider.

(i) Firstly, the case when a given residual representation is tamely ram-
ified. The deformation condition in this case is to obtained by speci-
fying a Jordan—Holder decomposition for a generator of tame inertia.
See section 4.2.

(ii) The residual representation is a tensor product of two smaller represen-
tations. In section 4.3 we study when we can construct the candidate
well-behaved deformation by using tensor products.

(iii) The residual representation is induced, in which case we try to induce
a known well-behaved deformation condition. This is done in section
4.4

(III) Finally, we verify that the hypotheses of Theorem 4.3 guarantee applicabil-
ity of the preceding steps and complete the proof Theorem 4.3 in section
4.5.

As indicated in Section 1, local deformation conditions for a class of residual
representations are constructed in [4]. While there is some overlap in the treatment
of induced and tamely ramified deformations, the results here do not follow directly
from [4]. Moreover, the approaches are different (and quite significantly in the case
of tamely ramified deformations).

The second part of Theorem 4.3 is straightforward given the first part, and we
deal with it right away. As indicated earlier, the first part of Theorem 4.3 will be
proved in section 4.5.

Proof of Theorem 4.3 (b). We need only check smoothness, and for that it suffices
to check that any deformation p : Gp — GLy(A) of type D can be twisted
to a deformation with determinant x. If ¢ : Gp — A* is a character and we
want x = det(ep), then 9" = ydet p~!. We can find such a character ¢» because
xdetp™t: Gp — 14+ my and

N
14+my £, 1+my

is an isomorphism. ([
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4.1. Direct sums of deformation conditions. In this subsection, we show that
given a favourable decomposition of the residual representation, taking direct sum
of liftings of the components determines a deformation condition.

We will keep the following assumptions for the rest of this subsection. We assume
we are given a finite extension F/Q, and representations p, : Gp — GLg4, (k), i =
1,...,n satistfying

(4.1) Homy, g (ﬁmﬁj(”) =(0)
for i # j,r € Z. We also assume that we are given a deformation condition F; for
each residual representation p;, i =1,...,n.

We will also keep the following notation for the rest of this subsection.

e Weset p:=p;®---®p, and N :=dy +...+d,. Thus the representation
p takes values in GLy (k).

e We denote by F := F1 @ --- ® F,, the full subcategory of Repy(Gr;k)
consisting of objects (A, p) such that the representation p ~ p3 @ --- @
pn with (4, p;) € F;. In other words, but perhaps less formally, we are
restricting attention to those representations which split completely as a
direct sum of representations of type Fi,...,F,

We then have the following theorem.
Theorem 4.4. F is a deformation condition for p. The natural map
(A, pi) € Fi)iey — (Ap1 & -+ @ pn)
induces an isomorphism of tangent spaces
TF=2TFH & - @&TF,,
and F is well-behaved if each F; is well-behaved.

Theorem 4.4 is an immediate consequence of the following proposition:

Proposition 4.5. Let R be a CNL algebra, and let p : Gg — GLN(R) be a lift of
p. We then have, up to strictly equivalence, a unique decomposition p = p1@---Dpy
where p; : Gg — GLg,(R) is a lift of p;.

The proof of Proposition 4.5 relies on there being no cohomological relations
between lifts of p; and p; when i # j. More precisely, we need the following lemma:

Lemma 4.6. Let x =0, 1 or 2.
(1) If i # j then H* (GF,Hom(ﬁi,ﬁj)) = (0) if i £ j. Consequently, we have
H* (G, Hom(p, 7)) = H* (G, Hom(p,, 5,) © - ® H* (G, Hom(5,,7,,)).

(2) Let A be an Artinian CNL algebra, and let p; : Gp — GLg4,(A), pj :
Gr — GLqg;(A) be lifts of p;,p;,i # j. Then

H*(Gp,Hom(p;, p;)) = (0).
Proof. The first part follows easily from the triviality of relevant Hom groups (by

assumption 4.1), local duality and the local Euler characteristic formula.
For the second part, let J be an ideal of A with m4.J = (0). Then

0 — Hom(p;, pj) ® J — Hom(p;, p;) — Hom(p; mod J, p; mod J) — 0

is an exact sequence of Gp-modules. Induction along with the first part then
completes the proof. [
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Proof of Proposition 4.5. We can take R to be Artinian. Let m be its maximal
ideal, and let J # (0) be an ideal of R killed by m. Suppose that

p (mod J)=p\ @@ p,

with p} : Gp — GLg,(R/J) lifting p;. The obstruction to lifting p} to a represen-
tation Gp — GLg4,(R) is a cohomology class

¢; € H*(Gp,Hom(p; © J,p; ® J)) = H*(Gp,Hom(p;, p;)) @ J.

Since p (mod J) lifts to R, ¢; + ...+ ¢, vanishes in H*(Gr, Hom(p, p)) ® J. Hence
c1,...,Cy are trivial by the first part of Lemma 4.6.

We can therefore lift each p : Gp — GLg4,(R/J) to p; : Gp — GLg,(R). If we
set pi=p1D---®py, then p = (I+&)p with ¢ € H(Gp, Hom(p® J,p®.J)). By the
first part of Lemma 4.6, we see that £ = & + ... + &, with & € H (G, Hom(p, ®
J,p; ® J)). The required decomposition for p follows. The uniqueness part follows
from the second part of Lemma 4.6. (I

4.2. Tamely ramified representations. We now consider the problem of con-
structing a well-behaved deformation condition when the residual representation
is tamely ramified. Our objective is to study liftings obtained by specifying a
Jordan—Holder decomposition for a generator of tame inertia. The Jordan—Holder
decomposition together with Frobenius action on the tame generator allow us to
study tamely ramified liftings algebraically and produce the required well behaved
deformation condition.

Throughout this subsection, F' is a fixed finite extension of Q, with residue field
of order q. We denote by F™ and F™ the maximal unramified and the maximal
tamely ramified extensions of F', and fix

e a topological generator T of Gal(F"™/F™),
e a lift o of Frobenius to Gal(F*" /F).

The letter T denotes a fixed indeterminate. For a tamely ramified representation

p: Gp — GL,(R), we shall view the underlying module V(p) as an R[T]-module

where T acts via 7. (We shall freely identify tamely ramified representations with

representations of Gal(F*' /F).) Note that the action of o provides added structure.
To describe this further, we first fix some notation:

e ¢4 : R[T] — R[T] is the injective homomorphism which sends T' to T
(and is the identity on R).

e If M is an R[T]-module, then ¢; M is the R[T]-module with underlying set
M and action twisted by ¢, i.e. (f(T),m) — f(T9)m for all f(T) € R[T].

Then, with notation as before, specifying the action of ¢ on V(p) is equivalent to
specifying an isomorphism V(p) — ¢;V(p) of R[T]-modules. Conversely, these
determine the representation completely.

We fix a tamely ramified representation p : Gp — GL, (k) throughout this
subsection and let (a;;) be the (upper triangular) Jordan normal form of p(7) (so
a;; =0ifi <jori>j+1, and a;;41 is 0 or 1). We define the n x n matrix J(p)
by

J(P) := (a;;) where a;; is the Teichmiiller lift of a;;.
Finally, let D (5 be the full subcategory of Rep,,(G r; k) consisting of objects (4, p)
with p : Gp — GL,(A) tamely ramified and p(7) ~ J(p). We then have the
following:
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Proposition 4.7. D ;) is a well-behaved deformation condition for p.

We'd like to study deformations (R, p) in D) using the linear algebra data
‘R[T]-module with added structure’, and for that we need a convenient description
of J(p) in terms of R[T]-modules.

Recall that k is a finite of characteristic £ # p. We denote by k() the orbits of
the action &« — o on the set of elements in k™ which have order prime to q. For
«a € k™ with order prime to g we define the polynomial

P,(T) = (T—@)(T—a%)--- (T —a’")

where d is the smallest non-negative integer with a? = a. As usual, @ € W
denotes the Teichmiiller lift of « € k. Equivalently, P, is the polynomial whose
roots are the Teichmiiller lifts of elements in the orbit of a. Finally, if x € k(g is
the orbit of o then Py := P,.

Definition 4.8.
(1) A type function ¢ is a map ¢ : k(g) x N — Z such that
o t(x,m) >t(x,m+1) for all x € k), m € N, and
e t(x,m) =0 for almost all x, m.
(2) Let R be a CNL W-algebra, and let ¢ be a type function. The standard
R[T] module of type t, denoted by J(R,t), is

R[T) R[T]
SACRNCE

An R[T] module M is said to be of type ¢ if M is isomorphic to J(R,t). A
tamely ramified representation p : Gp — GL,(R) is said to be of type ¢
if the underlying module V(p) is of type t.

We make the following observation. Let p: Gp —> GL, (k) be our given tamely
ramified representation. Because oro ! = 79, the uniqueness of Jordan normal
form implies that V(p) is a k[T]-module of type t for some type function ¢. Fix one
such type function ¢. Then (A, p) is in D) if and only if p is of type ¢.

We now establish some results that will be needed in the proof of our key propo-
sition 4.7.

Lemma 4.9. Let o, € k™ have orders prime to q and let f : R — S be a
surjective homomorphism of Artinian CNL algebras. Given m,n > 1 and ¢ €
Homg1) (S[T]/(P;”), S[T]/(Pg)) , there exists ¢ € Hompgr (R[T]/(P;”),R[T]/(Pg))
such that the diagram
m a n
R[T|/(PY) — RI[T|/(Pg)
\J 2
m 4) n
S[T]/(Fy) — S[T1/(Pg)

commutes.

Proof. The lemma holds trivially if o # qu for any j > 0 because
Homp 7y (R[T]/(P3"), RIT/(P§)) = (0)

in this case.
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Suppose now that o = . To give an S[T]-module homomorphism ¢ : S[T]/(PY) —
S[T]/(PY) is equivalent to finding a g(T") € S[T] such that P'g(T) € (P}) (and
#(1) = g(T) (mod PY)). If m > n, take g(T') € R[T] to be a lift of g(T'), and define

¢: R[T/(Py") — R[T]/(F})

by setting ¢(1) = §(T) (mod P). If m < n, we have g(T) = P*~"h(T) for some
h(T) € S[T)]. In this case, define

(1) == PL""h(T) (mod Fy)
where h(T) € R[T) is a lift of h(T). 0

Proposition 4.10. Let R be an Artinian CNL algebra, and let I be an ideal of
R. If M, N are R[T)-modules of type tpr,tn respectively, then any R|T]-module
homomorphism M/IM —s N/IN lifts to a homomorphism M — N.

Proof. Fix isomorphisms

R[T] R[T]
On s M — @ ptared)’ On: N — @ ptv(ad)’

and let @1,91\7 be their reductions modulo I. Given a homomorphism of R[T]-
modules ¢ : M/IM — N/IN, we can apply Lemma 4.9 to find a lift

. R[T] R[T]
,(/) : @ PéM(Ot,i) — @ PéN(a,i)
of @ngé&l. If we now take ¢ : M — N to be 9;,11/J9M, then ¢ (mod I) =¢. O

Proposition 4.11. Let R be a CNL W-algebra. Let ¢, : R[T] — R[T] be the
injective homomorphism sending T to T?. Then ¢4 induces an isomorphism

R[T] R[T]

Py Pn

of R algebras for any o € k* of order coprime to ¢, n > 1.
Consequently, if M is an R[T]-module of type t then ¢; M is also of type t.

Proof. First suppose that R is Artinian. Suppose we have a polynomial f(T) € R[T]
with
f(T?) = Po(T)"g(T)
for some g(T") € R[T]. Then
1(@) = @0 = =0,

Since a7 — @ is a unit if 0 < i < j < dg, we have f(T) = Pa(T)h(T) for some
h(T) € R[T]. Now

do—1 ‘

P,(T9) = H (Tq _ aqzq)
i=0
do—1

= P(D) ] ﬁ (nga'f’)
ci=1 =0
= Pu(1) ] PalCT),

ca=1
C#1
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and therefore
Pa(T)"g(T) = h(T?) T PalcT)-

¢a=1
c#1

Since a7’ — C&qi are units, we have
h@) =h@’) = =0.
We can now conclude (by induction) that ¢, induces an injection
RIT) | R[T)
pn pn

e

and therefore induces an isomorphism.
The non-Artinian case follows on taking inverse limits. ([l

Proof of Proposition 4.7. To show that D ;) determines a deformation condition,
we need only verify condition (DC2) as (DC0) and (DC1) are obvious. Fix a type
function ¢ so that p is of type t. Let

AxcB -2+ B

WAl 5l

A 20
be a Cartesian diagram of Artinian local W-algebras with 8 small, and suppose
that we are given an object (A x¢ B, p) in Rep,,(Gr; k) such that the projections
map and mp are also of type t. We then need to show that p is of type ¢.

Denote by p; : Ip — GL, (W) the tamely ramified representation that sends
the fixed tame generator T to the matrix J(p). If R is a CNL W-algebra then we
will continue to use p; for the representation that sends 7 to J(p) viewed now as
a matrix over R via the W-algebra structure; the context will always make clear
where p; is valued in.

Let (b) be the kernel of 8. Then 74 is small with kernel generated by (0,b). We
may then suppose that map|r. = pt, and so p|r. = (I +(0,b))pe with € a 1-cocycle
representing an element of H 1([ r,adp). We need to show that £ is trivial.

Now 7pp|r, = (I +b€)ps, and also Mrgp M|, = p; for some M € GL,(B).
Going down to C' = B/(b) and using Bnp = ama, we obtain B(M)ps B(M)™ = p
i.e. B(M) commutes with p;. Using Proposition 4.10, we can find M’ € GL,(B)
such that M’ peM'~" = p; and M = M’ (mod b). Write M'~'M = I + bX with X
an n x n matrix over k. Then

po= (I +0X)mpp(I —bX)|r, ie. (I—bX)py (I+0X) = (I+0bE)pn

and hence ¢ is trivial.

We now consider smoothness of the deformation condition. Let R — S be a
surjective morphism of Artinian local W-algebras, and let ps : Gg — GL,(S) be
a representation of type t lifting p. Conjugating ps by a matrix congruent to the
identity modulo the maximal ideal of S, we may suppose that V(pg) is J(S,t). The
action of ¢ specifies a morphism

Os: J(S,t) — ¢,J(S,t)
of S[T]-modules which can then be lifted, by Proposition 4.10, to
Or : J(R,t) — ¢y J(R,1).
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Hence D) is smooth.

Finally, we consider the tangent space of D ;). The deformations of 5 to k[e]/ e
are uniquely determined by H'(Gp,adp). For ¢ € H'(Gp,adp), the lift (I +¢£)p is
of type t if and only if the restriction of £ to inertia is trivial. Thus the tangent space
for Dy) is H! (GF/IF7 (adﬁ)lp), and hence D) is a well behaved deformation
condition. O

4.3. Deformations for tensor products. We now consider step II(ii) in the
outline plan of the proof of Theorem 4.3. Thus our starting point will be a residual
representation which is the tensor product of two smaller representations. We
then want to determine if taking tensor products of classes of liftings of the two
components gives a deformation condition for the bigger residual representation.
Let F is a finite extension of Q, and fix, for the rest of this subsection, a residual

representation 6 : Gy — GL, (k) such that

e 0 is absolutely irreducible,

e (tn, and

e 0 is not equivalent to its Tate twist 6(1).
We set s to be the smallest positive integer such that 6(s) ~ . (So s > 2 by our
assumption.) We then have the following.

Theorem 4.12. Suppose that 1 < m < s —2, and let p : Gp — GLpyn(k) be
a representation such that p°** = 0(ay) © - - ® 0(a,,) for some integers ai,...,ay,.
There is then a deformation condition & for p with the following properties:
o If (A pa) € &, then det py restricted to the inertia subgroup of Gp is the
Teichmiiller lift of det p;
e & is a smooth deformation condition;
o The dimension of the tangent space for £ is equal to dimHO(GF, adp).

We make the following definition for convenience: A representation r : Gp —
GLg4(k) is said to be s-small if

I k(ll) b---D k‘(ld)

with 0 <idq,... 0, <s—2.

We shall make use of the natural isomorphism between Hom(V, W) and VY @ W
for k-vector spaces V, W in what follows without any further qualification. Also,
the identity map on U naturally identifies Hom(V, W) as a subspace of Hom(V ®
UWU). If £{dimU, then Hom(V @ U,W ® U) is naturally identified with
Hom(V, W) @ Hom(V, W) ® ad°U where ad°U is the vector space of trace zero
endomorphisms of U.

Lemma 4.13.
(a) If |j| < s —2 then H' (G, adog(j)) = (0) for alli > 0.
(b) If 0 < a,b < s — 2 then we have natural isomorphisms
H' (Gp,Hom (0(a),0(b))) = H (GF, k(b — a))

for alli > 0.
(¢) If p1, o are two s-small representations then the natural inclusion Hom (py, py) <
Hom (ﬁl ® 0,9y ® 0) induces isomorphisms

H' (Gr,Hom (p, ® 0,9, ®0)) = H' (G, Hom (py, 7))
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for alli > 0.

Proof. For part (a), one checks that the statement holds for |j| < s—1 when i = 0.
The full result then follows after an application of local Tate duality and the Euler
characteristic formula. Part () of the lemma is then immediate from part (a) via
the natural identifications

Hom (A(a), (b)) = Hom (6,0) (b — a) = ad0(b — a) @ k(b — a).
For part (c), we have
Hom (p; 6, p, ® ) = Hom(p,, py) & Hom(py, p) ® ad "9,
and H* (Gr,Hom(py, py) ® ad O?) is trivial by part a. O

Let § : Gr — GL,(W) be the unique (up to equivalence) lifting of § with
determinant the Teichmiiller lift of detf. (The existence and uniqueness of such
a representation is an immediate consequence of the above lemma.) Fix also an
s-small representation 5, : Ggp — GL,,(k) and a deformation condition D for 7.

Define D ® 6 to be the full subcategory of Rep,,,,(Gr) whose objects are pairs
(A, pa) with pa ~ po® @ for some (A, pg) € D.

Proposition 4.14. With notation as above, D ® 0 is a deformation condition for
Po ® 0. The tangent space for D ® 0 is naturally identified with D.

Proof. We first show that D ® 6 is a deformation condition, and for that we need
only verify that a lifting p: Gp — A xp C is in D ® @ if the projections of p to A
and C are in D ® 6.

Claim 1: If p: Gp — GLyyn(A) is a lifting of p, ® 0, then p is strictly equivalent
to po ® 0 for some lifting po : Gp — G Ly, (A) of py.

Proof of claim: We use induction on length for A Artinian. Let J be an ideal
of A killed by the maximal ideal m of A. Then p mod J is strictly equivalent to
p1 ® 0 for some lift to A/J of p,. The obstruction to lifting p; to GL,,(A) lies in
H?*(Gp,adp,) ® J, and the obstruction vanishes by Lemma 4.13, part ¢. We can
therefore find a lifting pf, : Gp — GL;,(A) of p, such that p mod J = p{,®@60 mod J.
It follows that p = pj ® 0 (1 + &) for some & € H'(Gr,adp, ® 0) ® J, and the claim
follows from Lemma 4.13, part c.

Claim 2: If p1,p2 : Gp — GL,,(A) are two liftings of py and p1 @ 6 ~5 p2 ® 6,
then p; ~g po.

Proof of claim: With A, J as in the proof of claim 1 and using induction on length,
one deduces that assuming p; mod J = p mod J, we have p1 ® 0 = ps ® 0(1+¢)
with ¢ € H' (G, adp, ® 0) ® J. Lemma 4.13 again completes the proof.

Now let (Ax gC, p) be a lifting of p,®0. We may assume by claim 1 that p = po®6
for pg a lifting of p,. If the projections of p to A and C' are in D ® 6, then claim 2
implies that the projections of pg to A and C are in D. Hence (A xp C, pg) € D,
thus proving the theorem.

The statement about tangent spaces is immediate from Lemma 4.13. (]
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Proof of Theorem 4.12. Twisting p by a power of the cyclotomic character, we may
assume that 0 < aq,...,a, < s— 2. It is then easy to see, using Lemma 4.13, that
P ~ Py ® 0 where p, is a s-small representation with 55 = k(ay) @ - @ k(am).
Now let & be the deformation condition for the tamely ramified representation p,
constructed in subsection 4.2, and take £ to be the deformation condition & ® 6.
All claims then follow from Proposition 4.14 and properties of &. U

4.4. Induced representations. We now consider the final part in the analysis of
blocks that make up a residual representation given in the outline plan for proof of
Theorem 4.3. Thus we need to consider when representations induced from liftings
of a given residual representation determine a deformation condition for the induced
residual representation.

The set up for this subsection is as follows. Let F g L be fixed finite extensions
of Qp, and set n = [L : F]. We assume we are given a representation p : Gp —
G Ly (k) which is induced from 6 : G — GL,,(k). We also fix, throughout this
subsection, a coset decomposition

Gr=qgGrU---Ug,Gp,
with g1 = e.
Now V(p) has a G, invariant vector subspace M such that:

e V(0) = M as Gr-modules, and

e V(p)=giM® - ®g, M.
The subspace N := gaM +--- g, M is G, invariant and V = M & N as G'z-modules.
Let ¥ : G — GL(,—1)m(k) be a representation given by (some fixed choice of
basis of) N. Assume that:

e dlg, =07, and

e Homg, (M, N(r)) = (0) for all r € Z.

Under these assumptions, we have canonical isomorphisms
H'(Gp,adp) = H(Gp,adf)

by Shapiro’s lemma. Furthermore, Proposition 4.5 shows that any lift p : Gp —
GLn(R) of p restricted to Gy, is strictly equivalent to 6 @ where 6,1 are lifts of
0 and 9.

Lemma 4.15. Let A be an Artinian CNL W -algebra, and let p: G — G Ly (A)
be a lift of p. If

pla, =0@9
with 0,9 lifts of 0,0, then p is equivalent to Indf.

Proof. We fix a basis for V(p) as follows: View V() as a subspace of V(p) via

V(p) = V(0) ® V(9), and take the basis {g;¢;|1 < i < n,1 < j < m} with
{&1,...,8m} a basis of V(0). Now V(p) = V(0) ® V(9) as A[G1]-modules, and so
we can pick a basis {e1,...,en} of V(0) such that e; is a lift of &;. It is now clear
that

Vi(p) =g1V(0) + -+ gV (0) + maV(p),

and therefore, by Nakayama’s lemma, one sees that
Vip) =aV(0)®--- @ gnV(0).
This completes the proof (using, for instance, Proposition 10.5 of [5]). O
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Now let F be a deformation condition for §, and denote by IndF the full sub-
category of Rep,,,,(Gr; k) whose objects are (A, p) € Rep,,,,(Gr; k) with V(p) =
IndV (6) for some (A4,0) € F.

Proposition 4.16. IndF is a deformation condition for p. If F is well-behaved
then so is IndF.

Proof. To show that IndF is a deformation condition, we need only check (DC2).
Suppose given a: A — C, 8 : B — C, with § small, and a lift

pZGF —)GLmn(A Xc B)

of pwith (4, ap), (B, fp) in Ind FRep,,,,. Conjugating by an element of GL,,, (A% ¢
B), we can take p to be a lift of p, and that p|g, = 0 ® ¥ where 6,9 are lifts of
0 and V. Since p ~ Ind @ by Lemma 4.15, we need to verify that (4 x¢ B,#) is in
FRep,,-

Let (A,0") be an object of FRep,, with Indd’ ~ ap. By Proposition 4.5, the

composite

V(0 = V(ap) 2V(ab) @ V(ad) — V(ab)
is an isomorphism of A[G]-modules. Hence (A, af) is an object of FRep,,,. Simi-
larly, (B, £60) is an object of FRep,,, and hence (A x¢ B, 0) is in FRep,,.

Clearly, IndF is smooth if F is, and the tangent space for IndF is the image
of TD under the Shapiro isomorphism. The (uni)versal deformation ring for IndF
is a power series ring over W, the restriction of the determinant of the (uni)versal
IndF deformation is the Teichmdiiller lift of detp. The second statement of the
proposition now follows. ([

4.5. Proof of Theorem 4.3. We will now complete the proof of Theorem 4.3 by
decomposing a given residual representation suitably so that the results we have
discussed apply.

Recall we are assuming that our representation p: Gp — GLy (k) has all irre-
ducible components occurring in the semi-simplification of p absolutely irreducible,
and that [F(¢;) : F] > 3N if p < N and p is wildly ramified. Our task is to con-
struct a well-behaved deformation condition for p. Throughout this subsection, we
fix absolutely irreducible continuous representations

0;:Gp — GLy,(k), i=1,...,n
occurring in the semi-simplification of p such that:
e if i # j, then 6; and 9j (r) are not equivalent for any r € Z;

e 7% is a direct sum of §;, i = 1,...,n, and Tate twists of 6;’s.

Lemma 4.17. Let V be the underlying k|G r|-module for p. Then'V has a submod-
ule isomorphic to V(0;) for each i. If V; denotes the mazimal submodule of V' whose
composition series consists only of 0; and Tate twists of 0;, then V =V, &---PV,.

Furthermore, for any r € Z,i # j, we have
Homg, (Vlv VJ(T)) = (0)

Proof. We may suppose that V has a submodule U isomorphic to ;. Using induc-
tion, we get an exact sequence of k[G ] modules

0—U—V —>M®&---&M, —0
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where each M; composition series consisting only of §; and Tate twists of §;. Thus
V' corresponds to an element of

H (Gp,Hom(M, @ --- & M,,U)).

By Tate local duality, H'(Gr, Hom(M;,U)) is trivial if i # 1, and the proposition
follows. O

By Theorem 4.4 and the above lemma, we can assume that the semi-simplification
of p is a direct sum of Tate twists of a single absolutely irreducible representation
0: Gr — GLy, (k). If 6 is tamely ramified, we proceed as in subsection 4.2, Propo-
sition 4.7.

Now assume that @ is wildly ramified. We shall deal with the case when p < N
first. Let s be the smallest positive integer such that 6 ~ 6(s), and let m be the
number irreducible components of 7* isomorphic to some Tate twist of . The
inequalities ns > 3N (obtained by comparing determinants of 6 and 6(s)) and
nm < N imply that 1 < m < s — 2. The existence of a well-behaved deformation
condition then follows from Theorem 4.12.

Finally, assume from here on that 6 is wildly ramified and p > N. Let p* =
0(i1)D- - -®0(iy,), and denote by F(p) the extension of F' through which p factorises.
Since n < p, twisting by a character Gp — k™ if necessary, we can assume
that the p-part of the determinant of 8 is trivial. A consideration of ramification
subgroups shows that we can find an abelian normal, wildly ramified, p-subgroup
Z QGal(F(p)/F). Our assumption that the determinant has no p-part then shows
that 0|z is not central.

We now give a characterisation of p as an induced module. The representation
P when restricted to Z splits as a direct sum of characters. Clearly, if 0|7 ~

X1 @+ @ xa, then plz ~ (x1 @ - & xa) ™"
Vix] ={veV(p)|pz)(v)=x(z)v forall ze Z}.
If g € Gal (F(p)/F), then the character % defined by

. We fix one such character x and set

N(z) == x(g29™")

is also a constituent character of 0|z, and we have V[%] = gV [x]. Thus Gal (F(p)/F)
acts transitively on the distinct constituent characters of 0|z and there are at least
two distinct constituent characters. Let L be the finite extension of F inside F(p)
cut out by the stabiliser of x, and fix a coset decomposition

Gr=gGrU---Ug,Gp

with ¢ = e. Then V = ¢1V[x] @ --- @ g,V ][x], and so V is induced from the
Gr-module V[x]. Since x is a wildly ramified character,

Homy (V% VI“X]) = (0)
if gGr # ¢'Gr, and so for any r € Z, we have

Homg, (V[x], (g2VIX] @ -+ @ g VIX])(7)) = (0).

Finally, inductively on N, one can find a well-behaved deformation condition
for the representation of G, arising from V[x]. Using Theorem 4.16, the induced
deformation condition is a well-behaved deformation condition for p.
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4.6. Deformations at special unramified primes. We conclude this section
with a look at a special class of smooth local deformations which are of great
significance in reducing dimensions of (global) dual Selmer groups.

Let F be a finite extension of Q, and let p : Gp — GL, (k) be the diagonal
representation

u—jnfl
(Dn—2
p= :
1
We assume that the order of the mod ¢ cyclotomic character w is greater than
n. Fix a basis {e1,es,...,e,} with p acting on e; by the character ©"* and an

identification

adp = @ Hom(ke;, ke;) = @ k(i — 7).

1<i,5<n 1<i,5<n

Lemma 4.18. Any lifting of p is strictly equivalent to an upper triangular repre-
sentation.

Proof. We use Artinian induction. So let p : Gp — GL,(A) be a lift of p with
A Artinian, and let J be a non-zero ideal of A killed by ms. We assume that
ps: Gp — GL,(A/J), the reduction of p modulo J, is upper triangular (after
conjugating by a matrix that reduces to the identity modulo my4 if necessary).

We write B, for the standard Borel subgroup of GL,, consisting of upper tri-
angular matrices, and let bp be the subspace of adp consisting of upper triangular
matrices. A standard calculation then shows that H*(Gr,adp) = H*(Gr, bp) when
«=0,1,2.

The obstruction to lifting p; to B, (A) is given by an element of H? (G, bp) ®.J.
The obstruction vanishes because its image in H?(Gr,adp) ® J is trivial (since p
lifts p; to A). Thus there is an upper triangular lift p’ : Gp — GL,,(4) of p;y and
we can write

p=(I+)p with o€ H (Gp,adp)® J.
Now deformations of p; to B, (A) are precisely given by (I+&)p’ where £ is a cocycle
in H' (Gr,bp)®J. The lemma follows since H! (G, adp)®J = H' (Gr,bp)@J. O

Let 9B be the full subcategory of Rep,,(Gr;k) with objects (A4, p) satisfying p
mod my = p and

Lemma 4.18 then readily implies that 28, which we shall refer to as the Ramakrishna
condition, is in fact a deformation condition for p. (When n = 2, these are the
deformation conditions discussed in section 3 of [13].)

Proposition 4.19. B is smooth and its tangent space is
n—1

@ H' (Gp,Hom(ke; 1, ke;)) .
i=1
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Proof. Let p : Gp — GL,(B) be a representation, say p = (bjjw’ ") where
bi; : Gp — B are functions with

0, ifi > j,
bij(U) = { ep o '].

1, ifi=j

for any o € Gp. Each b; ;41 € H*(GF, B(1)). The calculation in example E4 of [15]
shows that for a surjection f: A — B, the map

H'(GF, A(1)) — H'(Gp, B(1))

is surjective. If we assume f to be small and identify the k[G'r|-module of n x n
matrices with entries from ker(f) with adp, it follows that the obstruction to there
being a lift of type B of p to A is given by an element of

H? (GF,®j_i>o Hom(ke;, ke;)) .
But this cohomology group vanishes because
dimy H(Gr, k(j 1)) = dimyx H*(Gp, k(j — i) = dimy, H*(Gp, k(i - j +1)) = (0)
for j — ¢ > 2 as w has order greater than n. Consequently
H! (Gp,®;j_i>1 Hom(ke;, ke;)) = @, H* (Gp,Hom(ke;11,ke;)),

from which the statement about the tangent space follows. ([

5. CONSTRUCTING GLOBAL DEFORMATION CONDITIONS WITH TRIVIAL DUAL
SELMER GROUP

In this section, we show how to transform a given global deformation condition
in such a way that the dual Selmer group decreases in size while at the same time
retaining smoothness properties of local components (of the original deformation
condition).

We begin by fixing a number field F' and a finite field k of characteristic /.
We also fix, throughout this section, a representation p : Gp — GLx(k) and a
character x : Gp — W™ lifting det p (so x (mod £) = det p).

We shall say that a global deformation condition D with determinant x for p
satisfies the tangent space inequality if the inequality

(5.1) > dimTD, > (N-2)+ Y  dimH°(G,,ad")
veX(D) vER(D)

holds. Recall that (D) is the finite set consisting of those primes v of F' where
D, is not unramified, primes lying above ¢ and oo, and primes where p and x are
ramified. By Wiles’ formula 2.1, D as satisfies the tangent space inequality if

dim H{7p,, (F,ad’p) — dim H{ppoy (F,ad"p(1)) > N - 2.

Definition 5.1. The residual representation p : Gp — GLy(k) is said to be a
big representation if the following properties hold:

(R1) ad®p is absolutely irreducible and
H' (Gal(F(ad"p)/F),ad %) = H' (Gal(F(ad5(1))/F),ad "5(1)) = (0).
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(R2) There is a non-archimedean prime wq of F' with wg 1 £ such that

wN—l

Plwo ~ . ®n

where 7 is an unramified character, and the mod ¢ cyclotomic character @
has order strictly greater than V.

Note that if p is big, then R2 implies that F' does not contain all /-th roots of
unity, that ad®s and ad°s(1) are inequivalent, and that ¢ > N. Also if 7 is big and
k' is a finite extension of k, then the extension of scalars of p to GLy (k') is again
a big representation. Further examples of big representations are supplied by the
following proposition:

Proposition 5.2.

(i) Let F be a number field, and fiz an integer N > 2. There is a constant C
such that if k is a finite field of characteristic £ > C, then any representation
p: Grp — GLy(k) with Imp containing SLy (k) is a big representation.

(i1) Let p : Gg — GL3(k) be a representation with Imp containing SLs(k).
Assume that £, the characteristic of k, is at least 7. Further, assume that
if £ =7 then the fized field of ad’p does not contain cos(2r/7). Then p is
a big representation.

Proof. We fix the following notation first:

e 7 : Gr — PGLy(k) is the projectivization of p and X : Gp — k™ /E*V
is the determinant of p.

e F(X,w) is the extension of F through which ¥ and @ factors. Similarly
F(X) (respectively F(@), F(p)) is the extension of F' through which X (re-
spectively @, p) factors.

Finally, we set
d:=[F(X): F] and e:=({(-1)/[F(X,»): F(X)]-

We shall now show that the proposition holds with C' = 2edN + 1.
The extension F(p)/F(X) has Galois group PSLy(k), and so F(p), F(x,) are
linearly disjoint over F(X). Since @ (Gp(x)) = F,*°, the image of the homomorphism

pxw:Gp — PGLy(k) xF[

contains PSLy (k) x F;°.
Fix a generator a of the cyclic group F;, and set b = a®¢?. Tt is then straightfor-
ward to check that

bN—l

X := the projective image of the diagonal matrix
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is an element of PSLy (k). By the Chebotarev density theorem, there is an unram-
ified prime v such that p(Frob,) = X and @(Frob,) = b. Hence

CDNfl

Fy ™ o ®n
w

p
1

where 7] is an unramified character. Now the order of @|g, is the order of b, and
this is greater than N if 2edN < £ — 1; so (R2) holds.

We now verify condition (R1). Note that ¢ > 7 since C > 5. We use the
representation 5 : Gp — GLy(k) to identify Gal(F(ad"p)/F) with a subgroup
of PGLy(k), and view ad°p as a PGL, (k)-module. Since the image of 7 contains
SLy(k), we see that PSLy (k) is a normal subgroup of Gal(F(adp)/F) of index
coprime to £. Hence

H' (Gal(F(ad’p)/F),adp) < H' (PSLy(k),ad"p).

Now the inflation map H' (PSLy(k),ad Oﬁ) — H' (SLn(k),ad Oﬁ) is an isomor-
phism because PSLy (k) is the quotient of SLy (k) by its centre, which has order
coprime to £. Since H' (SLy(k),ad Oﬁ) = (0) by Theorem 4.2 of [3], we can there-
fore conclude H* (Gal(F(adOﬁ)/F), adoﬁ) = (0).

The verification that H' (Gal(F(ad 0%(1))/F), ad Oﬁ(l)) = (0) is similar but
needs an extra step. Set K to be the Galois extension of F' generated by F(ad5(1))
and F(@). By considering the extension K/F (@) so that the Tate twist becomes
trivial, we see that Gal(K/F') contains a subgroup of index coprime to ¢ and isomor-
phic to PSLy (k). Thus, as in preceding case, we deduce H' (Gal(K/F), ad Oﬁ(l)) =
(0) and therefore, by the inflation-restriction exact sequence we have

H' (Gal(F(ad"5(1))/F),ad°p(1)) = (0).

This completes the proof of part (i) of the proposition.

We now prove part (ii), which deals with the case when N = 3 and F = Q.
Note that d = [Q(x) : Q] is either 1 or 3, and since £ > 7 we must have [Q(x,®) :
Q(x)] > 4 except in the case Q(Y) = Q(cos(27/7)) (which we are excluding). Hence
the image of p X @ contains an element of the form

a 0 0
01 0 |xa
0 0 at
where a € F) has order at least 4. The rest of the proof is then as before. ([

Remark 5.3. Keep the notation introduced in the proof of Proposition 5.2. Since
F(X,w) D Q(@), we have [F(X,®) : Q] > [Q(@) : Q] and so d[F : Q] > e. Along
with d < N, we see that if £ > 2[F : QIN® + 1 then 2edN < ¢ — 1. Hence if
¢ > 2[F : QIN? + 1, then Imp contains SLy (k) and p : Gr — GLy(k) is a big
representation.

Proposition 5.4. Let p : Gr — GLy(k) be a big representation, and let x :
Grp — W™ be a character lifting detp. Fiz a prime wo of F such that p|y,
satisfies condition R2 of Definition 5.1.
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If Dy is a global deformation condition with determinant x for p satisfying the
tangent space inequality, then there exists a global deformation condition D with
determinant x for p with (D) D X(Dy) such that:

o Ifv € X(Dy) then Dy, = Dy;
o Ifv € X(D) — X(Dy) then D, is smooth and p(Frob,) = p(Froby,). Fur-
thermore, the tangent space 1D, satisfies
HY(F,,ad"p) = H. (F,, ad’p) ® TD,;

e We have H%TD/UL} (F, ad’p(1)) = (0).

Proof. If H‘%TD#U} (F,ad’p(1)) = (0) then we can take D = Dy and there is nothing

to check. So we suppose that we can find
0% &€ Hippy y (Fadp(1).
Then, using Wiles’ formula 2.1, we see that
dimy, Hizp, 3 (F,ad’p) > N — 1.

We now use Theorem 3.1 to produce a prime w; & X(Dy) such that
(a) p(Froby,, ) = p(Froby,) and @(Frob,,,) = @(Frob,, );
(b) The restriction
Hirp,,y (Fad’p) — H)), (Fu,,ad"p)

is surjective; and,
(c) The image of ¢ when restricted to Hy, (Fu,,ad’p(1)) is non-trivial.
In order to do this, let K/F be the extension of F' through which ad Oﬁ and @ split,
and set G := Gal(K/F). Then ad"p and ad’p(1) are non-isomorphic absolutely
irreducible k[G]-modules. Using the inflation-restriction exact sequence together
with property (R1) of big representations and the observation that [K : F(ad’p)]
and [K : F(ad"p(1))] are coprime to £, we conclude that

HY(G,ad"p) = HY(G,ad"p(1)) = (0).
We now apply Theorem 3.1 to the k[G]-module ad°s @ ad °5(1) and place wq of
F' as follows. Fix subspaces
Vi € Hirp,,y (F,ad’p) € H'(Gp,ad"p)
of dimension NV — 1 and
Vo i=kE C H{lTDM (F,ad"p(1)) € H'(Gp,ad’p(1)).

Now dimy, HY, (F,,,ad"p) = dimy H}, (Fu,,ad’p(1)) = N — 1. Take w; to be
a place of F given by the conclusion of Theorem 3.1. Then condition (a) above
follows since the images of Frob,,,, Frob,, in G are the same. The injectivity of

Vi® Ve — HY (Fy,,ad"p) ® HY, (F,,,ad (1))

then ensures conditions (b) and (c) also hold. (For condition (b) one needs to use
that the restriction V; — H} (le ,ad Oﬁ) is an isomorphism, which follows from
the injectivity by a dimension count.)

We now use the prime w; and define a new deformation condition D; for p with
determinant x with the following local conditions: At primes not equal to wy, the
local deformation conditions Dy, and D;, are the same. At the prime w;, the
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local deformation condition Dy, is determined by a Ramakrishna condition (cf
subsection 4.6). Thus D; is smooth at w;.

The proof now proceeds as in Lemma 1.2 of [15]: Denote by {S,} the local
Selmer conditions

S - TDoy, if v # wy;
(0), if v =w;.
Using Wiles’ formula 2.1,
dim Hlg , (F,ad’p) — dim H{s., (F,ad’p(1))
= Z(dim S, —dim H° v,ad 7)) ZH v,adoﬁ)
vtoo v|oo
= dim Hizp,,) (F,ad"p) —dim Hippoy (Foad"p(1)) — dim Hy, (Fu,,ad%p)
and by (b), the sequence
0 — H{s,, (F,ad’p) — H{,  (F,ad’p) — H}, (Fu,,ad"p) — 0
is exact. Hence we have

His.y (F.adp(1)) = Hippoy (F.ad"p(1)).

Using condition (c) along with H'(F,,,ad"p(1)) = H}, (F,,,ad’s(1)) ® TD5,,,,
we see that

0#& ¢ Higp, y (F, ad’p(1)) C Hirpys y (F, ad’p(1)) .

Thus dim H’}TDfU} (F,ad%5(1)) < dim H{T:DL } (F,ad’p(1)), and the proposition
follows inductively. O

An application of Theorem 2.2 then gives the following:

Theorem 5.5. We keep the notations and assumptions of Proposition 5.4 above.
If for each v € X(Dy) the local deformation condition Dy, is smooth, then the
universal deformation ring for deformations of type D is a power series Ting over
W in
> dimpTDo, — Y dimy H(F,, ad"p)
vES(Dy) vES(Dy)

variables.

6. LIFTING GALOIS REPRESENTATIONS TO CHARACTERISTIC 0

In this section we complete the proof of the main theorem. We also show how
the general arguments we have used, with some care, produce strong lifting results
in the GL3 case.

6.1. Proof of the main theorem. Recall that we are given a continuous represen-
tation p: Gp — GLy(k) and a character x : Gp — W™ lifting the determinant
of p such that

(1) the image of p contains SLy(k);

(2) p is not totally even;

(3) if v is a place of F' lying above ¢ then H? (G, ,ad Oﬁ(l)) = (0).
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We are assuming that the characteristic of k satisfies the inequality ¢ > N s[FQNV
with N > 3. We then need to produce a smooth global deformation condition D
with determinant y for p and dimension of tangent space at least N — 2.

Twisting by an N-th root of the pro-¢ part of x if necessary (possible as £ > N)
and extending scalars, it follows from Proposition 5.2 and Lemma 2.1 that it suffices
to prove the following.

Proposition 6.1. Suppose we are given a representation p : Gp — GLy(k)
satisfying the following hypotheses:

(HO) For any open subgroup H < Gp all irreducible components of the semi-
simplification of plg are absolutely irreducible;

(H1) p: Gr — GLy(k) is a big representation;

(H2) P is not totally even; and,

(H3) For every prime v|¢, we have H°(F,, ad"p(1)) = (0).

Assume that the characteristic of k satisfies the inequality £ > NB3FCQN ith N > 3,
and let x : Gp — W™ be a character lifting detp and minimally ramified away
from £.

Under the above assumptions, there is a global deformation condition D with
determinant x for p such that the universal deformation ring is a power series Ting
over W in

> dimg Dy~ Y dimg HO(F,, ad’) > N -2
veX(D) veX(D)

variables.

Proof. Observe that ¢ > N3WFUN implies [F,(¢,) : F,] > 3N for every v|N!. Now
let Dy be the deformation condition with determinant x for p given by the following
local conditions:

e At a prime v|¢, the local deformation condition is given by the single re-
striction that the determinant is x.

e At a prime v where p is ramified, the local condition Dy, is the one given
by Theorem 4.3

e Dy, is unramified at all other primes.

Let v be a prime of F lying above ¢. By assumption H3 and local duality, we
have

dim H? (F,,ad"p) = dim H" (F,,ad 5(1)) = 0.

Hence the deformation condition Dy, is smooth and, by the local Euler character-
istic formula, we have

dim 7Dy, — dim H® (F,,ad %) = [F, : Q/J(N? - 1).
Adding up over primes above £, we get
> dimTDy, — > dimH (F,,ad’p) = [F : Q(N* - 1).
vl vl

We are assuming that p is not totally even. We can therefore find a real prime
oor of F, a choice ¢ € G of complex conjugation under the embedding given by
oog such that p(c) is not a scalar. Let m be the number of +1 eigenvalues of p(c).
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Then
> dim H° (F,,ad"p)

v|oo
<([F:Q -1)(N*-1)+dim H® (Fs,,ad"p)
=([F:Q] - 1)(N?*=1)+m?+ (N —m)? - 1.

At a finite prime v € 3(Dgy) which is coprime to ¢, we have dimTD,, =
dim H°(F,,ad ). Hence

Z dim Dy, — Z dim H° (F,,ad"p)

vEX (Do) v€X(Do)
>[F:QN?=1) = ([F:Q - )(N? = 1) =m® — (N —m)? +1
=2m(N — m).

From (m — 1)(N —m —1) > 0, we get m(N —m) > N — 1, and consequently D
satisfies the tangent space inequality.

Applying Theorem 5.5, we obtain a deformation condition D with determinant
x such that the universal deformation ring is a power series ring over W in

> dimp D, — Y dimg HO(F,,ad"p)

veX(D) veEX(D)
= Y dimyD,— > dimy H(F,,ad’p)
vEX(Do) vEX(Do)
>N-—-2
variables. O

6.2. A lifting result when N = 3 and F = Q. We now discuss how to improve on
the main theorem for the case when N = 3 and F' = Q. From here on, k is a finite
field of characteristic £. An odd representation is one with complex conjugation
having two distinct eigenvalues.

Theorem 6.2. Let p: Gog — GL3(k) be an odd representation with image of p
containing SL3(k) and let x : Gg — W™ be a character lifting the determinant
of p. Suppose that £ > 7, and further assume that if £ = 7 then the fized field
of adp does not contain cos(2m/7). Then there is a continuous representation
p: Go — GL3(W) with determinant x, unramified outside finitely many primes,
such that p (mod £) = p.

A significant feature of Theorem 6.2, distinguishing it from other lifting results,
is that there are no restrictions imposed at ¢. Although not stated explicitly Theo-
rem 6.2 constructs families of characteristic 0 liftings (because the universal defor-
mation ring in play is a power series ring in at least N —2 = 1 variable). For explicit
examples we need to be able to write down odd representations p: Gg — GL3(k)
with p(Gg) 2 SLs(k); this can be done for certain residue fields & (see [16]).

Proof of Theorem 6.2. As in the proof of the main theorem, we may extend scalars
and assume that p : Gg — GL3(k) satisfies the three conditions HO, H1 (by
Proposition 5.2) and H2 of the preceding section 6.1. Thus p is a big odd represen-
tation such that for any open subgroup H < G all irreducible components in the
semi-simplification of p|gy are absolutely irreducible.
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Let p, denote the restrictions of p to Gg,. We will now find for each prime
p a smooth local deformation condition Dy, with determinant x for p, such that

dim T'Dy,, = dim H °(Q,,ad °p) if p # ¢ and
(6.1) dim TDy, > dim H °(Qg, ad°p) + 5.

There is no issue at a primes away from 2, 3 and ¢: If p > 3 and p # ¢ we take Dy,
to be the one obtained through Theorem 4.3.

If we can find the above local conditions at 2, 3 and ¢, then Theorem 6.2 follows
immediately from Theorem 5.5 once we verify that the global deformation condition
Dy = {Dop} with determinant x satisfies the tangent space inequality (5.1). By
our assumption on tangent spaces away from ¢, we therefore need to check if the
inequality

dim TDgy; > 1 4 dim H °(Qg, ad°p) + dim H °(R, ad *p)

holds. But this follows from (6.1) since dim H °(R,ad’p) = 4 as 7 is not totally
even. (|

Now let p be one of 2, 3 or . We then have the following descriptions of the
local representation p,,.

Proposition 6.3. Let p be as above and let p be one of 2, 3 or£. If H*(Q,, adoﬁp) =+
(0) then, after conjugating if necessary, we can put p, into one of the following
forms.

1 = *
Type A: p,= (0 @ =* |7

00

1 = vy
Type B: p,= (0 ¢ z|[n

0 w

where x is non-split if e = @~ ! and z is non-split if ¢ = &°. (The non-split
condition ensures that p,, is not of Type A.)

Type C: p, is absolutely irreducible and induced from a character of G, (¢,)- This
case occurs only when (p,£) = (2,7) or (3,13).

Proof. Let V' be the underlying k-vector space for the representation p. We write
elements of V(1) = V®£k(1), the underlying space for (1), simply as v(1) forv € V.
Thus g € Gq, acts on v(1) by sending it to w(1) where w = w(g)p(g)(v) € V. The
assumption H%(Q,,adp) # (0) then implies that

Homg, (V,V(1)) = H°(Q,,ad"p(1)) # (0),

and we can therefore find a non-zero homomorphism ¢ : V. — V(1) of Gq,-
modules.

First suppose dimker ¢ = 1. Set ker ¢ = (u) and write ¢(V) = U(1) where U is
a 2-dimensional Gg,-submodule of V. We then claim u(1) € ¢(V'), or equivalently
ker¢ C U. To see this, we note that if the claim is not true then the restriction
¢ly : U — U(1) is an isomorphism of Gg,-modules. On taking determinants of
the underlying 2-dimensional representations, we then obtain @? = 1. This is not
possible as quadratic extensions of Q, for p = 2,3, £ cannot contain all /-th roots
of 1 when ¢ > 7.
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We therefore obtain G, stable filtrations

(W) G o7 (1) GV and (u(1)) G ¢~ ((u(1)(1) & V(1)

Using these filtrations, we can assume that

ok ok aw ok *
=10 B x and p,(1)=1 0 pBwo =
0 0 v 0 0 ~w
The isomorphism ¢~ *((u(1)))/(u) — (u(1)) shows that 8 = aw. The injection

V/¢~ ((u(1))) — V(1)/(u(1)) then implies that v = f@ or v = yw. As @ is
non-trivial, we must have v = @ = aw?. Consequently 7 is of Type A.

We now consider the case when dimker¢ = 2. Let ¢(V) = (u(1)). Then
u € ker ¢ for otherwise ¢ induces an isomorphism (u) — (u(1)) of Gg,-modules.
Using the Gg, stable filtrations

(u) G kerp &V and  (u(l)) & kerp(1) & V(1),

we call assume

[ aw % *
=10 B =« and p,(1)=1| 0 pBw *
0 0 v 0 0 ~w

The isomorphism V/ker ¢ — (u(1)) implies that v = aw. Hence p is of either of
Type B or of Type A.

Finally suppose that dimker¢ = 0. Thus p ~ p(1). Taking determinants, we
obtain @* = 1. Hence [Q,({,) : Q,] = 3 and (p,£) = (2,7) or (3,13).

If p is not absolutely irreducible then its semi-simplification must contain a
character x. The isomorphism 7 ~ 5(1) then implies that 7 = y @© xy© @ x@? and
so p will be of Type A or Type B.

So let us now suppose p is absolutely irreducible and MM ! = 75(1) for some
invertible matrix M € GL3(k). If the restriction of p to G, (c,) is still absolutely
irreducible then M is a scalar matrix and p = p(1) (equality of matrices!), which
is clearly false. Thus V' has an absolutely irreducible G, (,) stable subspace U of
dimension 1 or 2.

Let g € Gq, be a lift of the generator of Gal(Q,(¢r)/Qp). If dimU = 2 then
UNgU is a non-zero G, (¢,) stable subspace and so, by irreducibility, we have U =
gU. Thus U is in fact stable under Gg,-action, contradicting absolute irreducibility
of V. So dimU =1 and V = U + gU + g°U. Hence p is induced from a character
of Gg,(¢o)- =

We can now proceed with our construction of suitable local deformation condi-
tions.

Local conditions when p =2 or 3. If H*(Q,,ad Oﬁp) = (0) then we take Dy, to be
the class of liftings with determinant x (cf. Example 4.2). Thus Dy, is smooth and
dim T'Dy,, = dim H °(Q,, ad 7).

Suppose now H?(Q,,ad Oﬁ) # (0). We assume that p, is in the matrix forms
specified by Proposition 6.3, and specify local deformations as follows.

First, assume that p, is either of Type A, or of Type B with ¢ unramified. Thus
Py is a twist of a tamely ramified representation. We then take Dy, to be any smooth
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deformation condition Dy, with determinant x and dim 7Dy, = dim H °(Q,, ad "p).
The existence of such a deformation condition is assured by Theorem 4.3.

We now consider the remaining cases. Thus p,, is of Type B with e ramified,
or of Type C. Note that ¢ does not divide the order of the image of inertia un-
der p,. (If p, is Type B with e ramified then we can assume r = z = 0 since
H*(Qp, k(™)) and H*(Qy, k(sw™!)) are both trivial, and then we can make y = 0
because H*(Q,, k(@™1)) = (0).)

The construction and argument now proceeds as in [15, Example E1]. Take K
to be fixed field of p, over Q', the maximal unramified extension of Q, and then
take Dy, to be lifts of p, with determinant x which factor through Gal(K/Qy).
Since ¢ does not divide cardinality of Gal(K/Q)") we have

H;(Qy,ad"p) = H"(Gal(K/Qy), ad ")

for all n > 1. It follows that Dy, is a smooth deformation condition and its tangent
space has dimension dim H O(Qp, ad Oﬁ).

Local conditions at £. Our target is to find a smooth local deformation condition
Dy for p, with determinant x, and satisfying inequality 6.1:

dim TDy, > dim H °(Qy, ad °p) + 5.

If H*(Qg,ad’p) = (0) then there aren’t any obstructions and, following Exam-
ple 4.2, we take Dy, to be the class of liftings with determinant y,. This is smooth
and

dim TDyy — dim H °(Qy, ad °p) = dimad °p = 8.

Assume now that H?(Qq,ad’p) # (0) and that 7, is of the form specified in
Proposition 6.3. We now describe the choice of deformations and specify a Gg,
subspace N of adoﬁ where the tangent space can be computed as follows. (Es-
sentially we only allow those liftings which can be conjugated to certain parabolic
subgroups of GL3s and N is the corresponding adjoint. The same constructions
work when p = 2 or 3 provided @® # 1.)

(a) Suppose p, is either of Type A or of Type B with ¢ different from 1 or
@ or @t or @?. Take Dy, to be upper triangular deformations of 7 with
determinant x and set N to be the space of trace 0 upper triangular matrices
in ad“p.

(b) Suppose p, is of Type B and ¢ is 1 or @~ *. Take Dy, to be deformations of
the form

* *

*
* *

0 0

*

with determinant , and set N to be the matrices of the same form in ad *p.
(c) Suppose 7, is of Type B and ¢ is @ or @?. Take Dy, to be deformations of
the form

with determinant y, and set N to be the matrices of the same form in ad Oﬁ.
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The composition series for ad °5/N shows that H °(Qg,ad5/N) = (0). Conse-
quently, the exact sequence

0— N —ad’p — ad’s/N — 0
implies that H°(Qg,ad’p) = H°(Qq, N) and that
HY(Qg, N) — H'(Qy,ad"p)

is injective. Since the tangent space of Doy is the image of H'(Qy, N) in H'(Qy, ad Oﬁ),
we obtain
TDo, = H'(Q, N).

We now sketch a verification that Dy, is a deformation condition as defined in
Section 2.1 for upper triangular deformations i.e. case (a) above when p, is either
of Type A or of Type B with e ¢ {1,@,@% @~ '}; the other cases are similar. The
argument relies on the following two observations.

Claim 6.4. Let p1, p2 : Gg, — GL3(A) be two strictly equivalent upper triangular
liftings of by in Doe. Then there exist an upper triangular matric X = I (mod my)
such that p; = Xpa X L.

Proof. We can take A to be Artinian. Now choose an element ¢ € A with m4t = (0)
and tA = tk. Using induction on length, we can find an upper triangular matrix
Y € GL3(A) such that Y =T (mod m4) and

p1=YpY ! (mod tA).
Thus we can write Y 1p,Y = (I 4 t€)py with € € H'(Q,, N). By assumption the

image £ in H'(Qg,ad"p) is trival. The injectivity of H'(Qg, N) — H'(Qy,ad "p)
implies that £ = 0, and the claim follows. ([

Claim 6.5. Let p: Gg, — GL3(A) be an upper triangular lifting of p, and let M
be a 3 x 3 matriz over A such that

p(g)Mp(g)™ = M for all g € Gg,.
Then M s an upper triangular matriz.

Proof. We can assume that A is Artinian and use induction on length. The claim
when A = k is the content of H°(Q,ad’p) = H°(Qy, N).

For the inductive step, choose t € A with mut = (0) and tA = tk. Let M and
N be the set of 3 x 3 matrices over A of the form

* % % * %
tx k% and 0 =*
tx  tx % 0 0

respectively. Thus M € M, and Gg, acts on M, N by conjugation via p. Now
M/N = ad’5/N and since H°(Qq,ad5/N) = (0), we obtain

HO(GQevN) = HO(GQUM)'
Therefore M € N i.e. M is upper triangular. (I

We now return to the verification that Dy, is a deformation condition. The
only non-trivial part is to show that Do, satisfies (DC2), and one checks that this
justification reduces to the following claim.
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Claim 6.6. Let m1 : A — C be o surjection and let pa : Gg, — GL3(A) be
a representation in Doe with the property that pc := wpa : Go, — GL3(C) is
already upper triangular. Then there is an X € GL3(A) such that m7(X) = I and
XpaX 1 is upper triangular.

Proof. Let Y € GL3(A) withY =T (mod m,) be such that the conjugate Y p4Y !
is upper triangular. Thus pc and 7(Y)pen(Y) ™! are two strictly equivalent upper
triangular lifts of p to GL3(C). Using Claim 6.4, we can find an upper triangular

matrix Y € GL3(A) with ¥ = I (mod my4) such that
*(V)per(P) = (¥ )per(Y) .

Set Z := Y~'Y. Then ZpsZ~" is upper triangular and 7(Z)pcn(Z)~" = pc.
By Claim 6.6, the matrix 7(Z) is upper triangular. Let Z e GL3(A) be an upper
triangular matrix lifting 7(Z), and set X := Z7'Z. Then XpaX~1 is upper
triangular and 7w(X) = I. O

Finally, we need to show that Dy, is smooth and that dim 7Dy, satisfies inequal-
ity 6.1. Smoothness follows from H?(Qg, N) = (0) (cf [2, Theorem 1.2]). To verify
the vanishing of this second cohomology group, assume otherwise. Then, by local
duality,

H°(Q¢, Hom(N, k(1))) # (0),
and so N has a quotient isomorphic to k(1). However, consideration of the compo-
sition series for N shows that N has no quotient isomorphic to k(1) except possibly
when 7 is of Type B and ¢ is @~ ! or @?. These cases can then be discounted using
the non-splitting of x and z respectively.

Now for inequality 6.1. We know that H °(Qy,ad Oﬁ) >~ H%Qy, N) and TDy, =
H'(Qq, N). The local Euler characteristic formula now implies that

dim TDy, — dim H °(Qy, ad °p) = dim N + dim H%(Q,, N) = dim N > 5,
and this completes the proof.
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