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In this paper we propose a quantum algorithm to measure the similarity between

a pair of unattributed graphs. We design an experiment where the two graphs are

merged by establishing a complete set of connections between their nodes and the re-

sulting structure is probed through the evolution of continuous-time quantum walks.

In order to analyze the behaviour of the walks without causing wave function collapse,

we base our analysis on the recently introduced quantum Jensen-Shannon divergence.

In particular, we show that the divergence between the evolution of two suitably ini-

tialized quantum walks over this new structure is maximum when the original pair of

graphs is isomorphic. We also prove that under special conditions the divergence is

minimum when the sets of eigenvalues of the Hamiltonians associated with the two

original graphs have an empty intersection.
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I. INTRODUCTION

Graph-based representations have long been used as a powerful way to characterize a

large number of systems which are best described in terms of their topological or intercon-

nection structure1–4. However, the rich expressiveness of graphs usually comes at the cost

of an increased difficulty in applying standard pattern recognition techniques and machine

learning to them, as these usually require the graphs to be first embedded into a vectorial

space, a procedure which is far from being trivial. This is in turn due to the lack of a

canonical ordering for the nodes in a graph. In fact, correspondences or alignment to a

reference structure must be established before the analysis can commence. Moreover, even

if a correspondence order can be established, the dimension of the embedding space may

vary, as a result of structural modifications, i.e., changes in the number of nodes and edges.

Kernel methods5 provide an elegant way to transform the problem at hand from that of

finding an embedding of the set of data entities to that of defining a positive semidefinite

kernel between them using the well-known kernel trick. The best known example of this

approach is probably furnished by support vector machines (SVMs)6. The data entities

considered can be vectors, graph nodes, or, as in our case, entire graphs. Given a positive

semidefinite kernel k : X ×X → R on a set X , we know that there exists a map φ : X → H

into a Hilbert space H , such that k(x, y) =< φ(x),φ(y) > for all x, y ∈ X, where < ·, · >

denotes the scalar product in H . As a consequence, any algorithm that can be formulated

in terms of scalar products of the φ(x)’s can be applied to a set of data on which a kernel is

defined. Inspired by the R-convolution kernel introduced by Haussler7, a number of graph

kernels have been proposed in the literature8–10. The unifying principle underpinning these

kernels is that of defining the similarity between two graphs by decomposing them and then

comparing the resulting simpler substructures. This led for example to the introduction of

the random walk kernel by Gärtner et al.8, which is based on the enumeration of common

random walks between two graphs. Similarly, Borgwardt et al.9 measure the similarity by

comparing the shortest paths in the graphs, while in Shervashidze et al.10 this is related to

the presence of small subgraphs. Another interesting approach is that of Bai and Hancock11,

where the authors investigate the possibility of defining a graph kernel based on the Jensen-

Shannon kernel. The Jensen-Shannon kernel is a non-extensive information theoretic kernel,

which is defined in terms of the entropy of probability distributions over the structures being

2



compared12. Bai and Hancock extend this idea to the graph domain by associating with

each graph either its Von Neumann entropy13, i.e., the Shannon entropy associated with the

Laplacian eigenvalues of the graph, or the steady state distribution of a random walk on

the graph. Finally, it is important to note that the problem of defining a complete kernel,

i.e., a kernel whose implicit map φ is injective, is at least as hard as the graph isomorphism

problem8.

Quantum walks have recently emerged as a primitive for designing novel quantum algo-

rithms14–17 on graph structures. Similarly to a classical random walk, a quantum walk is

defined as a dynamical process over the vertices of the graph. However, the two walks pos-

sess remarkably different properties. While in the classical case the state vector describing

the evolution of the walk is a real-valued probability vector, the quantum walk is charac-

terized by a complex-valued amplitude vector, with no restrictions on the sign and phase.

This property in turn allows different paths of the walk to interfere with each other in both

constructive and destructive ways, and it is responsible for many of the exotic properties

of quantum walks. Moreover, in the classical case the evolution of the walk is governed

by a double stochastic matrix, while in the quantum case the evolution is governed by a

unitary matrix, which renders the walk reversible. As a consequence, the quantum walk is

non-ergodic and, most importantly, it does not have a limiting distribution. This lack of

convergence makes the behaviour of quantum walks on general graphs considerably harder

to study than their classical counterparts. For this reason, quantum walks have been exten-

sively studied on a wide number of specific topologies18,19, such as the infinite line, cycles,

regular lattices, star graphs and complete graphs. Finally, one of the most celebrated prop-

erties of quantum walks is that they can be used to achieve polynomial and sometimes even

exponential speedups over classical computation in a number of interesting problems20,21.

For example, Farhi and Gutmann21 have shown that if we take two co-joined n-level binary

trees that are connected at their leaves, a quantum walk commencing from the root of the

first tree can hit the root of the second tree exponentially faster than a similarly defined

classical random walk. The major contribution of Farhi and Gutmann’s work21 is to show

that one may achieve an exponential speedup without relying on the quantum Fourier trans-

form. The highly symmetrical structure of the co-joined trees graph described above turns

out to be of key importance to the speedup. Recall that given a graph G = (V,E), an

automorphism is a permutation τ of the set of vertices V of the graph which preserves the
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adjacency relations, i.e. if (u, v) ∈ E then (τ(u), τ(v)) ∈ E. The set of symmetries of G can

thus be represented by its automorphism group Aut(G). Krovi and Brun22 have shown that

the phenomena of exponential speedup as well as that of infinite hitting times are generally

a consequence of the degeneracies in the eigenspace of the evolution operator. These in turn

are related to the symmetry group of the graph. Intuitively, as a consequence of symmetry

a quantum walker can reach a vertex v along multiple paths with the same phase. In this

case, the interference is constructive and the node v has a high probability of being visited.

This leads to a faster hitting time for node v. However, depending on the initial state of

the walk, the quantum walker can also reach v along paths with phases that correspond to

destructive interference. In fact, in some cases the probability of the walker to visiting node

v will be zero, i.e., the hitting time can be infinite.

Another consequence of the intimate connection between symmetries and quantum walks

has been investigated by Emms et al.23. Specifically, the authors define a quasi-quantum

analogue of the commute time associated with the continuous-time quantum walk and then

explore the possibility of using it to embed the nodes of the graph into a low dimensional

vector space. Their work reveals that the symmetries of the graph correspond to degenerate

directions in the quantum commute time embedding space. More recently, Rossi et al.24

proposed a way to detect approximate axial symmetries in networks by measuring the inter-

ference patterns of continuous-time quantum walks. However, the analyses of Emms et al.23

and Rossi et al.24 are not based on a principled observable and are hence semi-classical. In

order to overcome this limitation, Rossi et al.25 made use of the quantum Jensen-Shannon

divergence, effectively rendering the analysis fully based on observable properties.

The Quantum Jensen-Shannon Divergence (QJSD) has recently been developed as a

generalization of the classical Jensen-Shannon divergence to quantum states by Majtey,

Lamberti and Prato26–28. Just as the classical Jensen-Shannon divergence29, the quantum

Jensen-Shannon divergence is symmetric, bounded and always defined. Unlike its classical

counterpart, however, it has been proved to be the square of a metric only for pure states28,

whereas for mixed states there is only empirical evidence suggesting that it is28. Moreover,

it has been shown that for mixed quantum states the quantum Jensen-Shannon divergence

has good distinguishability properties. Note that as the QJSD is defined in terms of the

Von Neumann entropy it is not directly a quantum-mechanical observable, i.e., there is no

operator whose expected value is the QJSD. However, it can be computed from density
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matrices whose entries are indeed observables.

In this paper, we introduce a novel kernel on unattributed graphs which evaluates the

similarity between two graphs through the evolution of a suitably defined continuous-time

quantum walk on their structure. We measure the similarity between two graphs by merging

them into a new structure whose degree of symmetry will be maximum when the original

graphs are isomorphic. With this structure to hand, we define two continuous-time quan-

tum walks such that the density operators of the resulting quantum states are orthogonal

whenever the two original graphs are isomorphic. More precisely, we measure the quantum

Jensen-Shannon divergence between these states. We stress that, while this analysis is fully

based on observable properties, it is not meant to provide an algorithm exhibiting quantum

speedup with respect to classical counterparts, but rather to highlight how quantum walks

can be used to provide information about the structural similarities between two graphs.

Note that a number of alternative graph kernels based on the classical Jensen-Shannon di-

vergence and its quantum counterpart have been recently introduced in the literature11,30–32.

In particular, the present paper builds on the work of Rossi et al.30,31, but it differs from it in

a number of significant aspects. More specifically, in an attempt to shed light on the general

behaviour of the kernel, we analyze the relation between the kernel value and the graph

spectra, and we show that the divergence is minimum when the sets of eigenvalues of the

Hamiltonians associated with the two original graphs have an empty intersection. We also

perform an extensive set of experiments to evaluate the impact of the Hamiltonian and the

time parameter on the classification accuracy. With respect to the classical Jensen-Shannon

kernel of Bai and Hancock11, here we do not need to construct a product graph from the two

input graphs in order to measure the composite entropy. Instead, we naturally handle the

computation by comparing quantum states defined over the same state space. Moreover, our

work is also significantly different from that of Bai et al.32, where, in order to guarantee the

permutational invariance, the authors need to compute the optimal alignment between the

input graphs before the analysis can even commence. In this work, on the other hand, we

solve the problem by establishing a complete set of connections between the two graphs and

carefully crafting the initial states of the walks so as to highlight the presence of structural

symmetries. In a nutshell, in the present work the computation of the kernel is naturally

handled by means of the interference effects of quantum walks, thus avoiding using either a

rotation in Hilbert space32, or the construction of a product union graph11 in the classical
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case.

The remainder of the paper is organized as follows: Section II provides a brief introduction

to continuous-time quantum walks, while Section III reviews the concepts of Von Neumann

entropy and quantum Jensen-Shannon divergence. In Section IV we propose a novel method

to measure the similarity between two unattributed graphs based on the quantum Jensen-

Shannon divergence. Section V illustrates the experimental results, while the conclusions

are presented in Section VI.

II. CONTINUOUS-TIME QUANTUM WALKS

Let G = (V,E) be an undirected graph, where V is a set of n vertices and E = (V × V )

is a set of edges. The adjacency matrix of G is the symmetric matrix with elements

Auv =

⎧

⎨

⎩

1 if (u, v) ∈ E

0 otherwise
(1)

and the diagonal matrix D has elements du =
∑n

v=1A(u, v), where du is the degree of the

node u. The graph Laplacian is then defined as L = D − A, and it can be interpreted as a

combinatorial analogue of the discrete Laplace-Beltrami operator33.

A continuous-time random walk on the graph G models a Markovian diffusion process

over its node set, where the transitions are allowed only along the edges connecting adjacent

vertices. Let pt ∈ Rn be a vector denoting the state of the walk at time t, such that its u-th

entry gives the probability of the walk being at vertex u at time t. Then the state vector

evolves according to the equation

pt = e−Ltp0 (2)

where L is the generator matrix of the underlying continuous-time Markov process.

The continuous-time quantum walk is the quantum counterpart of the continuous-time

random walk, and it is similarly defined as a dynamical process over the vertices of the

graph21. Here the classical state vector is replaced by a vector of complex amplitudes over

V whose squared norm sums to unity, and as such the state of the system is not constrained

to lie in a probability space. In fact, the lack of restrictions on the sign and complex phase

allows for interference effects to take place. Let us denote, using Dirac notation, the basis

state corresponding to the walk being at vertex u ∈ V as |u⟩. A general state of the walk is
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a complex linear combination of the basis states, such that the state of the walk at time t is

defined as

|ψt⟩ =
∑

u∈V

αu(t) |u⟩ (3)

where the amplitude αu(t) ∈ C and |ψt⟩ ∈ C|V | are both complex. Moreover, we have

that αu(t)α
∗
u(t) gives the probability that at time t the walker is at the vertex u, and thus

∑

u∈V αu(t)α
∗
u(t) = 1 and αu(t)α

∗
u(t) ∈ [0, 1], for all u ∈ V , t ∈ R

+.

The evolution of the walk is then given by the Schrödinger equation, where we denote

the time-independent Hamiltonian as H.

∂

∂t
|ψt⟩ = −iH |ψt⟩ . (4)

Given an initial state |ψ0⟩, we can solve Equation (4) to determine the state vector at time

t

|ψt⟩ = e−iHt |ψ0⟩ . (5)

By analogy with the case of a particle moving in an empty space with zero potential energy,

it is common practice to choose the Laplacian matrix as the system Hamiltonian, i.e., H = L.

However, any Hermitian operator encoding the structure of the graph, such as the adjacency

matrix of the graph, can be chosen as an alternative.

Note that in the quantum case the evolution of the state vector of the walker is governed

by a complex valued unitary matrix. Hence the evolution of the quantum walk is reversible,

implying that quantum walks are non-ergodic and do not possess a limiting distribution.

This is in stark contrast to the classical case, where the dynamics of the walk is governed by

a stochastic matrix. As a result of the unitary evolution and the complex valued nature of

the amplitude vector, the behaviour of classical and quantum walks differs significantly, and

quantum walks possess a number of interesting properties not exhibited by classical random

walks.

Finally, note that we can rewrite Eq. 5 as follows. Let us compute the spectral decompo-

sition of the Hamiltonian H = ΦΛΦ
⊤, where Φ is the n× n matrix Φ = (φ1|φ2|...|φj|...|φn)

with the ordered eigenvectors φjs of H as columns and Λ = diag(λ1,λ2, ...,λj, ...,λn) is the

n× n diagonal matrix with the ordered eigenvalues λj of H as elements. Using the spectral

decomposition of the Hamiltonian and the fact that exp[−iHt] = Φexp[−iΛt]Φ⊤ we can

then write

|ψt⟩ = Φe−iΛt
Φ

⊤ |ψ0⟩ . (6)
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III. QUANTUM JENSEN-SHANNON DIVERGENCE

The observation process for a quantum system is defined in terms of projections onto or-

thogonal subspaces associated with operators on the quantum state space called observables.

Let O be an observable of the system, with spectral decomposition

O =
∑

i

aiPi (7)

where the ai are the (distinct) eigenvalues of O and the Pi the orthogonal projectors onto

the corresponding eigenspaces. The outcome of an observation, or projective measurement,

of a quantum state |ψ⟩ is one of the eigenvalues ai of O, and it has probability

P (ai) = ⟨ψ|Pi |ψ⟩ (8)

After the measurement, the state of the quantum systems becomes

∣

∣ψ̄
〉

=
Pi |ψ⟩

||Pi |ψ⟩ ||
, (9)

where || |ψ⟩ || =
√

⟨ψ |ψ⟩ is the norm of the vector |ψ⟩.
The density operator (or density matrix) is introduced in quantum mechanics to describe

a system whose state is an ensemble of pure quantum states |ψi⟩, each with probability pi.

The density operator of such a system is defined as

ρ =
∑

i

pi |ψi⟩ ⟨ψi| . (10)

Density operators are positive unit-trace matrices that play an important role in the quantum

observation process. In fact, The expectation value of the measurement can be calculated

from the density matrix ρ:

⟨O⟩ = tr (ρO) , (11)

where tr is the trace operator. Similarly, the observation probability of ai can be expressed

in terms of the density matrix ρ as

P (ai) = tr(ρPi) (12)

where the corresponding density operator after the measurement has taken place will be

ρ′ =
∑

i

PiρPi (13)
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The von Neumann entropy34 HN of a mixture is defined in terms of the trace and loga-

rithm of the density operator ρ

HN = − tr(ρ log ρ) = −
∑

i

ξi ln ξi (14)

where ξ1, . . . , ξn are the eigenvalues of ρ. If ⟨ψi| ρ |ψi⟩ = 1, i.e., the quantum system is a pure

state |ψi⟩ with probability pi = 1, then the Von Neumann entropy HN(ρ) = − tr(ρ log ρ) is

zero. On other hand, for a mixed state described by the density operator σ we have a non

zero Von Neumann entropy associated with it.

With the Von Neumann entropy to hand, the quantum Jensen-Shannon divergence be-

tween two density operators ρ and σ is defined as

DJS(ρ, σ) = HN

(ρ+ σ

2

)

− 1

2
HN(ρ)−

1

2
HN(σ) (15)

This quantity is always well defined, symmetric and positive definite.

It can also be shown that DJS(ρ, σ) is bounded, i.e., 0 ≤ DJS(ρ, σ) ≤ 1. Let ρ =
∑

i piρi

be a mixture of quantum states ρi, with pi ∈ R+ such that
∑

i pi = 1, then one can prove

that

HN(
∑

i

piρi) ≤ HS(pi) +
∑

i

piHN(ρi) (16)

where HS indicates the Shannon entropy and the equality is attained if and only if the states

ρi have support on orthogonal subspaces. By setting p1 = p2 = 0.5, we see that

DJS(ρ, σ) = HN

(ρ+ σ

2

)

− 1

2
HN(ρ)−

1

2
HN(σ) ≤ 1 (17)

Hence DJS is always less than or equal to 1, and the equality is attained only if ρ and σ

have support on orthogonal subspaces.

Our interest in the quantum Jensen-Shannon divergence lies in the fact that it verifies sev-

eral interesting properties which are required for a good distinguishability measure between

quantum states27,28. The distinguishability problem is of central importance in quantum

mechanics, and it is related to the concept of distance between states. In the work of Woot-

ters35, the distance between two states |φ⟩ and |ψ⟩ of the same physical system is computed

by enumerating the distinguishable states between |φ⟩ and |ψ⟩. It turns out that Wootters’

work is fundamentally based on the extension of a distance over the space of probability

distributions to the Hilbert space of pure quantum states. Similarly, the relative entropy36
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FIG. 1. Given two graphs G1(V1, E1) and G2(V2, E2) we construct a new graph G = (V, E) where

V = V1 ∪ V2, E = E1 ∪ E2 and we add a new edge (u, v) between each pair of nodes u ∈ V1 and

v ∈ V2.

generalizes to the quantum world the information theoretic Kullback-Leibler divergence.

However, the relative entropy is neither a distance, as it is not symmetric, nor does it satisfy

the triangle inequality, and, most importantly, it is unbounded.

On the other hand, the QJSD between two pure states has been proved to be the square

of a metric28, while for the case of mixed states there is strong numerical evidence that this

is also the case. Note that alternative metrics have been proposed in the literature, such as

the Bures distance37, which is defined as

B(ρ, σ) =
√
2
[

1− tr
(

(ρ1/2σρ1/2)1/2
)]1/2

. (18)

The Bures distance and the QJSD require the same number of observations, as they both

need the full density matrices to be computed. However, the QJSD turns out to be faster

to compute than the Bures distance. In fact, the latter involves taking the square root of

matrices, usually computed through matrix diagonalization which scales as O(n3), where n

is the number of vertices in the graph. On the other hand, to compute the QJSD only the

eigenvalues of ρ, σ and ρ+σ

2
are needed, which can be computed in O(n2).

IV. THE QJSD KERNEL

Let G1(V1, E1) and G2(V2, E2) be two unattributed graphs, i.e., graphs with no attributes

or features attached to their nodes and edges. Given G1 and G2, we build a new graph

G = (V, E) where V = V1∪V2, E = E1∪E2 ∪E12, and (u, v) ∈ E12 only if u ∈ V1 and v ∈ V2

(see Fig. 1 for an example). With this new structure to hand, we define two independent

continuous-time quantum walks with starting states

∣

∣ψ−

0

〉

=

∑

u∈V1
du |u⟩ −

∑

v∈V2
dv |v⟩

C

∣

∣ψ+
0

〉

=

∑

u∈V du |u⟩
C

(19)
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where the basis state corresponding to the walk being at vertex v ∈ V is denoted as |v⟩, dv
denotes the degree of vertex v, and C is the normalisation constant such that the probabilities

sum to one. Intuitively, we set the initial amplitude on the nodes of G1 and G2 to be

respectively in antiphase and in phase. That is, we design the initial states of the walks so

as to highlight the presence of destructive and constructive interference patterns.

We let the two quantum walks evolve under Eq. 5 until a time T and we define the average

density operators ρ−T and ρ+T as

ρ−T =
1

T

∫ T

0

∣

∣ψ−

t

〉 〈

ψ−

t

∣

∣ dt ρ+T =
1

T

∫ T

0

∣

∣ψ+
t

〉 〈

ψ+
t

∣

∣ dt (20)

In other words, we define two mixed systems with equal probability of being in any of the

pure states defined by the quantum walks evolutions.

The rationale behind the proposed approach is that, whenever G1 and G2 are isomor-

phic, the distinguishability between the two states ρ−T and ρ+T , which emphasize respectively

destructive and constructive interference, will be maximal. In other words, we design an

experiment where the starting states are orthogonal and remain orthogonal during the quan-

tum walk evolution, provided that G1 and G2 are isomorphic. Thus, given two unattributed

graphs G1 and G2, we define the quantum Jensen-Shannon kernel kT (G1, G2) between them

as

kT (G1, G2) = DJS(ρ
−

T , ρ
+
T ) (21)

where ρ−T and ρ+T are the density operators defined as in Eq. 20. Note that this kernel is

parametrised by the time T . As we will show in the next sections, the choice of the time

parameter can affect both the computational complexity of the kernel and its classification

accuracy. Finally, recall that in Eq. 19 we defined the initial state to be proportional to the

nodes degree in the original graphs. As a consequence, the kernel is not defined on graphs

G = (V,E) with E = ∅, i.e., completely disconnected graphs.

Note that the proposed setting is significantly different from that of the classical Jensen-

Shannon kernel of Bai and Hancock11. In fact, in11 the authors need to construct a product

graph from the two input graphs in order to compute the composite entropy of the system,

whereas in our case this is not necessary. In32 Bai et al. propose a quantum version of the

classical JS kernel, however in order to guarantee the permutational invariance the authors

need to compute the optimal alignment between the input graphs before the analysis can

even commence. In our case, on the other hand, this problem is overcome by allowing the
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quantum walks to take place over the same merged structure and naturally measuring the

similarity between the original graphs using the interference effects of quantum walks.

A. Kernel Computation

In this subsection we evaluate the computational complexity of the kernel. In particular,

we show that the solution to Eq. 20 can be computed analytically. Define Pλ =
∑µ(λ)

k=1 φλ,kφ
⊤
λ,k

to be the projection operator on the subspace spanned by the µ(λ) eigenvectors φλ,k associ-

ated with the eigenvalue λ ∈ Λ, where Λ is the set of eigenvalues of the Hamiltonian. Given

this set of projectors, the unitary operator inducing the quantum walk can be rewritten as

U t =
∑

λ

e−iλtPλ (22)

Recall that |ψt⟩ = U t |ψ0⟩. Given Eq. 22 we can express the density matrix at time t in

terms of the projectors Pλ, i.e.,

ρt = U tρ0(U
t)† =

∑

λ1∈Λ

∑

λ2∈Λ

e−i(λ1−λ2)tPλ1
ρ0P

⊤

λ2
(23)

As a consequence, we can reformulate Eq. 20 as

ρT =
∑

λ1∈Λ

∑

λ2∈Λ

Pλ1
ρ0P

⊤

λ2

1

T

∫ T

0

e−i(λ1−λ2)t dt (24)

The integral in Eq. 24 can be solved yielding

ρT =
∑

λ1∈Λ

∑

λ2∈Λ

Pλ1
ρ0P

⊤

λ2

i(1 − eiT (λ2−λ1))

T (λ2 − λ1)
(25)

Letting T → ∞, the integral in Eq. 24 reduces to the Dirac delta function δ(λ1−λ2). Hence,

Eq. 24 simplifies to

ρ∞ =
∑

λ∈Λ̃

Pλρ0P
⊤

λ (26)

where Λ̃ is the set of distinct eigenvalues of the Hamiltonian, i.e., the eigenvalues λ with

multiplicity µ(λ) = 1. Finally, along the same lines of Rossi et al.25, one can show that as a

consequence of Eq. 26 the infinite-time limit of the average density matrix commutes with

the Hamiltonian H, and thus the complexity of computing the Von Neumann entropy of ρ∞,

i.e. the Shannon entropy of its eigenvalues, is O
(
∑

λ∈Λ̃ µ(λ)
2
)

, where µ(λ) is the multiplicity
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of the eigenvalue λ. As a consequence, we have that the complexity of computing the QJSD

kernel with T → ∞ is upper bounded by that of computing the eigendecomposition of H,

i.e., O(|V|3). In the following sections, unless otherwise stated, we will assume that the

kernel is computed for T → ∞.

B. Kernel Properties

We now proceed to show some interesting properties of the QJSD kernel. First, however,

we need to prove the following

Lemma 1. If G1 and G2 are two isomorphic graphs, then ρ−T and ρ+T have support on

orthogonal subspaces.

Proof. We need to prove that

(ρ−T )
†ρ+T =

1

T 2

∫ T

0

ρ−t1 dt1

∫ T

0

ρ+t2 dt2 = 0 (27)

where 0 is the matrix of all zeros, ρ−t1 =
∣

∣ψ−

t1

〉 〈

ψ−

t1

∣

∣ and ρ+t2 =
∣

∣ψ+
t2

〉 〈

ψ+
t2

∣

∣. Note that if

(ρ−t1)
†ρ+t2 = 0 for every t1 and t2, then (ρ−T )

†ρ+T = 0. We now prove that if G1 is isomorphic

to G2 then
〈

ψ−

t1

∣

∣ψ+
t2

〉

= 0 for every t1 and t2. If t1 = t2 = t, then

〈

ψ−

0

∣

∣ (U t)†U t
∣

∣ψ+
0

〉

= 0 (28)

since (U t)†U t is the identity matrix and the initial states are orthogonal by construction.

On the other hand, if t1 ̸= t2, we have

〈

ψ−

0

∣

∣U∆t
∣

∣ψ+
0

〉

= 0 (29)

where ∆t = t2 − t1. Let α
+
u denote the amplitude of

∣

∣ψ+
0

〉

at node u. To conclude the proof

we rewrite the previous equation as

〈

ψ−

0

∣

∣U∆t
∣

∣ψ+
0

〉

=
∑

u∈V

α−

u

∑

v∈V

α+
v U

∆t
vu

=
∑

u1∈V1

α+
u1

∑

v1∈V

α+
v1
U∆t
v1u1

−
∑

u2∈V2

α+
u2

∑

v2∈V

α+
v2
U∆t
v2u2

= 0 (30)
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where we denote by U∆t
uv the element of the matrix U∆t corresponding to the pair of

vertices u and v. Recall that two graphs G1(V1, E1) and G2(V2, E2) are isomorphic if there

exists a bijection f between the elements of V1 and V2 such that (u, v) ∈ E1 if and only if

(f(u), f(v)) ∈ E2. To see that Eq. 30 holds, we start by noting that U∆t is a symmetric

matrix and it is invariant to graph symmetries25. That is, if f(u1) = u2 and f(v1) = v2,

then U∆t
u1v1 = U∆t

u2v2 . Moreover, if G1 and G2 are isomorphic then α+
u1

= α+
f(u1)

. Thus, it

follows that in Eq. 30 each term α+
u1
α+
v1
U∆t
v1u1

cancels out with a term α+
f(u1)

α+
f(v1)

U∆t
f(v1)f(u1)

,

∀u1 ∈ U1, v1 ∈ V.

Corollary 1. Given a pair of graphs G1 and G2, the kernel satisfies the following properties:

1) 0 ≤ k(G1, G2) ≤ 1 and 2) if G1 and G2 are isomorphic, then k(G1, G2) = 1.

Proof. The first property is trivially proved by noting that, according to Eq. 21, the kernel

between G1 and G2 is defined as the quantum Jensen-Shannon divergence between two

density operators, and then recalling that the value of quantum Jensen-Shannon divergence

is bounded to lie between 0 and 1.

The second property follows again from Eq. 21 and Lemma 1. In other words, if the

density operators have support on orthogonal spaces then the quantum Jensen-Shannon

divergence reaches its maximum value. To see this, it is sufficient to note that from (ρ−T )
†ρ+T =

0 it follows that the set of eigenvalues of
ρ−
T
+ρ+

T

2
is

Λ(
ρ−T + ρ+T

2
) =

{

λ

2
|λ ∈ Λ(ρ+T ) ∪ Λ(ρ−T )

}

,

where Λ(ρ+T ) and Λ(ρ−T ) denote the set of eigenvalues of ρ+T and ρ−T , respectively. Let λ+ ∈
Λ(ρ+T ) and λ− ∈ Λ(ρ−T ). Then, the Von Neumann entropy of

ρ−
T
+ρ+

T

2
is

HN(
ρ−T + ρ+T

2
) = −

∑

λ+∈Λ(ρ+
T
)

λ+

2
log

λ+

2
−

∑

λ−∈Λ(ρ−
T
)

λ−

2
log

λ−

2

= −1

2

∑

λ+∈Λ(ρ+
T
)

λ+ log λ+ − 1

2

∑

λ−∈Λ(ρ−
T
)

λ− log λ− + 1

=
1

2
HN(ρ

+
T ) +

1

2
HN(ρ

−

T ) + 1 (31)

and, as a consequence, DJS(ρ
−

T , ρ
+
T ) = 1.

Unfortunately, we are currently unable to provide a formal proof of the positive semidefi-

niteness of our kernel, although we give empirical evidence of this in the experimental section.
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Some potentially useful results can be found in the work of Briet et al.38, where the authors

prove that the classical Jensen-Shannon divergence and its quantum mechanical counter-

part can be used as negative semidefinite kernels between probability distributions and pure

quantum states, respectively. Note that because of how we set up our experiment the more

divergent (i.e., dissimilar) are ρ−T and ρ+T , the more similar are the input graphs. Recall

that whenever G1 and G2 are isomorphic, then the states of the walks remain orthogonal

during the entire evolution process. Thus, the negative semidefiniteness of the QJSD kernel

between quantum states implies positive semidefiniteness of the kernel between graphs.

In order to shed light onto the general behaviour of the kernel, we now analyze the

special case in which we use the Laplacian of the merged graph as the Hamiltonian for the

quantum walk. Under these assumptions, we can express the Hamiltonian H in terms of the

Laplacians L1 and L2 of graphs G1 and G2 respectively:

H =

⎛

⎝

L1 + nIm −1m1
T
n

−1n1
T
m L2 +mIn

⎞

⎠ (32)

where m and n are the sizes of graphs G1 and G2 respectively, In denotes a n× n identity

matrix, and 1n is an n-dimensional vector with all unit entries.

Recall that a graph Laplacian has a single all ones eigenvector with unit constant el-

ements, corresponding to a zero eigenvalue. All the remaining eigenvectors have elements

that sum to zero. Let |φ⟩ be a non-constant eigenvector of L1 of eigenvalue λ, and |χ⟩ a non-

constant eigenvector of L2 of eigenvalue µ. It is easy to show that the vectors φ̄ = (φT , 0T
n)

T

and χ̄ = (0T
m,χ

T )T are eigenvectors of H, where 0n is the vector composed of n zeros, and

φ̄ and χ̄ are obtained by adding n trailing zeros to φ and m leading zeros to χ respectively.

In fact:

Hφ̄ =

⎛

⎝

L1 + nIm −1m1
T
n

−1n1
T
m L2 +mIn

⎞

⎠

⎛

⎝

φ

0n

⎞

⎠ =

⎛

⎝

(λ+ n)φ+ 0m

0n + 0n

⎞

⎠ = (λ+ n)φ̄ ; (33)

Hχ̄ =

⎛

⎝

L1 + nIm −1m1
T
n

−1n1
T
m L2 +mIn

⎞

⎠

⎛

⎝

0m

χ

⎞

⎠ =

⎛

⎝

0m + 0m

0n + (µ+m)χ

⎞

⎠ = (µ+ n)χ̄ . (34)

This characterizes m + n − 2 eigenvectors of H. The remaining two eigenvectors are
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(1T
m, 1

T
n) with eigenvalue 0, and (n1T

m,−m1T
n )

T with eigenvalue m+ n:

⎛

⎝

L1 + nIm −1m1
T
n

−1n1
T
m L2 +mIn

⎞

⎠

⎛

⎝

1m

1n

⎞

⎠ =

⎛

⎝

n1m − n1m

−m1n +m1n

⎞

⎠ = 0n+m ; (35)

⎛

⎝

L1 + nIm −1m1
T
n

−1n1
T
m L2 +mIn

⎞

⎠

⎛

⎝

n1m

−m1n

⎞

⎠ =

⎛

⎝

n21m + nm1m

−nm1n −m21n

⎞

⎠ = (m+ n)

⎛

⎝

n1m

−m1n

⎞

⎠ .(36)

Note that m+ n is an upper bound for an eigenvalue of the Laplacian of a graph of size

m + n, and it is reached only if G1 and G2 have nodes that are connected to every other

node in the graph, while the eigenvalue 0 is isolated as the merged graph is connected. In

this analysis we will ignore the possibility of multiple m + n eigenvectors and will assume

that there is no node connected to every other node. However, even with these restrictions,

the analysis will be sufficient to draw some conclusions that apply in the general case as

well.

With the decomposition of the Hamiltonian to hand, we can compute the infinite-time

average density matrix analytically. In fact, let P 1
λ be the projection onto the eigenspace

corresponding to eigenvalue λ of graph G1 and, equivalently, P 2
µ be the projector onto the

µ eigenspace of graph G2. Further, let P̄ 1
λ and P̄ 2

µ be the extension of the projector on the

merged graph, and

P̄0 =

∣

∣(1T
m, 1

T
n )

R
〉 〈

(1T
m, 1

T
n )

T
∣

∣

m+ n
P̄m+n =

∣

∣(n1T
m,−m1T

n )
T
〉 〈

(n1T
m,−m1T

n )
T
∣

∣

mn(m+ n)

be the projectors onto the 0 and m+n eigenspaces of the merged graph. Let us now define

the following sets of eigenvalues of the merged graph:

Λ1\2 = {λ ∈ Λ̃(G1) \ {0} | ∀µ ∈ Λ̃(G2) \ 0, λ+ n ̸= µ+m} (37)

Λ2\1 = {µ ∈ Λ̃(G2) \ {0} | ∀λ ∈ Λ̃(G1) \ 0, λ+ n ̸= µ+m} (38)

Λ1∩2 = {λ ∈ Λ̃(G1) \ {0} | ∃µ ∈ Λ̃(G2) \ 0, λ+ n = µ+m} (39)

Further, let φ0 and χ0 be the restrictions of the initial pure state onto G1 and G2 respectively,

then we have ρ+0 =
∣

∣(φT
0 ,χ

T
0 )

T
〉 〈

(φT
0 ,χ

T
0 )

T
∣

∣ and ρ−0 =
∣

∣(φT
0 ,−χT

0 )
T
〉 〈

(φT
0 ,−χT

0 )
T
∣

∣.
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From Eq. 26, we have:

ρ+∞ =
∑

λ∈Λ1\2

P̄ 1
λρ

+
0 P̄

1
λ +

∑

µ∈Λ1\2

P̄ 2
µρ

+
0 P̄

2
µ +

∑

λ∈Λ1∩2

(P̄ 1
λ + P̄ 2

µ)ρ
+
0 (P̄

1
λ + P̄ 2

µ) (40)

+P̄0ρ
+
0 P̄0 + P̄m+nρ

+
0 P̄m+n

=
∑

λ∈Λ̃(G1)\{0}

∣

∣((P 1
λφ0)

T , 0T
n)

T
〉 〈

((P 1
λφ0)

T , 0T
n )

T
∣

∣+
∑

µ∈Λ̃(G2)\{0}

∣

∣(0T
m, (P

2
µχ0)

T )T
〉 〈

(0T
m, (P

2
µχ0)

T )T
∣

∣

+
∑

λ∈Λ1∩2

(

∣

∣((P 1
λφ0)

T , 0T
n )

T
〉 〈

(0T
m, (P

2
µχ0)

T )T
∣

∣ +
∣

∣(0T
m, (P

2
µχ0)

T )T
〉 〈

((P 1
λφ0)

T , 0T
n )

T
∣

∣

)

+

(

⟨1m |φ0⟩2
m+ n

+
⟨1n |χ0⟩2
m+ n

+ 2
⟨1m | φ0⟩ ⟨1n |χ0⟩

m+ n

)

P̄0

+

(

n

m

⟨1m |φ0⟩2
(m+ n)

+
m

n

⟨1n |χ0⟩2
(m+ n)

− 2
⟨1m |φ0⟩ ⟨1n |χ0⟩

(m+ n)

)

P̄m+n

and, symmetrically

ρ−∞ =
∑

λ∈Λ̃(G1)\{0}

∣

∣((P 1
λφ0)

T , 0T
n)

T
〉 〈

((P 1
λφ0)

T , 0T
n )

T
∣

∣ (41)

+
∑

µ∈Λ̃(G2)\{0}

∣

∣(0T
m, (P

2
µχ0)

T )T
〉 〈

(0t
m, (P

2
µχ0)

T )T
∣

∣

−
∑

λ∈Λ1∩2

(

∣

∣((P 1
λφ0)

T , 0T
n )

T
〉 〈

(0T
m, (P

2
µχ0)

T )T
∣

∣+
∣

∣(0T
m, (P

2
µχ0)

T )T
〉 〈

((P 1
λφ0)

T , 0T
n )

T
∣

∣

)

+

(

⟨1m | φ0⟩2
m+ n

+
⟨1n |χ0⟩2
m+ n

− 2
⟨1m |φ0⟩ ⟨1n |χ0⟩

m+ n

)

P̄0

+

(

n

m

⟨1m |φ0⟩2
(m+ n)

+
m

n

⟨1n |χ0⟩2
(m+ n)

+ 2
⟨1m |φ0⟩ ⟨1n |χ0⟩

(m+ n)

)

P̄m+n

Hence, for the mixed density matrix, we have

ρ+∞ + ρ−∞
2

=
∑

λ∈Λ̃(G1)\{0}

∣

∣((P 1
λφ0)

T , 0T
n )

T
〉 〈

((P 1
λφ0)

T , 0T
n)

T
∣

∣ (42)

+
∑

µ∈Λ̃(G2)\{0}

∣

∣(0T
m, (P

2
µχ0)

T )T
〉 〈

(0T
m, (P

2
µχ0)

T )T
∣

∣

+

(

⟨1m |φ0⟩2
m+ n

+
⟨1n |χ0⟩2
m+ n

)

P̄0 +

(

n

m

⟨1m |φ0⟩2
(m+ n)

+
m

n

⟨1n |χ0⟩2
(m+ n)

)

P̄m+n

From these equations we can see that there are two sources for the differences between

ρ+∞ and ρ−∞. The first is in the interference in the eigenspaces associated with the 0 and

n+m eigenvalues of the Hamiltonian resulting in a movement of a component of magnitude
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Datasets MUTAG PPI PTC COIL Shock

Max # vertices 28 232 109 241 33

Min # vertices 10 3 2 72 4

Avg # vertices 17.93 109.60 25.56 144.97 13.16

# graphs 188 86 344 360 150

# classes 2 2 2 5 10

TABLE I. Information on the graph datasets

2
m+n

⟨1m |φ0⟩ ⟨1n |χ0⟩ from one space to the other, and is thus linked with the average degree

of the two graphs. The second is associated with a form of size-adjusted cospectrality, i.e.,

the situation in which λ + n = µ + m holds. In this situation, graphs with disjoint size-

adjusted spectrum will have minimal values of the kernel.

In the situation of a general Hamiltonian, we cannot provide such a detailed result.

However, we note that the situation that allows for differences between ρ+∞ and ρ−∞ arises

when the support of the eigenspaces of the Hamiltonian span both graphs, and in that sense,

the kernel measures the extent to which the eigenspaces of the Hamiltonian simultaneously

span both graphs.

V. EXPERIMENTAL RESULTS

In this Section we measure the performance of the QJSD kernel in a classification task.

More specifically, we make use of the following five different standard graph datasets:

MUTAG: This is a dataset of 188 chemical compounds labeled according to whether or not

they affect the frequency of genetic mutations on the bacterium Salmonella typhimurium39.

PPIs: The PPIs dataset consists of protein-protein interaction networks (PPIs)40. The

nodes of the graphs correspond to proteins, and two nodes are connected if they have a

direct (physical) or indirect (functional) association. The original dataset consists of 219

PPIs collected from 5 different kinds of bacteria. More specifically, there are 8 PPIs from

Aquifex aelicus and Thermotoga maritima, Gram-Positive 52 PPIs from Staphylococcus au-

reus, Cyanobacteria 73 PPIs from Anabaena variabilis and Proteobacteria 40 PPIs from

Acidovorax avenae. There is an additional class (Acidobacteria 46 PPIs) which is more con-

troversial in terms of the bacterial evolution since they were discovered. Here we consider

18



the task of discriminating among the 40 PPIs from Acidovorax avenae and the 46 PPIs from

Acidobacteria.

PTC: The Predictive Toxicology Challenge dataset (PTC) records the carcinogenicity of

several hundred chemical compounds for male rats (MR), female rats (FR), male mice (MM)

and female mice (FM)41. For our experiments we select the graphs of male rats (MR). There

are a total of 344 graphs in the MR class, with the smallest one having only 2 nodes and

the largest one having 109 nodes.

COIL5: The COIL database consists of images of 100 objects42. In our experiments, we

use the images for the first five objects. For each of these objects we consider 72 images

from different viewpoints. Each image is converted into a graph by computing the Delaunay

triangulation of the set of corner points extracted using the Harris detector.

Shock: The Shock dataset consists of graphs from a database of 2D shapes43. Each graph

is a medial axis-based representation of the differential structure of the boundary of a 2D

shape. There are 150 graphs divided into 10 classes, each containing 15 graphs.

To these real-world datasets we add a set of 30 synthetically generated graphs belonging to

3 different classes, where the graphs belonging to each class were sampled from a generative

model with 12, 14 and 16 nodes, respectively. Here a generative model consists of a graph

where each node and edge is labelled with the probability of observing that node and edge,

respectively. Details concerning the generative model can be found in44.

We use a binary C-Support Vector Machine (C-SVM) to test the efficacy of the QJSD

kernel45. More specifically, we perform 10-fold cross validation, where for each sample we

independently tune the value of C, the SVM regularizer constant, by considering the training

data from that sample. The process is averaged over 100 random partitions of the data, and

the results are reported in terms of average accuracy ± standard error.

Furthermore, we compare the performance of the kernel with that of a number of well-

known alternative graph kernels, namely the shortest-path kernel9, the classic random walk

kernel8, the graphlet kernel10 and the the Weisfeiler-Lehman subtree kernel46, where here a

graphlet refers to a subgraph with k ∈ {3, 4, 5} nodes.

With the exception of the Weisfeiler-Lehman kernel, all the kernels examined in these

experiments do not take graph attributes into account. In the case of the Weisfeiler-Lehman,

however, each node is labeled with its degree. As for the maximum subtree height h, in our

experiments we let h = {1 · · ·3} and we choose the optimal value by cross-validation46.
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FIG. 2. (Color online) Two-dimensional MDS embeddings of the synthetic data, where the elements

of the three classes are indicated by blue circles, red up triangles, and green down triangles,

respectively. Here the axes correspond to the embedding dimensions given by the two largest

eigenvalues of the similarity matrix M = −1
2HDH, where the distance matrix D denotes a) the

edit distance, b) the distance between the graph spectra and c) the QJSD kernel, respectively.

Finally, note that the implementation of the graphlet kernel used in this paper counts the

instances of graphlets of size 3.

Fig. 2 shows Multidimensional Scaling (MDS)47 embeddings of the synthetic graphs.

MDS is a standard approach for linear dimensionality reduction which aims at locating the

low-dimensional embedding into a vector space that best preserves the interpoint distances

given by a distance matrix D. To this end, the matrix M = −1
2
HDH is first computed,

where H = I − 1
n
11⊤ is the centering matrix, 1 denotes the m-dimensional vector of all

ones and n is the number of points to embed. Then, for each embedded point the j-th

coordinate is determined by the j-th eigenvector and the j-th eigenvalue of M , where the

eigenvalues are sorted in decreasing order. Let K denote the QJSD kernel over the set of

synthetic graphs, where the ij-the element of K is denoted as kij , i.e., kij is the kernel

value between graph i and graph j. We then compute the distance matrix D = (dij) with

dij =
√

kii + kjj − 2kij = 2(1 − kij) to which we apply MDS to identify the principal

axes of structural variation represented by the similarity data. Note that here we set the

Hamiltonian to be the Adjacency matrix of the graph. We then compare the resulting

embedding with those obtained starting from the edit distance matrix48 and the graph

spectra distance matrix. Given a set of permitted edit operations, i.e., addition or deletion

of a vertex or an edge of a graph, the edit distance between two graphs is defined as the

least-cost edit operations sequence needed that transforms a graph into another one49. To
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FIG. 3. The average classification accuracy (± standard error, dashed line) as a function of the

stopping time T . Here the dark grey and light grey lines refer to the case in which the Hamiltonian

is the adjacency and Laplacian matrix, respectively, and the horizontal line shows the classification

accuracy when T → ∞.

compute the distance between the graph spectra, on the other hand, we adopt the following

procedure. For each graph G with adjacency matrix A, we compute the column vector sG of

the ordered eigenvalues of A. As the graphs are of different sizes and thus their spectra are

of different lengths, the vectors are all made to be the same length by padding zeros to the

end of the shorter vector. The (i, j)-th element of the distance matrix is then dij = ||si−si||.

Fig. 2 from left to right shows the MDS embeddings associated with a) the edit distance,

b) the distance between the graph spectra and c) the QJSD kernel, respectively. Compared

to the distance between the graph spectra, the QJSD kernel provides a clearer separation

between the different classes. This in turn suggests that the Hilbert space induced by the

QJSD kernel efficiently captures the class separation of the dataset. Finally, note that

while the edit distance also yields a good class separation, it requires computing a mapping

between the node sets of the graphs. This in turn is know to be a particularly hard task,

due to the combinatorial nature of the problem.

We now evaluate how the accuracy of the QJSD kernel varies as we let the quantum walks

evolve for longer times T . Recall that the value of the QJSD kernel depends on the choice of

the stopping time of the quantum walks. In the previous section, we showed that in the large

time limit the density matrix of the quantum walk commutes with the Hamiltonian, and

thus the value of the QJSD kernel can be readily computed given the eigendecomposition

of H. This reduced computational complexity in turn motivates the choice of T → ∞.

However, as seen in Fig. 3, this does not necessarily coincide with the optimal time, i.e., the
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time that leads to the highest classification performance. Recall that in a classification task

we can measure the performance of a classifier in terms of classification accuracy. This is

defined as the fraction of the data instances that are assigned the correct class label, where

in our case a data instance corresponds to a graph. Here we plot the average classification

accuracy (± standard error) for the QJSD kernel as a function of the time parameter T on

the MUTAG, PTC and Shock datasets, where the Hamiltonian is chosen to be either the

adjacency matrix or the Laplacian. Note that these three datasets are the only ones that

allow us to perform an extensive analysis of the parameters. The plots show that almost

invariably the accuracy is reaching a maximum before stabilizing around a limit.

Interestingly, for the MUTAG and Shock datasets, when we take the adjacency matrix

as the Hamiltonian the maximum accuracy is achieved for a time T which is of the same

order of magnitude of the average graph size in the dataset. However, the same does not

hold for the PTC dataset, where we note that the graph size shows a larger variability.

Future work will try to identify a possible connection between this observed behaviour and

the average mixing time of the continuous-time quantum walks on the graphs. Note also

that for the PTC dataset the best classification accuracy is achieved when the Laplacian

is the Hamiltonian of the system. In the Shock dataset, on the other hand, in the large

time limit the adjacency based QJSD kernel outperforms the Laplacian based one, while

the maximum accuracy of the Laplacian based QJSD kernel equals that of the adjacency

based one. Finally, note that with the exception of the PTC dataset, the difference between

the asymptote and the peak is relatively small, albeit statistically significant. This in turn

suggests that the choice of T → ∞ produces a classification accuracy close to the optimum.

Finally, we report the average classification accuracies (± standard error) of the different

kernels in Table II. We evaluate the accuracy of the QJSD kernel for different choices of

the time T and of the Hamiltonian. More specifically, we let the Hamiltonian be either the

adjacency or the Laplacian matrix, and the time be either the optimal one or T → ∞. We

select the value of T through an exhaustive search, where the optimal value is chosen by

cross-validation on the training set. Here we let T vary logarithmically between 1 and 106,

which is indeed computationally very expensive. However, at the present moment we do not

have any exact or even heuristic criterion to reduce the search space, and future work will

be aimed at this. As shown in Table II, in fact, we were able to complete the simulation

only on the MUTAG and Shock datasets. Interestingly, in both cases we achieved the best
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Kernel MUTAG PPI PTC Shock COIL5

QJSDA 87.41 ± 0.18 75.90 ± 0.39 56.38 ± 0.15 40.70 ± 0.21 69.17 ± 0.11

QJSDL 86.16 ± 0.19 71.26 ± 0.46 58.76± 0.17 33.96 ± 0.24 69.80± 0.10

QJSD∗
A 88.81± 0.17 - - 44.21± 0.22 -

QJSD∗
L 86.56 ± 0.20 - - 44.12 ± 0.20 -

SP 83.02 ± 0.21 63.81 ± 0.39 56.07 ± 0.13 38.50 ± 0.16 69.44 ± 0.16

RW 66.41 ± 0.07 51.21 ± 0.37 55.79 ± 0.03 0.41 ± 0.05 12.11 ± 0.10

GR3 81.31 ± 0.20 49.96 ± 0.43 55.41 ± 0.08 26.05 ± 0.32 66.62 ± 0.15

WL 84.54 ± 0.26 82.81± 0.41 55.66 ± 0.19 37.68 ± 0.24 31.59 ± 0.21

TABLE II. Classification accuracy (± standard error) on unattributed graph datasets. QJSDH is

the QJSD kernel, where H denotes the Hamiltonian, i.e., adjacency matrix (A) or Laplacian (L),

SP is the shortest-path kernel9, RW is the random walk kernel8, GR3 denotes the graphlet kernel
10

computed using all graphlets of size 3, while WL is the Weisfeiler-Lehman subtree kernel46. We

also denote by QJSD∗
H the optimal QJSD kernel (with respect to the time) with Hamiltonian H.

performance by fine tuning the value of T . With respect to the Hamiltonian, we observe

once again that the adjacency matrix is not always the best choice. Generally, however, the

QJSD kernel obtains a classification accuracy which is better than or sometimes comparable

to that of the other kernels, regardless of the how we set T and H.

In terms of computational complexity, recall that, for each pair of graphs G1(V1, E1)

and G2(V2, E2), we need to compute the complete eigendecomposition of the merged graph

G = (V, E). For the sake of clarity, let us assume that we are given a dataset of N graphs

each with |V | nodes. When the Hamiltonian is the adjacency matrix, we need to explicitly

compute the eigendecomposition of the merged graph for each pair of input graphs, and thus

the overall complexity is O(N2|V |3). However, when the Hamiltonian is the graph Laplacian,

it is possible to precompute the eigendecomposition of the individual graphs, thus lowering

the overall complexity to O(N |V |3). Similarly, the most efficient implementations of the

shortest-path kernel and the graphlet kernel10,46 with graphlets of size 3 scale as O(N |V |3).

The random walk kernel50, on the other hand, scales as O(N2|V |3)), while the Weisfeiler-

Lehman subtree kernel46 scales as O(h|V |2N2), with h denoting the maximum height of the
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subtrees.

VI. CONCLUSIONS

Graph-based representations are widely used as a powerful tool for modeling and analyz-

ing real-world complex systems. However, the rich expressiveness of graphs poses a number

of problems when the application of pattern recognition and machine learning techniques is

considered. Although kernel methods provide a way to shift this representational problem,

the design of novel and efficient graph kernels remains an open challenge. In this paper, we

proposed a quantum inspired kernel for unattributed graphs where we gauged the similarity

between the input structures through continuous-time quantum walks. More specifically, we

computed the divergence between two suitably defined quantum states, and we showed that

this measure has a number of interesting properties related to the spectrum of the system

Hamiltonian. In particular, we have shown that the kernel value can be interpreted as a

measure of the extent to which the eigenspaces of the Hamiltonian simultaneously span both

graphs.

Our experimental validation has shown that the QJSD kernel can outperform state-of-

the-art kernels in a graph classification task. Although the overall computational complexity

is bounded by that of computing the eigendecomposition of the Hamiltonian, we have shown

that we can compute the eigenvalues of ρ∞ in O
(
∑

λ∈Λ̃ µ(λ)
2
)

, where Λ̃ denotes the set of

distinct eigenvalues λ of the Hamiltonian, each with multiplicity µ(λ). Despite leading to

a faster computation, we observed that the choice of letting T → ∞ does not necessarily

coincide with the optimal one in terms of classification accuracy. We noted that, when we let

the adjacency matrix be the Hamiltonian of the system, the maximum accuracy is actually

achieved for a time T which is of the same order of magnitude of the average graph size in

the dataset. Future work should investigate the possibility of a relation between the average

mixing time of the continuous-time quantum walks on the merged graph and the optimal

time for the kernel. Finally, the positive semidefiniteness of the kernel, which at the moment

we are unable to formally prove, will be the subject of further studies.
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