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Abstract—Recognition memory in a number of mammals is
usually utilised to identify novel objects that violate model
predictions. In humans in particular, the recognition of novel
objects is foremost associated to their ability to group objects
that are highly compatible/similar. Granular computing not only
mimics the human cognition to draw objects together but also
mimics the ability to capture associated properties by similarity,
proximity or functionality. In this paper, an iterative information
granulation approach is presented, for the problem of novelty
detection in complex data. Two granular compatibility measures
are used, based on principles of Granular Computing, namely the
multidimensional distance between the granules, as well as the
granular density and volume. A two-stage iterative information
granulation is proposed in this work. In the first stage, a prede-
fined number of granular detectors are constructed. The granular
detectors capture the relationships (rules) between the input-
output data and then use this information in a second granulation
stage in order to discriminate new samples as novel. The proposed
iterative information granulation approach for novelty detection
is then applied to three different benchmark problems in pattern
recognition demonstrating very good performance.

Index terms— Iterative information granulation, granular detec-

tors, compatibility criterion, information granules, novelty detection.

I. INTRODUCTION

In biological systems and in the majority of mammals,

detection of novel events usually requires a memory system,

which allow them to store representations of the environment

to make future predictions [1]. According to [1], the concept

of novelty detection in humans encompasses a diversity of

phenomena ranging from stimulus novelty to associative and

contextual novelty. Moreover, the novelty discrimination sys-

tem in humans mostly relies on the process of recall and

a number of comparator mechanisms in the hippocampus

whereby an entire stored pattern is retrieved in response to

a partial novel input. This ability is frequently associated

to the human cognition system to categorise/group objects

according to their compatibility/similarity hence use this in-

formation as a comparator memory system to identify novel

objects or patterns that violate abstract properties. As such, in

computational intelligence, granular computing has emerged

as a computational paradigm that mimics this human ability

to abstract the compatibility between two or more entities in

terms of specific characteristics such as functionality, prox-

imity, volume, density, etc [2]. Moreover, granulation plays a

crucial role in human cognition itself [3]. Granulation has been

the motto for data compression as a result of the confluence of

two streams, i.e. a) Fuzzy Logic and b) test-score semantics

[2]. In other words, the theoretical structure of granulation

involves integration of parts into a whole where granules are

drawn together by specific canonical forms usually viewed

as fuzzy constraints that lead to a conclusion expressed

in natural language [2]. Within this context, several efforts

have been devoted to data compression algorithms based on

granulation that are able not only to group compatible data

but also to capture relationships-rules within information [3-

9]. For instance, in [2] the authors developed a granulation

mechanism that captures data relationships in the form of

information granules (hyperboxes), while also emphasising

process transparency. In addition, the compatibility criterion

introduced in [10] favours the creation of highly dense and

compact information granules. In [6], a compatibility measure

based on proximity was employed to construct a number of

fuzzy logic rules which were used as the initial parameters of

a Radial-Basis-Function Neural Network viewed as an Interval

Type-II. The fuzzy rules were then optimised by applying an

adaptive gradient descent approach. For instance, in [10] a

hierarchical granular clustering algorithm was developed as a

mechanism that is able to capture the overall architecture of

the information granules as a hierarchy using granular interval

fuzzy sets. This method aims to address cases where the

datasets are not well defined (high uncertainty).

In this paper, we develop a iterative information granulation

approach that mimics the human ability to discriminate novel

information based on the granular nature of the data. Such

an approach involves a two-stage iterative process that first

granulates a sample data set and then builds a predefined

number of granules which we call granular detectors (can be

considered as information prototypes). The detectors serve as

a local comparator mechanism that describe the granular archi-

tecture of the data in order to discriminate novel information

as new or unknown in the second stage. We use three different

benchmarking examples in order to test the efficiency of the

proposed approach. The examples include the 1) classification

of the Iris data set, 2) colour segmentation of two multi-

class and a two-class images, and 3) the diabetic retinopathy

Debrecen data Set. The simulation results show a very good

overall performance when identifying the new datasets.

The rest of this paper is organised as follows: section

II briefly revisits the basic theory of data granulation and

describes the notation utilised throughout this paper. Section



III, a fuzzy membership that is used to improve the classif-

cation properties of the granulation process is suggested. A

detailed description of the proposed approach is provided in

section IV and a number of simulations are carried out in

section V in order to study the performance of the proposed

algorithm. Finally, section V concludes the paper and provides

recommendations for future research work.

II. PRELIMINARIES

We begin with a descritpion of a special case where X ⊂
Rn. It is possible to represent a data set that we call the sample

data set XS ⊂ X which is used to extract granular information

and will also be used to detect new and unknown data. The

novel data set is denoted as Xnd ⊂ X . Therefore, the notation

that will be used in this paper is:

xi : ith n-dimensional input vector in the sample data

set, i = 1, . . . , N where xi = {xs
i} and s = 1, . . . , n

xk : kth n-dimensional input vector in the novel data

set, k = 1, . . . ,M , where xk = {xs
k} and s = 1, . . . , n

We use the sample data set as a representative set in order to

generate a number of granules that we call granular detectors.

Such detectors result from a process of iterative information

granulation and then used to identify novel data.

A. Iterative information granulation

Iterative information granulation is a clustering technique

[2] used to cluster similar input entities according to their

geometrical and statistical properties. The final granules may

be viewed as fuzzy constraints that can enhance the in-

terpretability of systems. To achieve information grouping,

Iterative information granulation uses a criterion measure that

calculates a compatibility index based on granular similarity.

In essence, granulation is an iterative process, which consists

of two main steps.

• Find the two most ’compatible’ information granules A
and B and merge them together as a new information

granule containing both original granules.

• Repeat the process of finding the two most compatible

granules until a satisfactory data abstraction level is

achieved.

This process is repeated ′t′ times until a predefined number
′m′ of granules is achieved. The compatibility between any

two granules A and B is denoted as compat(A,B) which de-

fines how good a merging operation of two different granules

is [5], [4]:

compat(A,B) = distanceMAX − dA,Be
(−α∗dT ) (1)

such as

dT =
CA,B/CardinalityMAX

LA,B/LengthMAX

(2)

where CardinalityMAX and LengthMAX is the maximum

possible cardinality and length of a granule in the input data

set respectively. CA,B and LA,B is the resulting cardinality

and length generated by merging any two granules A and B.

B. Compatibility index based on Granular volume and density

In this section we define an extended compatibility measure

that is based on the compatibility criterion introduced in [2]

and then generalised in [5]. The rationale behind the proposed

measure is to create granules that are highly densed and

compact resulting in more distinguishable fuzzy constraints

which will serve as granular prototypes for the discrimination

of novel data. Thus, the compatibility can be stated as:

compat(A,B) = volumeMAX − dA,Be
(−α∗densityA,B) (3)

The local granular density between a granule A and B can be

stated as:

densityA,B =
cardA,B/CardinalityMAX

volumeMAX/volumeA,B

(4)

and

dA,B =
1

n

n
∑

s=1

ws ∗ L
s
A,B (5)

where: Ls
A,B = (max(uAs, uBs)−min(lAs, lBs))

volumeA,B =

n
∏

s=1

∆s ∗ L
s
A,B (6)

and

volumeMAX =
n
∏

s=1

∆s ∗ L
s
MAX (7)

where Ls
MAX is the maximum possible length in the dimen-

sion s of the input space. volumeMAX and volumeA,B are the

maximum possible volume and the volume of each resulting

granule (A,B) in the data set respectively. Note that if any

side of a granule is zero, then the volume becomes zero. In

order to alleviate this problem we use a term ∆s as follows.

∆s =

{

1, if Ls
A,B 6= 0

0 < ∆s ≤ 0.01, if Ls
A,B = 0

ws plays the importance weight for the dimension s such as

s = 1, . . . , n and α weights the requirements between the

granular density and cardinality/length. In Eq. (5), lAs and

uAs are the lower and upper limits (corners) of the granule A
respectively.

III. HARD VERSUS FUZZY-BASED ITERATIVE

GRANULATION

As it is mentioned in [7] iterative information granulation

is a process that groups similar entities according to their

compatibility, functionality and similarity. However there is

not a measure that leads how much a granule must grow

producing a grade of inclusion uncertainty among the final

granules (m). This ravenous behaviour biases the granulation

process to the creation of highly overlapped granules affecting

the average classification performance.

As described in [2] the main purpose of iterative information

granulation is the creation of a set of compact granules which

contain a number of information properties that describe the



general architecture of a data set. It has also been demonstrated

that iterative information granulation performance can be

compared with some other techniques such as Fuzzy C-Means

and k-means clustering. However, the granulation algorithm

described by the Eq. (1) and (3) inherits the limitations of hard

partitioning techniques to not properly discrimate the data el-

ements that belongs to two or more classes (fuzzy clustering).

We believe that a fuzzy version of the granulation approach

might improve the classification capabilities of the iterative

information granulation. For instance, in [11], a supervised

learning neural network whose firing strentghs depends on

the construction of a predefined number of fuzzy hyperboxes

was introduced. Each hyperbox replaces the crisp decision

boundaries of a perceptron neural network whose values range

from 0 to 1 in each dimension by fuzzy memberships. As

reported in [11] the fuzzy version of the neural network

demonstrated to be more efficient to its crisp counter part.

Thus, we suggest a granular membership µgi that evaluates

the fuzzines of any input vector xi with respect to the granule

gi ( granular detector) as follows:

µi =
1

n

n
∑

s=1

µs (8)

such as the dimensional membership µs is computed as:

µs =







max
(

xs
i−lsi

xavr−ls
i

, γ
)

, if lsi ≤ xs
i < xs

avr

max
(

us
i−xs

i

us
i
−xs

avr
, γ

)

, if xs
avr ≤ xs

i ≤ us
i

(9)

Where γ, µs, µgi ∈ [0, 1] and xs
avr is

xs
avr =

1

cardi

n
∑

s=1

xs
i (10)

The parameter γ ∈ [0, 1] is a sensitivity parameter that

indicates how crisp is xs
i . That is, the higher the value of

γ, the more crisp xs
i is. For example if γ = 1, the granulation

approach can be viewed as a hard partition clustering of its

fuzzy counterpart where 0 < γ ≤ 1.

IV. ITERATIVE INFORMATION GRANULATION FOR

NOVELTY DETECTION

The proposed approach is inspired by the cognitive ability of

humans to granulate similar objects/entities and then use this

information to discriminate novel data as new or unknown.

The rationale behind the proposed approach is to create a

set of granular detectors that are highly dense and compact

resulting in a set of distinguishable fuzzy constraints which

will serve as granular prototypes to discriminate information

as new or unknown, compared to an initial (original) dataset

XS . The proposed iterative information granulation for novelty

detection is a two-stage iterative clustering approach whose

main task is to extract relevant information of a sample data set

XS in order to generate a number of ′m′ granular detectors gi.
Such detectors are used as information prototypes of relevant

granular information captured during the granulation process.

As illustrated in Fig. 1, the first stage consists of an algorithmic

loop that granulates the sample data set m times by using a

different weighting factor α, α ∈ [α1, αn]. This loop is also

used to determine the optimum value of α and to build the

set granular detectors gi. Each granular detector is generated

using Eq. (1); Eq. (3) is used to extract the associated

information that results from the granular density including

the geometrical boundaries of each cluster (granule-[lsi , u
s
i ]),

the corresponding cardinality (number of elements per cluster-

cardi), the compatibility based on the local granular density

and volume Ci
v and the local compatibility based on the local

proximity Ci
v . Thus, we define each gi as a tuple of granular

information stated as follows:

gi =< lsi , u
s
i , C

it
d , C

it
v , cardi >, i = 1, . . . ,m (11)

where the terms Cit
d = {Ci1

d , . . . , Cicardi

d } and Cit
v =

{Ci1
v , . . . , Cicardi

v }, and cardi ≤ cardMAX . ’i’ represents the

index for the final number of granular detectors/clusters and t
the iteration number.

Collect Sample data

Granulate de sample 
data set using the

updated value of α

STOP: α >       ?α n 

α 1 α =  

EXTRACT the 'g'
Granular detectors

and select α

COMPUTE the matrix
of compatibility based
density and volume

 α = α + ∆

COMPUTE  the
compatibility  C   &
C   of novel data X

d

v

 k = k + 1

Classify novel
data as new 

 NO

 NO

 YES

 k =  1

i

STOP: k > M?

Classify novel
data as unknown 
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1

2

it

Stage

Stage

l

 set

ik

ik
nd

C   ≥ C     & C   ≥ C  ?v d
it

v 
ik

_ _
ik
d

 NO

Fig. 1. Flow diagram of the proposed iterative information granulation
for novelty detection.

The second stage is used as a comparator mechanism where

the information that is captured by the granular detectors is

used to discriminate novel data as new or unknown. Thus, a

loop of Iterative information granulation is carried out. At each

iteration the compatibility based on distance Cik
d and granular

density and volume Cik
v (where k = 1, . . . , cardi) of a novel

input vector xk with respect to each granular detector gi are

computed. The most two compatible vectors gi and xk are

then selected. The input vector xk is merged or considered

as new to gi if its associated compatibility Cik
d ≥ C̄it

d and

Cik
v ≥ C̄it

v , where C̄it
d = min(Cit

d ) and C̄it
v = min(Cit

v ).
In other words, C̄it

d and C̄it
v are viewed as compatibility



thresholds to merge novel data to the granular detectors gi
as new or deleted as unknown. Once the novel data have been

classified, the granular detectors are employed as the final

clusters that contain information in relation to the functionality

and compability of the original data.

V. SIMULATION RESULTS

In order to study the performance of the proposed novelty

detection methodology, three different examples are used,

namely: 1) classification of the Iris data set, 2) colour seg-

mentation of two multi-class and a two-class images, and 3)

the diabetic retinopathy Debrecen data set.

1) Iris plant classification: The Iris data set is a popular

data set found in the pattern recognition community that

contains three classes, namely: a) Iris setosa, b) Iris versicolour

and c) Iris virginica of 50 instances each, where each class

refers to a type of an iris plant. One class is linearly separable

from the others and the latter are not linearly separable from

each other. We perform a set of 5 simulations of 10 trials each

with three granular detectors. In each experiment the Iris data

set was randomly divided into two sub-sets, i.e. 1) a set that is

employed as the sample data set and hence granulated during

the first stage in order to create a set of granular detectors gi.
The 2) second set which consists of the rest of the instances

which are used to test the efficiency of the granular detectors

gi. An increment ∆i = 0.05 was also used to identify the

fuzzy weighting factor ′α′ that produces the smallest Average

Missclassification of Novel points (AMN).

TABLE I
AVERAGED RESULTS OF 10 TRIALS FOR NOVELTY DETECTION BY USING

THE IRIS DATA SET WITH 3 GRANULAR DETECTORS gi .

Average number of Missclassifications

% α Setosa Versicolour Virginica AM

Iterative Information Granulation Results

Stage 1: Granulation of the sample data

10 0.05 0 1.7 2.2 3.9

30 0.15 0 2.8 4.1 6.9

50 0.25 0 3.4 7.4 10.8

80 0.3 0 2.1 5.0 7.1

100 0.2-0.3 0 2.0 3.0 5.0

Stage 2: Novelty detection results AMN

90 0.05 0 5.2 14.7 19.9

70 0.15 0 4.5 16.8 21.3

50 0.25 0 7.9 3.7 11.6

20 0.3 0 4.0 4.0 8.0

Classification Results

Neural Fuzzy Classification of type-1 (NFM-T1) [7] AM

50 0.3 1.0 3.0 2.0 6.0

100 0.3 1.0 2.0 0.0 3.0

Interval Type-2 RBF Neural Network (IT2-RBF-NN) [6]

50 0.3 0.0 2.0 1.0 3.0

100 0.3 0.0 0.0 0.0 0.0

Fuzzy C-Means (FCM)

100 - 1.0 7.0 8.0 16

In table I, the numerical simulation results produced by the

proposed iterative granulation approach are compared to three

different classification techniques, namely 1) Neural Fuzzy

Model of Type-I (NFM-T1), 2) an Interval Type-2 RBF Neural

Network (IT2-RBF-NN) and the well known 3) Fuzzy C-

Means (FCM).

The results obtained by using the proposed methodology

for novelty detection are presented in table I according to

two different stages. First, at stage 1 the Average number

of Missclassifications (AM) that results from the construction

of the granular detectors (gi) and from the granulation of

the sample data set are presented. Secondly, At stage 2, the

Average number Missclassification of Novel points (AMN)

by using an input data set of different sizes is showed. The

column (%) can be seen in two parts, i.e. while at the stage

1 it indicates the percentage of samples that were used to

create the sample data, at the stage 2 the value (%) represents

the percentage of instances that were used as testing or novel

data. The middle columns (setosa, versicolour and virginica)

are the average number of misclassifications per class and the

same factor α is used in the first and second stage. However,

the value of α was set up with a different value at each

experiment. Finally, we included in the bottom section of table

I the simulation results produced by three different classifiers.

For the training of the NFM-T1, IT2-RBF-NN 50% and 100%
out of the total instances were employed. According to [6]

and [7], two different phases are involved in order to estimate

the final parameters of the NFM-T1 and the IT2-RBF-NN.

Firstly, the initial parameters of the NFM-T1 and IT2-RBF-

NN are computed by granulating the training data set (50% and

100%), and then a second step based on an adaptive gradient

descent approach is employed to optimise the fuzzy inference

mechanism.

As it can be seen in table I, in spite of the fact that

the proposed novelty detection approach does not employ a

second optmisation step, the associated classification results

are comparable. Moreover, from table I, it is also clear that

the proposed methodology for novelty detection overcomes

its counterpart the Fuzzy C-Means particularly when the

percentage of data used to construct the granular detectors

is equal or larger than 50%.

In Fig. 2, radar plots are used to depict the granular detectors

with solid line produced by the granulation approach that

is performed in the first stage. As mentioned in [10], it

becomes apparent that (interval-valued) detectors (prototypes)

deliver a better representation of the discovered structure than

their numeric counterparts. It is also evident that the granular

detector for the Iris Setosa (linear class) is characterised by

a broad range of values in the Petal length and Sepal length

features, while the versicolour and virginica classes are more

characterised by the Petal width and Petal length features

(dimensions). The lowest value of Ci
v and Ci

d are used as

classification thresholds in the second stage to discriminate

novel data as new or unknown. Furthermore, the behaviour of

the compatibility Ci
d and Ci

v vs cardinality exhibits a similar

fluctuation during the granulation process in the first stage.
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That means the density and the volume of each detector

decrease when the granulation is not able to find highly com-

patible data. For this reason we suggest to use the minimum

of the compatibility Ci
v and Ci

d as comparator thresholds to

classify novel data. In Fig. 3, the individual behaviour of the

compatibility measures based on the distance Ci
v (Fig. 3.A)

and the granular density and volume Ci
d (where i = 1, 2, 3,

Fig. 3.B) are illustrated.

A. Color Image Segmentation

Colour segmentation is a process of grouping an image into

units that are homogeneous with respect to one or more char-

acteristics/regions of colour [12]. Segmentation of an image

may also viewed as an image classification problem based on

colour and spatial features. Several research works have used

unsupervised techniques such adaptive thresholding, k-means

clustering, Fuzzy C-Means, principal components transform,

split and merge and multiresolution segmentation. Usually in

supervised techniques such as neural networks the classified

pixels are employed to generate a number of prototypes which

are optimised by the application of learning strategies. In this

example, we use two multiclass images (Fig. 4(A) fruits and

4(B) chillies) and a two-class image (Fig. 4(C) tree) to futher

test the performance of the proposed methodology with a

factor α = 0.1. According to the proposed methodology, a

sample data set of pixels is initially extracted of each image

(see Fig. 4) that is then converted from RGB color space to

L ∗ a ∗ b color space [13]. Consequently, a predefined number

of granular detectors are obtained from granulating the sample

data set (stage 1). Such detectors are finally employed in a

second stage in order to segment the entire images (stage 2).

Particularly in this problem, we use the granular detectors not

only to cluster data but also to identify novelt data.

We compared our results against the segmentation obtained

by the application of the k-means algorithm (Fig. 4, second

column) where the number of detectors ′m′ was empirically

determined. According to our simulation results (Fig. 4, third

column), the iterative information granulation approach pro-

posed in [2] and [5] can not be applied directly since the

associated computational cost results highly expensive. For

this reason, we believe the application of the proposed novelty

detection represents an attractive computational technique for

colour image segmentation. As can be seen from Fig. 4, a

small sample data set that is extracted from each image is

required to produce comparable results to those obtained by

applying the k-means algorithm. However, a limitation of the

proposed approach is that the granular detectors are able to

capture only the associated properties contained in the sample

data set. Therefore, unknown data are clustered to that detector

with the lowest compatibility. For example, in Fig. 4.A those

regions in red colour would be grouped with the regions in

light yellow. This is due to the similarity of the granular

volume and density in both regions. For example, the colour

segmentation of the image chillies (third column of Fig. 4(B)),

it is clear that the proposed approach was able to better identify

the dark areas (blue regions) compared to k-means which is

only based on distance metrics. We also found that in the range

0.01 ≤ α ≤ 0.15 similar colour segmentation results by using

the proposed iterative granulation can be produced.

B. Diabetic Retinopathy Debrecen (DRD) Data Set.

The last example is a data set that contains features extracted

from the Messidor Image set used to predict whether an image

contains signs of diabetic retinopathy (DR) or not [14].
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Fig. 4. Test images. (A)-(B) Multi-class images: (A) fruits and (B) chillies. (C) two-class tree image.

Diabetic retinophaty (DR) is a type of disease that results

from diabetes mellitus affecting the retina. The key to success-

fully recognise the DR is the detection of microaneurysms

(MAs) on the retina. The DRD data set consists of 1151

twenty-feature vectors that represent either a detected lesion,

a descriptive feature of a anatomical part or an image-level

descriptor. The following list describes the attribute informa-

tion:

1 The binary result result of quality assessment. 0 = bad

quality 1 = sufficient quality

2 The binary result of pre-screening, where 1 indicates

severe retinal abnormality and 0 lack of abnormality.

3-8 The results of MA detection. Each feature value stand for

the number of MAs found at the confidence levels alpha

= 0.5, . . . , 1, respectively.

9-16 contain the same information as features 3-8) for ex-

udates. However, as exudates are represented by a set

of points rather than the number of pixels constructing

the lesions, these features are normalized by dividing

the number of lesions with the diameter of the ROI to

compensate different image sizes.

17 The Euclidean distance of the center of the macula

and the center of the optic disc to provide important

information regarding the patients condition. This feature

is also normalized with the diameter of the ROI.

18 The diameter of the optic disc.

19 The binary result of the classification that is based on the

Amplitud-Modulation Frequency-Modulation (AM/FM).



CL Class label. 1 = contains signs of DR, 0 = no signs of

DR.

In this case study, we evaluate the efficiency of both hard

and fuzzy-based iterative granulation for novelty detection, as

described in section III. To gain a more detailed insight of the

proposed study, in this section we perform two different types

of experiments of 10 random trials. In the first experiment the

entire input data set is used to evaluate the performance of

the fuzzy version of the iterative information granulation. For

the ease of comparison with existing techniques, in table II

the simulation results produced by the proposed fuzzy version

are presented. The columns ’NO DR’ and ’DR’ show the

average number of missclassification per attribute/dimension

of each experiment. The last column indicates the Average

Classification Performance (ACP) which is the average number

of missclassifications overall.

As expected, the results illustrated in table II confirm that

the evaluation of a fuzzy membership during the process of

granulation enhanced its classification properties. It is also

interesting to note that the associated behaviour of the FCM is

limited compared to k-means. We believe that the hard version

of granulation (iterative information granulation) outperformed

the k-means and particularly small values in the factor α make

the iterative information granulation similar to algorithms

based on distance metrics and favour the creation of small

granules that are high density. In order to illustrate the final

shape of the granular detectors produced in the first experi-

ment, in Fig. 5.A and 5.B we use radar plots. Note that the

shaded area represents the lower and upper limits of gi, where

it is also included the final compatibility Ci
d. Particularly in

Fig. 5.C the final overlapping among the granular detectors is

shown. As described above, a significant overlapping is usually

exhibited which might result in a deterioration of the final

classification.

The second set of experiments consists of the application of

the proposed fuzzy-based iterative information granulation for

novelty detection. In a like manner to the previous examples,

we divide the DRD data set into two sets, namely a) a sample

data set and b) the novel data set. In table III, the first

column (%) represents the percentage of instances extracted

from the entire data set that was used to create the final

granular detectors (gi). For the case of fuzzy granulation, it

was found that the best value for γ = 0.2. However, the

classification results were significantly different compared to

using a granular membership.

TABLE II
AVERAGED CLASSIFICATION RESULTS OF 10 TRIALS BY USING FCM,

K-MEANS AND ITERATIVE INFORMATION GRANULATION FOR THE DRD
DATA SET.

Average missclassification

Approach α m NO DR DR ACP

FCM - 2 304.7 18.1 161.4

k-means - 2 92.7 38.8 65.7

Hard Granulation 0.012 2 52.0 26.0 39.0

Fuzzy Granulation 0.012 2 20.0 19.0 18.0
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Fig. 5. Granular detectors normalised in the range [0− 1]: (A) NO signs of
DR, (B) Signs of DR and (C) Overlapping area of the final detectors.

Consequently, in Fig. 6, the behaviour of the compatibility

index based on the granular density and volume (Fig. 6.A)



and on the granular distance (Fig. 6.B) for a sample data set

of 30% are illustrated. Similar to the simulation results in the

first experiment, from Fig. 6 it is clear that small values of

the factor α favours the creation of highly densed granular

detectors (small values of Cit
v ) that depends more on the

distance (Cit
d ). In other words, as described in [5], the term α

plays the role of a compatibility weight while the term γ is

used to define the fuzziness of the input data in each granule

that we call granular universe of discourse.

TABLE III
AVERAGED MISSCLASSIFICATION RESULTS OF 10 TRIALS USING 2

GRANULAR DETECTORS.

Average Missclassification

Hard Granulation

% α γ NO DR DR ACP

30 0.05 1 118.1 67.2 92.6

50 0.01 1 89.3 62.1 75.7

70 0.012 1 78.0 55.6 66.8

Fuzzy Granulation

30 0.05 0.2 25.1 22.1 23.6

50 0.01 0.2 23.4 21.0 22.2

70 0.012 0.2 18.3 19.3 18.8
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Fig. 6. Behaviour of the compatibility Cit

v and Cit

d .

VI. SUMMARY AND FUTURE WORK

In this research paper a novelty detection approach is

proposed, based on iterative information granulation. This is

achieved by creating a systematic algorithmic process that

first granulates a sample data set capturing the associated

structure (relationships/rules) of the data in terms of granular

information. Subsequently, this information is used in a follow-

up algorithmic process in order to identify new or unknown

data (novelty detection). The second stage plays the role of

a comparator mechanism based on a number of granular and

threshold measures such as cardinality, granular volume and

density, proximity and the corresponding granular compatibil-

ity generated by this information. The granular ”detectors”
(or information prototypes) are considered as a ”footprint”

of the process of granulation where important relationships are

recorded as granular information.

In order to test the performance of the proposed approach

we employ three different benchmark case studies, including

categorical information/data, colour image segmentation, and

biomedical classification problem. Furthermore, by introduc-

ing a granular membership function, the granulation approach

has the ability to find reasonable decision boundaries in

overlapping classes.

Since the introduction of granulation as a clustering ap-

proach, there are still some analytical issues to be addressed.

For example, the uncertainty generated by the overlapping

phenomenon which may hind the classification performance

of iterative information granulation.
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