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Equal-tailed confidence intervals
for comparison of rates

Peter J. Laud*

Several methods are available for generating confidence intervals for rate difference, rate ratio, or odds ratio, when

comparing two independent binomial proportions or Poisson (exposure-adjusted) incidence rates. Most methods have

some degree of systematic bias in one-sided coverage, so that a nominal 95% two-sided interval cannot be assumed to

have tail probabilities of 2.5% at each end, and any associated hypothesis test is at risk of inflated type I error rate.

Skewness-corrected asymptotic score methods have been shown to have superior equal-tailed coverage properties for

the binomial case. This paper completes this class of methods by introducing novel skewness corrections for the Poisson

case and for odds ratio, with and without stratification. Graphical methods are used to compare the performance of

these intervals against selected alternatives. The skewness-corrected methods perform favourably in all situations -

including those with small sample sizes or rare events - and the skewness correction should be considered essential for

analysis of rate ratios. The stratified method is found to have excellent coverage properties for a fixed effects analysis. In

addition, another new stratified score method is proposed, based on the t-distribution, which is suitable for use in either

a fixed effects or random effects analysis. By using a novel weighting scheme, this approach improves on conventional

and modern meta-analysis methods that rely on weights based on crude estimation of stratum variances. In summary,

this paper describes methods that are found to be robust for a wide range of applications in the analysis of rates.

Copyright © 2017 John Wiley & Sons, Ltd.

Keywords: Confidence interval, binomial proportions, Poisson rates, difference or ratio, stratified, meta-
analysis

1. INTRODUCTION

The comparison of two treatment groups with respect to
a binomial proportion is commonly made in the field of
medical statistics, such as in the analysis of efficacy or
safety endpoints in phase III clinical trials, either to address
the primary study objective, or for exploratory analysis of
subgroups. Occasionally a Poisson event rate is used that
is adjusted for the duration of exposure to risk, such as the
number of adverse events observed per person-year exposure
to treatment. Any of three comparative parameters may be
used: rate difference (‘RD’), rate ratio (‘RR’, also known as
relative risk) or odds ratio (‘OR’, which is applicable only to
binomial proportions).

In any of these situations, it is usual to perform a hypothesis
test for a difference between treatments. In addition, it
is important to estimate the magnitude of the treatment
effect, along with a confidence interval to represent the
uncertainty around the estimate, in order to consider the
clinical relevance of any differences supported by the data.
Sometimes, a one-sided significance test may be required
against a non-zero null hypothesis (for example, in a
‘non-inferiority’ analysis, designed to demonstrate that the
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difference between a new treatment and an established one
is not greater than a pre-specified margin), and this test is
directly related to the location of a one-sided confidence
limit. A two-sided confidence interval may be similarly
employed to apply a formal test of bioequivalence.

Because of the discrete nature of the data in these types
of analysis, it is not possible for a confidence interval to
achieve precisely the desired coverage in all situations. In
other words, a nominal ‘95%’ confidence interval will not
contain the ‘true’ treatment effect exactly 95% of the time,
and nor will it be guaranteed to have evenly-distributed
tail probabilities of 2.5% at each end. A large number of
methods have been developed that aim to optimise the first
of these desired coverage properties, but relatively little
attention has been paid to the second, ‘equal-tailed’ criterion.
This criterion deserves greater prominence, not least in
situations where there is likely to be more interest in only
one side of a confidence interval, such as when using the rate
difference for adverse event rates, which can be interpreted
as attributable risk. Therefore the one-sided non-coverage
probabilities are of particular interest in this paper.

Miettinen and Nurminen’s asymptotic score confidence
limits [1] for the comparisons of binomial or Poisson rates
were derived by defining, for each case, a contrast-based
chi-squared test statistic (or ‘score’) as a function of the
comparative parameter �, and ‘inverting’ the statistic by
setting it equal to a quantile of the chi-squared distribution

Pharmaceut. Statist. 2017, 00 1–15 March 16, 2017 Copyright © 2017 John Wiley & Sons, Ltd.
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and solving for �. For the binomial RD case, these
methods have been found to have very good coverage
properties. [2,3,4]

Gart and Nam [5,6] derived similar intervals for binomial
RD and RR, using an ‘efficient score’ statistic instead
of the simple contrast-based score. They noted that
tail probabilities can be distributed quite unevenly, and
incorporated a correction for skewness, concluding that
the need for this correction was greatest in the case of
RR. However, the Gart-Nam formulae can occasionally
be affected by indeterminate (0 ÷ 0) values in the score
statistic, causing one of the confidence limits to be
incalculable.

Laud and Dane [2] redefined the skewness correction for RD
using Miettinen and Nurminen’s contrast-based test statistic,
which on the whole avoids indeterminate scores. The
skewness correction was observed to have an appreciable
effect on one-sided coverage properties for RD when sample
sizes are unequal.

The purpose of this paper is to describe novel skewness-
corrected methods for Poisson RD and RR, binomial OR
and the single binomial or Poisson rate p. Graphical methods
are used to compare the performance of this whole class of
methods against other recently developed methods that have
not been extensively evaluated. Then, having also applied
the skewness correction for the stratified case, a further aim
is to begin to explore the performance of score methods
for stratified datasets, such as may be used in a meta-
analysis.

The statistical properties of the unstratified methods are
evaluated using the graphical methods of Laud and Dane, [2]

with an emphasis on one-sided non-coverage probability.
This is because the correction for skewness is designed
to improve one-sided coverage in order to achieve a
‘symmetrical’, ‘equal-tailed’ or ‘centrally located’ interval,
in other words one for which non-coverage probabilities are
as close as possible to the nominal significance level �∕2 on
each side. Interval location was discussed for the one-sample
case by Newcombe, [7] who pointed out the importance of
considering this aspect of performance in the evaluation of
confidence intervals for proportions and related quantities.
In the context of a non-inferiority hypothesis test, one-sided
coverage is directly related to the one-sided type I error rate
(hence the terms ‘type I error’ and ‘non-coverage’ are used
interchangeably here).

Selection of the ‘best’ method is based on a ‘proximate’
coverage criterion (i.e. aligning mean coverage with the
nominal confidence level). The alternative would be to
take a strictly conservative approach (aligning minimum
coverage with the nominal level), and the choice between
these standpoints is a somewhat polarising issue. Reasons for
choosing the proximate criterion can include concerns over
‘exact’ intervals being over-conservative, as well as practical
considerations, but perhaps most persuasive is the argument
that in most other areas of statistical practice, control of
type I error rate is only achieved in an approximate sense

based on the assumptions underlying the chosen statistical
model. [8,9,10] Note that proximate two-sided coverage may
be taken for granted for methods that consistently achieve
proximate one-sided coverage. Therefore two-sided coverage
is generally not discussed in this paper. Interval width is also
not studied in detail, because interval location is considered
to take precedence.

The structure of the paper is laid out as follows:
Section 2 defines the general form of the skewness-corrected
asymptotic score method, with the specific details of the
calculations for each parameter contained in Appendix A.
Some alternative methods for comparison are described, and
some illustrative examples are discussed. Section 3 presents
a graphical evaluation of the coverage properties of the
proposed class of methods, using closed-form calculation of
non-coverage probabilities. Section 4 introduces some new
intervals for stratified datasets, and the performance of a
number of stratified methods is evaluated using a simulation
study. Overall conclusions are in Section 5. Additional
details are available in the online supporting information,
including an extended graphical evaluation with a range
of sample sizes; the application of ‘continuity corrections’
for those who prefer the strictly conservative approach;
and methods for identifying, quantifying and accounting for
stratum heterogeneity.

2. DEFINITIONS

2.1. Score methods

Miettinen and Nurminen’s confidence limits (denoted ‘MN’)
employed a chi-squared test statistic with one degree of
freedom, which may naturally be square-rooted to be
expressed equivalently as a normal test statistic (as used in
the Farrington-Manning test [11]):

Z(�) =
S(�)

Ṽ 1∕2
(1)

The 100(1 − �)% confidence limits are the two values of �
satisfying Z(�) = ±z, where z is the relevant percentile of
the standard normal distribution, i.e. z1−�∕2.

The specific details of the components of this function
depend on the situation, as defined more fully in Appendix A.
In general terms:

• � represents the comparative parameter for RD, RR
or OR (i.e. p1 − p2, p1∕p2 or p1(1 − p2)∕(p2(1 − p1))
respectively, where p1 and p2 are the underlying event
rates in the two groups);

• S(�) is a contrast function involving the sample
observed rates p̂1 = X1∕n1 and p̂2 = X2∕n2, where
the denominator ni, i = 1, 2, represents a number of
subjects for the binomial case, or a measure of total
exposure duration in the Poisson case;
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• Ṽ is the estimated variance of S(�) using p̃1 and p̃2,
the maximum likelihood estimates (MLEs) of the two
event rates under the restriction that p̃1 − p̃2 = � (for
RD), p̃1 = p̃2� (for RR), or p̃1 = p̃2�(1 + p̃2(� − 1)) (for
OR).

Gart and Nam introduced skewness corrections for binomial
RR [5] and RD, [6] originating from Bartlett [12] and Cornish
and Fisher, [13] resulting in a test statistic that takes the form:

Z(�) =
S(�)

Ṽ 1∕2
−

(z2 − 1)�̃3

6Ṽ 3∕2
(2)

This function involves the estimated skewness �̃3∕Ṽ
3∕2,

where �̃3 is the estimated third central moment ofS(�), again
based on p̃1 and p̃2. Note that Gart and Nam used a different
form of S(�), but their method of deriving the skewness
correction is followed through in Appendix A for all
comparisons, using the score functions given by Miettinen
and Nurminen. This yields a comprehensive class of
‘Skewness-Corrected Asymptotic Score’ methods (denoted
‘SCAS’), which includes novel confidence intervals for OR;
Poisson RD and RR; and the single binomial or Poisson rate
p.

The variance and skewness estimators are both essentially
functions of the comparative parameter �, so Equations (1)
and (2) resolve to functions of �, which in most cases are
nonlinear. The solutions are most easily found by iteration
over �, for example using the secant or bisection root-finding
method. Further details are given in Appendix S1 (available
online as Supporting Information).

An option to include a further ‘continuity correction’ for
more conservative coverage is also possible. Details may be
found in Appendices S2 and S3.4 (available online).

Equation (2) may be re-stated as a quadratic equation in
Z(�), which results in the same confidence limits for any
given confidence level, but also allows the score (and hence
p-value) to be calculated for a hypothesis test against any
null hypothesis value �0 for �, by solving for Z(�0) (see
Appendix A.5 for details):

Z(�0) =
S(�0)

Ṽ 1∕2
−

(Z(�0)
2 − 1)�̃3

6Ṽ 3∕2
(3)

The use of a Z statistic here facilitates one-sided (e.g.
non-inferiority) tests. The squared score Z(�0)

2 provides a
generalised version of the usual Pearson chi-squared test,
incorporating corrections for both skewness and variance
bias.

2.2. Approximate Bayesian MOVER and other meth-

ods

An alternative method for consideration is the ‘Method
of Variance Estimates Recovery’ (‘MOVER’), [14,15] which
constructs an interval for � from separate intervals for the
individual group rates. This approach was first proposed

for binomial RD by Newcombe, [4] using the Wilson score
interval, which has since been shown to have a systematic
bias in one-sided coverage. [16] If the equal-tailed Jeffreys
method [9,17] is used instead (hence denoted ‘MOVER-J’), it
might be expected to result in a more equal-tailed interval for
�. This is not an entirely novel development, but this class of
methods (covering all comparisons of binomial or Poisson
rates) is described together for the first time here, in order
to evaluate their performance against the corresponding
asymptotic score methods. In fact, MOVER-J can be viewed
as a special case of a more general Bayesian method
(‘MOVER-B’), which allows the use of informative priors.
This method can be applied to all of the rate comparisons as
follows:

First, separate confidence intervals (li, ui) and point estimates
p̂i are generated for pi, i = 1, 2, from the �∕2 and (1 − �∕2)
quantiles and median of the Beta(Xi + ai, ni −Xi + bi)
distribution for binomial rates, or the Gamma(Xi + ai, 1∕ni)
distribution for Poisson rates (where 1∕ni represents the
scale parameter). The MOVER-J method applies the non-
informative Jeffreys prior using ai = bi = 0.5. (Boundary
modifications at Xi = 0 or ni, as recommended by Brown et
al, [9] are omitted here to avoid complicating the more general
MOVER-B method.)

Then, for RD, [4] the confidence limits (L,U ) for �
are:

L = p̂1 − p̂2 −
√

(p̂1 − l1)
2 + (u2 − p̂2)

2,

U = p̂1 − p̂2 +
√

(u1 − p̂1)
2 + (p̂2 − l2)

2

For RR, [14]

L =
p̂1p̂2 −

√

(p̂1p̂2)
2 − l1u2(2p̂1 − l1)(2p̂2 − u2)

u2(2p̂2 − u2)
,

U =
p̂1p̂2 +

√

(p̂1p̂2)
2 − u1l2(2p̂1 − u1)(2p̂2 − l2)

l2(2p̂2 − l2)

The same formulae are used for OR, [18] but with each p̂i, li
and ui replaced with p̂i∕(1 − p̂i), li∕(1 − li) and ui∕(1 − ui)
respectively.

By adapting the parameters ai and bi in the deriva-
tion of (li, ui), MOVER-B may be used to incorporate
prior beliefs about p1 and p2 in order to construct
an approximate Bayesian credible interval for �. Other
(computationally intensive) ‘exact Bayesian’ methods have
been proposed, [19,20] which have recently been incorporated
into StatXact software (version 11). These are discussed
briefly in Section 3.6.

For reference, the following evaluation also considers the
simple ‘approximate normal’ (‘AN’) methods available
for each case (sometimes referred to as ‘Wald’ methods).
Definitions of these methods, based on normal approx-
imations for � or ln(�), can be found in Rothman and
Greenland. [21]
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2.3. Example confidence intervals

A number of real data examples are included in Appendix B
for software validation purposes and to illustrate the
magnitude of differences that can be observed between
methods. However, it must be noted that no general
statements can be made about the relative widths or
locations of different methods based on any single example,
because the direction of apparent differences between any
two methods can fluctuate across the parameter space. To
emphasise this point, it may be noted from the examples
in Appendix B that the different methods are often shifted
relative to each other, and this shift is not always in the same
direction. The following evaluation is designed to draw out
the underlying trends in these location shifts, in order to
identify which method has the ‘correct’ location properties
‘on average’.

Furthermore, overinterpretation of the relative widths of
such example intervals should be avoided, not least because
the narrowest interval is not necessarily the best one, as
discussed in Section 5. Reductions in interval width are often
achieved at the expense of a less central interval location.
Also, rather than surmising that one interval is ‘too wide’,
the possibility should be considered that the other intervals
are ‘too narrow’. In other words, a wider interval may be an
accurate reflection of the lack of information contained in a
given dataset.

3. EVALUATION IN THE SINGLE-

STRATUM CASE

The performance of the skewness-corrected asymptotic
score methods is evaluated below, using the methods of
calculation and graphical display described in Laud and
Dane. [2] Briefly, for each parameter space point (PSP)
(p1, p2), one-sided non-coverage probability is calculated
precisely, as a sum of bivariate binomial (or Poisson) proba-
bilities. In other words, the non-coverage rates are obtained
from essentially closed-form calculations, rather than by
simulation. Full details of these calculations are provided
in Appendix S3 (available online). These probabilities may
naturally be considered in terms of either right- or left-sided
non-coverage; this article (arbitrarily) uses right-sided non-
coverage probability (‘RNCP’) throughout, so that results
correspond to the one-sided type I error rate for a non-
inferiority test when the outcome variable is an undesirable
event, such as mortality or adverse event rate.

Smoothed (moving average) and unsmoothed representa-
tions of the 3-dimensional probability surface are plotted
in two dimensions using a colour-shaded contour plot,
clearly showing the proximity of RNCP to the nominal
�∕2 over a range of the parameter space. In the Poisson
case, the theoretical parameter space extends to +∞ on both
axes, but only the [0, 1] interval is shown. Good equal-
tailed performance is indicated by regions of orange colour,

corresponding to RNCP being within [0.9�∕2, 1.1�∕2].
The proportion of the displayed parameter space having
smoothed RNCP within this range is defined as the ‘moving
average % proximate’, which provides a simple numeric
summary measure of interval location. All methods can
have some regions of the parameter space with proximate
coverage, so any method could be acceptable for the
‘right’ specific null hypothesis. Proximate coverage across
100% of the parameter space would allow a method to be
employed universally, both for general descriptive use and
for hypothesis testing. This definition of ‘proximate’ allows
error rates to be slightly above the nominal �∕2, indicated by
dark orange, but predominance of pale orange colour would
be preferred. Shades of red to black colour show regions
where the actual type I error rate would be inflated by an
unacceptable amount.

The coverage probability plots for the SCAS methods are
displayed in Figures 1 to 3 alongside those for the MN,
MOVER-J, and AN methods. Moderately large sample
examples are given, using � = 0.05, n1 = 150 and n2 = 50

in each case, demonstrating the efficacy of the skewness
corrections here. Appendix S3.1 (available online) contains
coverage probability plots for a variety of different sample
sizes (including n1 = 50 and n2 = 150, which may be used
to infer left-sided non-coverage rates for comparison with
the RNCP presented in this section). The performance of
the methods under the selected sample size conditions are
summarised together in Table 1 using moving average %
proximate. By this measure, SCAS is seen to be either the
best or close to the best in every case. Similar patterns
were observed for � = 0.01 and � = 0.1 (not shown). Similar
patterns were also observed for smaller samples, except that
where methods diverged from nominal coverage, they did so
to a greater extent, while SCAS generally remained the most
proximate method. There can be small areas of the parameter
space where non-coverage for SCAS deviates from the
nominal value, but these deviations are generally on the
conservative side. In general, the plots speak for themselves,
but some brief explanatory comments are provided in the
following sections.

3.1. Rate Difference

RNCP surface plots for binomial and Poisson RD are
shown in Figure 1. For a full evaluation of the performance
of confidence intervals for binomial RD, see Laud and
Dane, where the SCAS method was denoted ‘GNbc’, and
MOVER-J was referred to as ‘NJ’. In summary, SCAS

stands out as being the most consistent method in terms
of one-sided coverage, while other methods fail to achieve
equal-tailed coverage even with large sample sizes.

For Poisson RD (Figure 1b), similar results were observed.
In the example shown, the AN method has very conservative
RNCP, but the associated left-sided non-coverage would
be greatly inflated, and the opposite would be seen if the
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Figure 1. Rate Difference: Contour plots of right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 150, n2 = 50. (a)

Binomial rate difference, (b) Poisson rate difference.
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Figure 2. Rate Ratio: Contour plots of right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 150, n2 = 50. (a)

Binomial rate ratio, (b) Poisson rate ratio.
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Figure 3. Odds Ratio: Contour plots of right-sided non-coverage probability (RNCP) and moving average RNCP, for SCAS, MN, MOVER-J and AN, with n1 = 150, n2 = 50. Odds

ratio.

treatment group sizes were reversed (as shown in Appendix
S3.1, available online).

3.2. Rate Ratio

With RR as the comparative parameter (Figure 2), the one-
sided performance of the MN method is notably worse than
it is for RD, reflecting the observations made by Gart and
Nam. [5] Both MN and AN should be avoided here. The
SCAS method successfully equalises the tail probabilities
for both the binomial and Poisson rate ratio. The MOVER-J

methods also perform very well for RR, although on average
RNCP tends to be slightly above the nominal �∕2, and
performance deteriorates with smaller sample sizes (see
Table 1).

3.3. Odds Ratio

For OR (Figure 3), the proposed skewness correction
unfortunately does not appear to achieve quite the same
degree of consistent one-sided coverage as it does for RD
and RR, but it is still superior to all of the other methods,
especially when p1 and p2 are small. It appears that the
skewness may be over-corrected when there is a large
difference between p1 and p2.

MOVER-J also performs relatively poorly for OR. AN

is better here than with other contrasts, although it gives

an uninformative interval when there are any zero cell
counts.

3.4. Rare events

For the analysis of rare events, it is the extreme lower
left corner of the plots that is of interest. Appendix S3.2
(available online) contains a selection of expanded surface
plots showing RNCP for the region with p1 and p2 less
than 0.05. Plots of the left-sided non-coverage probabilities
(LNCP) are also shown here, since they cannot be inferred
from the RNCP plots as they can elsewhere. In general,
it can be seen that the SCAS method maintains the most
consistent performance in this region, whereas the other
methods all have large regions of inflated non-coverage rates.
In particular, the SCAS method for OR performs well in
this region, despite imperfections elsewhere in the parameter
space.

3.5. Single binomial or Poisson rate

The coverage properties of the SCAS method for the single
binomial or Poisson rate are compared against the Jeffreys,
Score and Wald intervals (see Cai [16] for definitions) in
Appendix S3.5 (available online).

The Score and Wald intervals both have a systematic bias
in one-sided coverage, which is corrected by the other two
methods. The improvement achieved by SCAS over the
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Table 1. Summary of one-sided moving average % proximate for various sample sizes

Binomial RD Poisson RD
30,30 45,15 100,100 150,50 50,150 30,30 45,15 100,100 150,50 50,150

SCAS 98.1 86.0 100.0 98.9 99.0 99.2 99.4 100.0 100.0 99.6
MN 64.5 25.6 85.3 49.1 49.1 61.2 13.6 91.5 40.4 26.7

MOVER-J 28.3 36.2 51.8 64.7 64.8 62.8 66.0 95.4 80.2 85.0
AN 18.6 8.9 45.7 15.6 15.6 29.5 3.1 48.2 5.3 5.6

Binomial RR Poisson RR
30,30 45,15 100,100 150,50 50,150 30,30 45,15 100,100 150,50 50,150

SCAS 89.5 87.0 97.8 98.3 95.1 91.9 93.3 97.9 99.0 95.4
MN 44.6 32.8 63.0 53.9 53.9 40.5 16.1 60.1 38.7 33.9

MOVER-J 47.5 39.2 95.4 86.7 69.9 88.9 86.8 98.9 98.9 95.8
AN 8.1 5.9 16.8 11.7 10.9 34.1 28.4 58.2 48.1 21.7

OR
30,30 45,15 100,100 150,50 50,150

SCAS 51.9 49.7 81.5 81.1 81.3
MN 60.8 40.8 76.0 60.4 60.3

MOVER-J 45.0 29.1 71.1 60.0 76.1
AN 51.4 32.1 72.5 56.6 56.6

Jeffreys method is small but significant: both methods have
very consistent moving average RNCP over the whole range
of �, but it tends to be slightly higher than the nominal
level for the Jeffreys interval. The SCAS method may be
utilised for a transformed score interval for paired odds ratio,
as mentioned in the discussion. It may also be of use if a
stratified interval for a single rate is required, by applying
the formula described in Section 4.

3.6. MOVER-J compared with other Bayesian meth-

ods

In addition to MOVER-J, a number of alternative Bayesian
methods are available, and the following observations about
them may be of interest.

Firstly, the so-called ‘exact Bayesian’ intervals [20] are not
‘exact’ in the usual sense regarding achieving a minimum
coverage criterion, but rather in the sense that the tail
probabilities, given a particular prior distribution, are
calculated exactly. The default settings in StatXact use
uniform (rectangular) priors for the pis (i.e. ai = bi = 1),
as suggested by Nurminen and Mutanen. [20] Agresti and
Min [22] found that the diffuse Jeffreys prior (ai = bi = 0.5)
achieved much better frequentist performance, but they also
noted that even with the Jeffreys prior, the Bayesian methods
were inferior to score-based methods.

For the special case of Poisson RR, it is possible to obtain
a Bayesian confidence interval by transforming a Jeffreys
interval for a single binomial proportion, conditioning
on the total number of events X, as described by
Barker and Cadwell [23] (although their formulae need a
slight modification if the exposure times n1 and n2 are
unequal).

Figures in Appendix S3.3 (available online) demonstrate
that the MOVER-J methods have very similar coverage
properties to the above Bayesian methods where Jeffreys
priors are used, implying that MOVER-B should be an
adequate substitute for the exact Bayesian methods with
informative priors. The figures also show that one-sided
coverage is quite poor when uniform priors are used.

In summary, for a Bayesian analysis using a non-informative
prior, the diffuse Jeffreys priors (ai = bi = 0.5) are recom-
mended for all contrasts for both the binomial and Poisson
case, and the MOVER-J methods are simple and adequate
for this purpose. These methods are outperformed by the
SCAS method in terms of frequentist coverage probabilities,
but MOVER-B allows the facility to incorporate informative
priors for the event rates.

4. STRATIFIED METHODS

In order to adjust for a stratification factor that is expected to
affect the underlying true overall event rate p̄ = (p1 + p2)∕2,
a confidence interval is constructed using a weighted
average of stratum-specific scores. A number of different
weighting schemes are available, two popular choices being
Mantel-Haenszel (‘MH’) weights (which essentially reflect
the sample size in each stratum), and inverse variance
(‘IV’) weights. For the asymptotic score methods, a new
weighting strategy is possible, using the inverse variance
of the score (‘IVS’) to define weights as a function of �,

by inverting the MLE of the stratum variances Ṽj . Other
options include the hybrid ‘Minimum Risk’ (‘MR’) weights
described by Mehrotra and Railkar [24]; inverse variance
weights using some other modified variance estimate using
shrinkage towards a pooled estimate [25]; or some iteratively
calculated weights as given by Miettinen and Nurminen. [1]
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See Appendix S4.1 (available online) for further discussion
of weighting schemes, including some important notes on the
MH weights for the score method, which are not always the
same as the conventional MH weights.

With stratum weightswj , andW =
∑

j wj , a stratified SCAS

confidence interval is found by solving:

Z(�) =
∑

j

[

(wj∕W )Sj(�)

Ṽ
1∕2

⋅
−

(wj∕W )3�̃3j(z
2 − 1)

6Ṽ
3∕2

⋅

]

= ±z

(4)
where Ṽ⋅ =

∑

j(wj∕W )2Ṽj ; and Sj(�), Ṽj and �̃3j are
the stratum-specific quantities using the definitions in
Appendix A.

The two solutions of this equation are found by iteration over
� as before. Note that, as with the single stratum case, the
same formula can again be used to apply a significance test
against any null hypothesis value of the overall treatment
effect �, by replacing z with Z(�) and solving the resulting
quadratic.

Unlike in other meta-analysis methods, no adjustment is
generally necessary for zero cell counts here, even for RR
and OR, although they do pose a problem if there are any
‘double-zero’ strata, containing no events in both arms. See
Appendix S1.3 for further details.

4.1. Heterogeneity/interaction tests and ‘Random

effects’ intervals

The calculation of ‘fixed effects’ stratified confidence
intervals described above relies on the assumption that
� is constant across strata (i.e. homogeneous). In other
words, the null hypothesis under consideration is that
�j = �0 for all j. Methods for testing this assumption,
and for visualisation and quantification of heterogeneity
(i.e. treatment-by-stratum interactions) are described in
Appendix S4.2 (available online).

It may be desirable to incorporate any stratum heterogeneity
into the calculation of the confidence interval, using a
‘random effects’ meta-analysis approach in order to present
an interval for the expected treatment effect in an unspecified
stratum. In this case, the more general null hypothesis
under consideration (� = �0) is regarding the underlying
mean of the parameter across all strata, rather than a value
that is assumed to be common to all strata. It would
be possible to extend the SCAS method to incorporate a
‘between stratum’ component �̂2 into the estimated variance
of Sj(�), using formulae based on the DerSimonian-Laird

method (‘DL’). [25] However, the DL method has been
found to have unsatisfactory performance (partly due to
inadequate estimation of �2) and an alternative ‘Hartung-
Knapp-Sidik-Jonkman’ method (‘HKSJ’) [26,27] based on the
t-distribution has been recommended. [28,29] By adapting the
formulae defining that method, a t-distribution asymptotic
score method (‘TDAS’) may be devised. Full details of this

new random effects method are given in Appendix S4.2.3
(available online).

4.2. Preliminary evaluation of stratified

methods

As with the earlier examples for single stratum calculations,
it is not possible to use any single example to draw
conclusions on the relative performance of different
methods. Selected methods are applied to a real meta-
analysis dataset in Appendix B for software validation
purposes.

There follows a brief evaluation of non-coverage probabili-
ties estimated via simulations, comparing the stratified (fixed
effects) SCAS method against the standard approximate
normal (‘AN’) meta-analysis methods provided in the
R package ‘meta’. [30] Random effects methods are also
shown, including DL, HKSJ, and the proposed new TDAS

method.

Consistent with the evaluation of RNCP described earlier
(but for a more restricted set of conditions), an examination
of one-sided con-coverage rate is shown in Figure 4. Each
plotted estimate of RNCP is based on 10,000 simulations,
which is enough for a confidence interval width of
approximately±0.003 for a nominal 0.025 significance level.
This is generally sufficient for demonstrating the conditions
under which the performance of some methods is very poor,
but not precise enough to tease out more subtle differences
between methods (such as SCAS and MN), or to rigorously
demonstrate control of type I error within [0.0225, 0.0275].
Full details of the simulation study are given in Appendix S5
(available online).

Figure 4 displays the simulated type I error rates (right-
sided non-coverage) for binomial RD for seven stratified
methods evaluated at p1 = 0.2, p2 = 0.1 (with the individual
stratum rates allowed to vary around those values), and
� = 0.05. The number of strata (k) ranges from 2 to 20,
and the overall sample size

∑

j Nj is k × 200, with both
equal and unequal treatment allocations. Two patterns of
stratification are considered, one where all strata are of equal
size (Nj = 200, j = 1 to k, ‘pattern 1’), and an extreme
case (‘pattern 2’) where one stratum is around 10 times the
size of the others (e.g. with k = 4, N1 = 615 and Nj = 62,
j = 2, 3, 4). Finally, the amount of underlying heterogeneity
is modelled using I2 values (representing the proportion of
variability due to heterogeneity [31]) of 0% (homogeneous)
and 25% (modest heterogeneity). MH, IV and IVS weights
are compared for the fixed effects methods, whereas random
effects methods are restricted to IV weights (or IVS weights
for TDAS).

The asymptotic normal method with IV weights has very
poor coverage properties, which deteriorate with increasing
number of strata. This reflects an inherent bias in the
crude estimation of IV weights, as explained by Senn. [32]

In contrast, the AN method with MH weights performs
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Figure 4. Simulated right-sided type I error rate for meta-analysis of binomial RD with different number of strata and sample size allocation (△ 3:1, ○ 1:1, ▽ 1:3), under four different

sets of conditions. Pattern 1: equal-sized strata; Pattern 2: one stratum 10× larger than other strata; I2=0: homogeneous treatment effects across strata; I2=0.25: modest heterogeneity.

True overall event rates p1 = 0.2, p2 = 0.1. Reference lines: �∕2 ± 0.2�∕2. ˆ indicates RNCP >0.1. (a): Fixed effects methods, (b): Random effects methods
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surprisingly well with a large number of strata. For stratified
SCAS, the coverage properties are superior to AN for any
number of strata, and here the new IVS weights perform
just as well as MH weights. A larger number of simulations
would be required to confirm whether the stratified SCAS

interval outperforms the stratified MN method.

Where stratum heterogeneity is present (see columns 3
and 4 of Figure 4), it comes as no surprise that the
performance of the fixed effects methods deteriorates.
(Nevertheless, the SCAS(MH) method remains valid for a
test against the null hypothesis that p1j = p2j for all j, as the
presence of heterogeneity provides evidence against that null
hypothesis.) For the random effects methods, the superiority
of HKSJ over DL (as demonstrated by IntHout et al. [28]) is
confirmed. However, the effect of the bias in IV weights is
apparent again here, especially when treatment allocation is
unequal. IVS weights for TDAS produce superior coverage
under those conditions, and also with equal allocation
when the number of strata is large (see region {1} of
Figure 4).

Observations made by IntHout et al regarding situations
with a small number of heterogeneous strata with diverse
sizes apply also to TDAS. That is, under those conditions,
type I error rates can be somewhat inflated (see region {2}
of Figure 4). It appears that no method is completely
satisfactory under such conditions.

Similar patterns were observed for all contrasts for both
binomial and Poisson rates. However, for RR, a peculiar
feature was observed with a very small number of strata.
TDAS here tends too often to produce infinite-width
intervals, and consequently the non-coverage probabilities
are very low. This may reflect a weakness in the assumptions
regarding the distribution of stratum estimates for RR in the
derivation of the t-score. For plots of RNCP for the other
contrasts, and further observations about the TDAS method
in general, see Appendix S5 (available online).

In general, TDAS was the most consistent method in terms
of proximity of RNCP to the nominal �∕2, under simulated
conditions with and without heterogeneity (except for RR
with very few strata). SCAS achieved this consistency under
homogeneous conditions only.

It must be acknowledged that, due to the increased
dimensionality when considering stratified designs, the
evaluation carried out here has been necessarily limited.
In particular, only a single parameter space point has been
considered, although the variation of p̄ and � across strata
means that sampling is taken across a fairly wide area of
the parameter space. Secondly, this evaluation has used quite
large stratum sizes, and the performance of these methods
with smaller datasets may be of interest. Thirdly, conditions
where the allocation ratio varies across strata have not been
considered, and a wider range of stratum size patterns should
perhaps also be considered for a thorough assessment of
MH weights. Finally, as stated above, the restricted number
of simulations due to time constraints means that subtle
differences between some methods can be missed, as they

are dwarfed by the very severe effect of the IV weighting
scheme. For example, with 100,000 simulations (giving a
confidence interval of ±0.001) for the 10-stratum, pattern 1,
homogeneous scenario with equal allocation, the estimated
RNCP for HKSJ is slightly too high at 0.029, whereas that
for TDAS is 0.025 (see region {3} of Figure 4).

On the basis of this limited evaluation, it appears that the
TDAS method may have merit for meta-analysis under a
wide range of conditions. It offers a substantial improvement
over HKSJ with a large number of strata, or with unequal
treatment allocation, although it seems that such analyses in
practice are quite unusual. [33] With fewer than 10 strata, as
long as stratum sizes are similar, HKSJ may be adequate
with balanced treatment allocation. There may not be any
satisfactory method if stratum sizes vary wildly, such as
when a small meta-analysis is updated with the results of
a large-scale confirmatory trial. Further work is required to
further explore the performance of these methods.

5. CONCLUSION AND DISCUSSION

In summary, in the single stratum case, the SCAS

methods achieve superior proximate equal-tailed coverage
for all comparisons of binomial and Poisson rates, in all
of the situations explored in this article. Of particular
note is that non-coverage rates are improved even with
rare events, and with small or large sample sizes. The
skewness correction is particularly important for analysis
of rate ratios, and in the Poisson case this correction has
not previously been available. MOVER-J also performs
reasonably well for RR with fairly large sample sizes, and
MOVER-B is a convenient choice for all contrasts if prior
information is to be incorporated in a Bayesian analysis.
The simple asymptotic normal methods should always be
avoided.

Interval location and interval width are often in direct
competition, and the choice between them can be viewed
as one of accuracy over precision. Much of the literature
in this area discusses optimising interval width, without
considering the effect on interval location. Nurminen [19]

stated that equality of tail probabilities is a ‘conventional
optimality requirement’, and it does seem likely that, for most
users of two-sided confidence intervals, there is an implicit
assumption that the tail probabilities are symmetrically
distributed. If one seeks to minimise interval width, there is
a risk of severely violating that assumption, and ending up
with an interval that is precisely in the wrong place.

It is quite noticeable that for RR and OR, interval widths
for all methods can be quite large when the number of
events is very small, and the size of the denominators
has little effect, or in the Poisson case, no effect at all.
For Poisson RR this is quite natural, since increasing both
denominators by the same factor is equivalent to selecting
a different measurement unit for the exposure time (e.g.
person-months instead of person-years). Such adjustments
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should be expected to have no effect on the result because
there is no material change to the data. For the binomial
ratio contrasts, a similar feature is observed for rare events,
when OR and binomial and Poisson RR are approximations
of each other. This phenomenon suggests that the sample size
required for such an analysis should be decided based on the
number of observed events, not the total number of patients,
similar to the approach used in survival analysis.

For stratified datasets, the performance of SCAS is also
excellent for a fixed effects meta-analysis, i.e. when it can
be assumed a priori that treatment effects are homogeneous
across strata, or when the inferential aims of the analysis
support the use of fixed effects. [34] If any heterogeneity
is present, however, type I error rates are consistently
inflated.

For a random effects meta-analysis, TDAS or HKSJ are
recommended. The former is somewhat superior, but under
balanced treatment allocation the difference can appear small
in the context presented here, where much larger differences
exist between some other methods. None of the random
effects methods achieve satisfactory performance with few
strata of diverse sizes. It has been argued that a small number
of trials should not be combined in a meta-analysis at all if
there is evidence of any heterogeneity. [35] Furthermore, for
random effects methods, it may be difficult to justify a small
number of strata as being a reasonable random sample from a
population of strata, particularly if they correspond to studies
or centers within a multi-center study.

The TDAS and HKSJ methods do not require a choice to be
made in advance between a fixed or random effects approach
(the performance of each method is largely unaffected
by the presence of heterogeneity). However, if there is
good reason to believe that the treatment effect is constant
across strata, the stratified (‘fixed effects’) SCAS method
may be preferred due to superior power (as discussed in
Appendix S5.2, available online), especially if the number
of strata is small. The TDAS method appears to achieve
superior equal-tailed coverage compared to other available
‘random effects’ methods, particularly when sample sizes are
unequal. Further work is required to assess in more detail
the performance of these methods using different weighting
strategies, under a wider range of conditions. To protect
against undue influence by a small number of anomalous
trials, a trimmed/Winsorised approach may be applied, [36]

but it is perhaps rare that enough strata are available for this
to be a viable option.

Note that the evaluation of meta-analysis methods in this
paper (like others) is restricted to a particular model of
heterogeneity (i.e. having normally distributed dispersion of
RD, ln(RR) or ln(OR) between strata), which may or may
not hold in practice. For example, if it is really the case that
treatment effects are constant on the odds ratio scale, then
the expected type I error of an analysis on the rate difference
scale might behave quite differently.

The special case of stratified analysis of binomial data where
nij = 1 for all i, j (i.e. matched pairs) has not been considered

here. The stratified MN method has been found to be very
conservative (too wide) in this situation. [37] The Tango score
method, [38] designed for analysis of paired RD, is recognised
as having good two-sided coverage [39] and location. [40] A
corresponding asymptotic score method for paired RR is
also available. [41] Based on a very cursory exploratory
simulation study of the one-sided coverage properties of
the stratified asymptotic score methods, assuming correlated
event rates within strata, and with nij = 1, it appears that
TDAS with MH weighting performs well for paired binomial
RD and RR, and also for the corresponding paired Poisson
comparisons with low expected event counts in a large
number of strata. (HKSJ can be used for paired binomial RD
only: for the other contrasts it is biased by the addition of 0.5
to zero cell counts.) The coverage properties under a wider
range of conditions need further evaluation, but it seems that
the TDAS method could be used for the analysis of paired
rates, including Poisson rates, which are not catered for by
existing methods. It would also be interesting to explore
whether the one-sided performance of MOVER methods for
paired RD [42] and RR [43] would be improved by the use of
Jeffreys intervals.

Paired odds ratio, however, is another matter, and stratified
TDAS does not appear to excel here (which may suggest
problems also for stratified TDAS for OR when there
are many sparsely-populated strata). As the best existing
methods for the paired situation are based on transforming
an interval for a single proportion, [40] it seems likely that
either the SCAS or Jeffreys method for the single proportion
would be good alternatives to the ‘Transformed Clopper-
Pearson mid-p’ method. Both would have advantages of
relative computational simplicity: the former has a closed-
form solution, and the latter depends only on quantiles of a
Beta distribution.

Until now, few of the above methods have been implemented
in statistical software packages. An extension package
(‘ratesci’ [44]) is now available for the free software R [45],
containing the methods described in this paper, including
SCAS, MOVER-B and TDAS. HKSJ is already available
in the ‘meta’ package, [30] along with AN and DL. Of
the above methods, SAS currently only provides MN

and AN for binomial contrasts. [46] An online calculator
for the single-stratum SCAS method can be found at
http://ssu.sheffield.ac.uk/ratesci/calc.
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APPENDIX A

DEFINITIONS FOR SKEWNESS-

CORRECTED SCORE METHODS

Within the unified definition of the score method shown
in Section 2.1, the form of S(�), and the estimation of its
variance and skewness, depend on the situation as specified
below. These estimates rely on obtaining p̃2, the restricted
MLE of p2, from which p̃1 follows as p̃2 + � (for RD), p̃2�
(for RR), or p̃2�∕(1 + p̃2(� − 1)) (for OR). The following

formulae for S(�), p̃2 and Ṽ are essentially reproduced
from Miettinen and Nurminen. [1] The components that are
added here are the skewness estimates. These are derived
for each of the score statistics, using an estimate of the
third central moment �̃3 for each case. This is obtained
by treating �, p̃1 and p̃2 as constants, and using the fact
that for cp̂, a constant multiple of the estimator of a single
binomial proportion, �3(cp̂) is c3p(1 − p)(1 − 2p)∕n2, while
for a Poisson rate it is c3p∕n2. For binomial RD and RR,
these skewness corrections are found to be theoretically or
empirically equivalent to those derived by Gart and Nam. [5,6]

I believe the skewness corrections applied to the Poisson case
and the odds ratio are novel developments.

A.1 Rate Difference

The contrast function for RD is S(�) = p̂1 − p̂2 − �,
regardless of whether binomial or Poisson rates are involved.
The required estimated central moments for the binomial
case are:

Ṽ = [p̃1(1 − p̃1)∕n1 + p̃2(1 − p̃2)∕n2]N∕(N − 1) †

�̃3 = [p̃1(1 − p̃1)(1 − 2p̃1)∕n
2
1
] − [p̃2(1 − p̃2)(1 − 2p̃2)∕n

2
2
]

where p̃2 is obtained by solving the cubic equation
Ap̃3

2
+ Bp̃2

2
+ Cp̃2 +D = 0, with:

†Note the inclusion of the factor N∕(N − 1) in Ṽ , omitted by Gart and Nam,

which results in an unbiased variance estimate, and improves coverage properties

for smaller sample sizes.

A = N ;
B = (n1 + 2n2)� −N −X;
C = [n2� −N − 2X2]� +X;
D = X2�(1 − �);
X = X1 +X2 and N = n1 + n2.

This equation has a closed-form solution given by
p̃2 = 2ucos(w) − B∕(3A),

where w =
1

3

[

� + cos−1
v

u3

]

; v =
B3

(3A)3
−

BC

6A2
+

D

2A
; and

u = sign(v)

[

B2

(3A)2
−

C

3A

]1∕2

.

Note that it is necessary to truncate the input of the cos−1

function in w to the range [0, 1] to avoid errors from
‘negative zero’ values due to floating-point arithmetic used
in computer software. Also, if u = 0, p̃2 = −B∕(3A).

For the Poisson case, the central moments of S(�) are
estimated using:

Ṽ = p̃1∕n1 + p̃2∕n2

�̃3 = p̃1∕n
2
1
− p̃2∕n

2
2

where p̃2 is the solution (in [0, 1]) of the quadratic
Ap̃2

2
+ Bp̃2 + C = 0, that is:

p̃2 = [−B + (B2 − 4AC)1∕2]∕(2A),

where A = N , B = N� −X and C = −X2�.

A.2 Rate Ratio

For RR, the test statistic is based on the Fieller-type contrast
S(�) = p̂1 − p̂2�. The central moments for the binomial case
are estimated with:

Ṽ = [p̃1(1 − p̃1)∕n1 + �2p̃2(1 − p̃2)∕n2]N∕(N − 1)

�̃3 = p̃1(1 − p̃1)(1 − 2p̃1)∕n
2
1
− �3[p̃2(1 − p̃2)(1 − 2p̃2)∕n

2
2
]

where p̃2 = [−B − (B2 − 4AC)1∕2]∕(2A),

A = N�, B = −[n1� +X1 + n2 +X2�], and C = X.

Note that if � = 0, then A = 0, so the quadratic equation
in p̃2 becomes a linear equation Bp̃2 + C = 0, and therefore
p̃2 = X∕(X1 + n2).

In the case of Poisson RR, Graham et al [47] pointed out that
since p̃2 is the solution of a linear equation, the asymptotic
score (MN) interval has a closed form solution, being the
roots of a quadratic. However, to incorporate the skewness
correction requires iteration as before, using:

Ṽ = p̃1∕n1 + �2p̃2∕n2

�̃3 = p̃1∕n
2
1
− �3p̃2∕n

2
2

where p̃2 = X∕(n1� + n2)
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A.3 Odds Ratio

For OR, the situation is slightly different: the score function
S(�) is defined in terms of p̃1 and p̃2 instead of �, but these are
still solved as functions of �, so in practice the algorithm can
proceed in the same way as for RD or RR. In this case:

S(�) =
p̂1 − p̃1

p̃1(1 − p̃1)
−

p̂2 − p̃2

p̃2(1 − p̃2)
,

or equivalently

S(�) = (X1 − n1p̃1)

[

1

n1p̃1(1 − p̃1)
+

1

n2p̃2(1 − p̃2)

]

Ṽ = [1∕(n1p̃1(1 − p̃1)) + 1∕(n2p̃2(1 − p̃2))]N∕(N − 1)

�̃3 = (1 − 2p̃1)∕(n1p̃1(1 − p̃1))
2 − (1 − 2p̃2)∕(n2p̃2(1 − p̃2))

2

where p̃2 = [−B + (B2 − 4AC)1∕2]∕(2A), with

A = n2(� − 1), B = n1� + n2 −X(� − 1), C = −X.

Note that if � = 1, then A = 0, so
p̃2 = −C∕B = X∕N .

A.4 Single binomial or Poisson rate

It is also possible to apply the skewness correction to the
Wilson score method [48] for a single proportion (� = p), and
the corresponding Poisson interval, using S(�) = p̂ − �. In
this case, restricted maximum likelihood estimation of p for a
given � is unnecessary (since p = �): V and � are calculated
directly as V = �(1 − �)∕n and �3 = �(1 − �)(1 − 2�)∕n2

for a binomial proportion, and V = �∕n and �3 = �∕n2 for
a Poisson rate. In both cases, closed-form solutions can be
calculated:

For the binomial proportion, the limits are found using
[−B ± (B2 − 4AC)1∕2]∕(2A), where

A = E2 + z2∕n, B = 2DE − z2∕n, C = D2,
D = (z2 − 1)∕(6n) − x∕n, E = 1 − (z2 − 1)∕(3n).

The Poisson confidence limits are calculated similarly,
but with A = 1, B = 2D − z2∕n, C = D2, and
D = (z2 − 1)∕(6n) − x∕n.

When x = 0 the lower limit is corrected to 0, and in the
binomial case the upper limit is 1 when x = n.

A.5 Skewness-corrected hypothesis test

For a hypothesis test against � = �0, the Z-score can be cal-
culated from Equation (3) as [−B + (B2 − 4AC)1∕2]∕(2A),
where
A = �̃3∕(6Ṽ ),B = Ṽ 1∕2 andC = −[S(�0) + �̃3∕(6Ṽ )], with

�̃3 and Ṽ evaluated at � = �0.

In the stratified case,
A =

∑

j(wj∕W )3�̃3j∕(6Ṽ⋅), B = Ṽ
1∕2

⋅ and

C = −
∑

j[(wj∕W )Sj(�0) + (wj∕W )3�̃3j∕(6Ṽ⋅)].

APPENDIX B EXAMPLES

Hartung and Knapp [26] presented an example of a meta-
analysis of placebo-controlled trials of cisapride for the
treatment of non-ulcer dyspepsia. The dataset is provided
within the R package ‘meta’, so it is not reproduced
here.

Example confidence intervals for the single-stratum case
are shown in Table 2, using each of the methods described
in Section 2. These examples use the results of two
trials selected from the cisapride data, together with a
more extreme example used by Newcombe, [4] comparing
the proportion of patients experiencing respiratory adverse
effects following fungicidal treatment with terbinafine versus
placebo. The same data are used to produce artificial
examples for the Poisson distribution methods (as if the
‘success’ outcome were switched to an adverse event, and
assuming that the total follow-up period was proportional to
the number of patients in each group).

These examples are presented for illustration and software
validation, but note that it is not possible to draw general
inferences about the relative performance of different
methods from any single example. Readers who are
tempted to choose the MN method for RR based on the
relative interval widths shown here should refer back to
Figure 2.

The full cisapride meta-analysis is presented in Table 3,
showing point estimates and confidence intervals for the
estimated overall RD, RR and OR using various methods.
This includes the fixed effects approximate normal (AN)
method with both IV and MH weights, and the SCAS

intervals using MH and IVS weights. Random effects
intervals are shown, including DL and HKSJ, which rely on
IV weights, and TDAS with IVS weights.

For all three contrasts, significant heterogeneity (I2 = 73%)
is confirmed using the test described in Appendix S4.2.1,
and the random effects confidence intervals are accordingly
substantially wider than the fixed effects intervals.
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Table 2. Example 95% Confidence Intervals

Success rate: 12/16 (active) vs 1/16 (placebo) (Milo 1984)
Binomial RD Poisson RD Binomial RR Poisson RR Binomial OR

SCAS (0.386, 0.878) (0.285, 1.221) ( 2.648, 204.300) ( 2.161, 221.836) ( 5.586, 1025.364)
MN (0.375, 0.863) (0.299, 1.255) ( 2.487, 69.950) ( 2.002, 71.937) ( 5.144, 349.002)

MOVER-J (0.373, 0.849) (0.274, 1.201) ( 2.692, 109.329) ( 2.214, 115.261) ( 5.907, 521.865)
AN (0.444, 0.931) (0.246, 1.129) ( 1.762, 81.745) ( 1.560, 92.287) ( 4.426, 457.475)

19/29 vs 22/30 (Kellow 1995)
Binomial RD Poisson RD Binomial RR Poisson RR Binomial OR

SCAS (-0.312, 0.160) (-0.519, 0.361) (0.613, 1.271) (0.480, 1.653) (0.220, 2.126)
MN (-0.309, 0.158) (-0.524, 0.365) (0.615, 1.270) (0.488, 1.635) (0.230, 2.081)

MOVER-J (-0.301, 0.153) (-0.511, 0.355) (0.623, 1.257) (0.482, 1.646) (0.222, 2.096)
AN (-0.313, 0.156) (-0.503, 0.347) (0.635, 1.256) (0.484, 1.651) (0.227, 2.105)

Adverse event rate: 5/56 vs 0/29 (Goodfield 1992)
Binomial RD Poisson RD Binomial RR Poisson RR Binomial OR

SCAS (-0.019, 0.187) (-0.023, 0.197) (0.770, ∞) (0.726, ∞) (0.755, ∞)
MN (-0.033, 0.193) (-0.043, 0.209) (0.717, ∞) (0.674, ∞) (0.696, ∞)

MOVERJ (-0.010, 0.177) (-0.013, 0.188) (0.851, 5473) (0.804, 5460) (0.839, 6030)
AN ( 0.015, 0.164) ( 0.011, 0.168) (0.000, ∞) (0.000, ∞) (0.000, ∞)

Table 3. Stratified estimates and 95% Confidence Intervals for cisapride meta-analysis

Method Weights RD RR OR

Fixed effects: AN IV 0.341 (0.282, 0.400) 1.56 (1.38, 1.76) 3.42 (2.54, 4.61)
AN MH 0.309 (0.249, 0.369) 1.76 (1.54, 2.00) 3.64 (2.73, 4.85)

SCAS MH 0.309 (0.246, 0.370) 1.76 (1.55, 2.00) 3.87 (2.88, 5.22)
SCAS IVS 0.308 (0.244, 0.370) 1.75 (1.55, 2.00) 3.91 (2.91, 5.28)

Random effects: DL IV 0.338 (0.213, 0.463) 1.75 (1.37, 2.22) 4.14 (2.34, 7.32)
HKSJ IV 0.338 (0.203, 0.473) 1.75 (1.31, 2.32) 4.14 (2.22, 7.73)
TDAS IVS 0.329 (0.193, 0.465) 1.83 (1.39, 2.58) 4.33 (2.32, 9.04)
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