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Abstract—In this paper the development of a new embedded 

feature selection method is presented, based on a Radial-Basis-

Function Neural-Fuzzy modelling structure. The proposed 

method is created to find the importance of features in a given 

dataset (or process in general), with special focus on 

manufacturing processes. The proposed approach evaluates the 

impact/importance of processes features by using information 

theoretic measures to measure the correlation between the 

process features and the modelling performance. Crucially, the 

proposed method acts during the training of the process model; 

hence it is an embedded method, achieving the 

modelling/classification task in parallel to the feature selection 

task. The latter is achieved by taking advantage of the 

information in the output layer of the Neural Fuzzy structure; in 

the presented case this is a TSK-type polynomial function. Two 

information measures are evaluated in this work, both based on 

information entropy: mutual information, and cross-sample 

entropy. The proposed methodology is tested against two popular 

datasets in the literature (IRIS – plant data, AirFoil – 

manufacturing/design data), and one more case study relevant to 

manufacturing – the heat treatment of steel. Results show the 

good and reliable performance of the developed modelling 

structure, on par with existing published work, as well as the 

good performance of the feature selection task in terms of 

correctly identifying important process features. In the presented 

case studies and simulation results the mutual-information –

based implementation of the algorithm appears to perform better 

compared to the cross-sample entropy-based implementation. 

Keywords: Feature selection, information entropy, information 

measures, Radial Basis Function, Fuzzy Logic, Manufacturing 

Systems 

I. INTRODUCTION 

Feature selection is the procedure for finding the most 

important features of a system by removing irrelevant data (or 

whole variables). This is often a significant step in data-driven 

modelling, in order to develop models that represent the 

behaviour of the process under investigation. The main aim of 

feature selection (FS) is to determine a minimal feature subset 

from a problem domain while retaining high accuracy in 

representing the original features. Good feature subset 

includes features that are correlated with the decision feature 

and uncorrelated with each other. 

Feature selection algorithms are categorised into filters, 

wrappers and embedded methods [1, 2]. In this paper, an 

embedded method is presented; this is a method that combines 

the construction of the classifier/model and the feature 

selection task. The proposed method relies on a Radial Basis 

Function (RBF) classifier (one that is designed to be 

equivalent to a Fuzzy Logic–based system) to perform the 

classification task, while at the same time also performs a 

ranked feature selection. For the first time in the literature, 

information measures are utilised to perform the embedded 

feature selection in an RBF system, namely: mutual 

information and Cross-Sample Entropy. These information 

measures are used to measure the relevance of the individual 

features compared to the performance of the model (prediction 

accuracy). For the RBF implementation a 3-layer Neural 

Network is used, with the output layer defined as the 

equivalent of the TSK Fuzzy Logic System. Subsequently, 

information measures are applied to the output layer, to 

perform feature selection. 

Mutual Information (MI) [3], Approximate Entropy (ApEn) 

[4] and Cross-Sample Entropy (CSE) [5] are some of the most 

commonly used algorithms for feature selection that are based 

on Shannon entropy [6].  

Several studies focus on the use of mutual information and 

cross-sample entropy, as filter methods, to perform the feature 

selection task. For example, in the area of healthcare, CSE is 

used in RNA structure analysis [7] and DNA microarray 

analysis [8], as well as MI has been used in [3] for feature 

selection. The use of such information measures is also 

popular with wrapper (use of classifiers) such Naïve Bayes 

[9], Support Vector Machine [10], Probabilistic Neural-

Network [11] as well as clustering methods: k-nearest 

neighbour [12] and Decision Trees [13]. Existing work uses 

entropy methods to pre- or post- process the results (raw 

datasets) of wrapper (classifiers) methods. There is existing 

work that addresses Fuzzy Logic and wrapper- or embedded-

based feature selection, such as [14-16], however no work has 

been so far reported that focuses on information measures and 

RBF Fuzzy Logic Systems as an embedded method, i.e. a 

method that performs classification and feature selection in 

one task. 



The presented work relies on a popular implementation of 

Fuzzy Logic systems, the Radial-Basis-Function Neural-

Network [17]. This implementation, as shown in detail in the 

following sections conveniently uses a simple 3-layer Neural-

Network (NN) structure to realise a Fuzzy Logic equivalent 

modelling structure, under some conditions. The output layer 

(in this case a TSK polynomial function) of the NN is used to 

extract information on the relevance of the process features to 

the performance of the model. This is carried out while the 

NN is trained via an error-propagation (EP) parametric 

optimisation routine. Thus, the proposed embedded feature 

selection method performs the feature selection task while the 

NN is trained (by utilising information produced after each 

iteration of the EP algorithm. The proposed work is tested 

against publicly available benchmark data, as well as a real 

case study on a manufacturing process that is highly non-

linear and contains significant uncertainty in the data. Results 

show that the proposed algorithm performs well, and correctly 

identifies the relevant features in every case, while also 

achieving a very good classification performance. 

 
The rest of this paper is organised as follows: a brief 

description of each of the used algorithms and computational 
methods is presented in Section II: Background Theory. The 
proposed method is presented in Section III, and associated 
simulation results are shown in Section IV. Finally, Section V 
includes concluding remarks on the proposed feature selection 
approach and directions for future research. 

II. BACKGROUND THEORY 

A. Radial Basis Function Neural-Fuzzy Modelling 

Neural-Fuzzy models are popular implementations of Fuzzy 

Logic Systems due to their hybrid modelling characteristics, 

which share traits from Neural-Networks as well as Fuzzy 

Logic Systems [18]. Specifically, the learning performance of 

the NN, is combined with the transparency, simplicity and 

tolerance to uncertainty of the Fuzzy Logic system. Radial 

Basis Functions can be used as the activation functions of a 

simple 3-layer Neural-Network to create a modelling structure 

that is mathematically equivalent to a Fuzzy Logic system 

[19]. Fig. 1 shows the structure of the RBF-NF model, which is 

mathematically described as: 

 

(1)

 

 

 

 

where μij(χj) is the Gaussian membership function of χj that 

belongs to the i-th rule. 

                                       (2) 

where cij
 

and σij are the centre and the width of each 

membership function respectively, m the number of inputs and 

p number of rules.  

 
Fig. 1 Radial Basis Function – Neural Fuzzy Model 

 

This NFM implementation is for centre of gravity 

defuzzification, product inference rule and an output function 

of singleton type. Mamdani and TSK implementations are also 

possible by replacing the output layer of the NN with 

appropriate functions. 

 

The output of the Neural-Network can be calculated using the 

definition of the RBF function as follows: 
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input vector. 

 

The training of the RBF-NFM can be achieved by a number of 

parametric optimisation algorithms, such as ones based on 

gradient descent or evolutionary optimisation methods. In this 

paper an error propagation (EP) algorithmic used, with 

adaptive learning and momentum rates for better avoidance of 

local minima [19]. 

 

 ( )

( )
2

2

j ij

ij

x c

ij jx e
σ

µ

 
 
 
 
  
 

−
−

=

y = z
i

µ
ij

x
j( )

j=1

m

∏

µ
ij

x
j( )

j=1

m

∏
i=1

p























i=1

p





The appeal of the RBF-NFM is that the overall model 

structure is rather simple (3-layer NN), thus computationally 

not expensive, it offers universal approximation capability 

[20], and it is mathematically equivalent to a class of Fuzzy 

Logic systems. 

B. Information Measures 

Mutual Information (MI). One of the goals in predictive 

modelling is to minimise the uncertainty of the dependent 

variable. A good formalisation of the uncertainty of a random 

variable is given in Shannon and Weaver’s [21]. MI is a 

criterion from the information theory and has proven very 

efficient feature selection algorithm [22, 23]. The mutual 

information measures the amount of information contained in 

a variable or a group of variables, in order to predict the 

dependent one. It also is model-independent, and nonlinear, as 

it measures the nonlinear relationships between variables. One 

of the most important advantages of MI is its ability to detect 

non-linear relationships between variables, while other 

popular criteria as the well-known correlation coefficient are  

limited to linear relationships. Using MI it is possible to 

process both categorical and discrete data [24].  

 

Cross-Sample Entropy. The Cross-Sample Entropy (CSE) is 

an extension of the sample entropy (Samp-En) algorithm and 

was introduced by Richman and Moorman [25]. Samp-En is 

also introduced by Richman and Moorman [25] and has the 

ability to estimate the signals’ regularity. One has to divide the 

time-series in subseries with length m and estimate the 

conditional probability of how times matches to the next 

subseries with the same length m and with a tolerance r. The 

negative natural algorithm of the previous result is the Samp-

En. Samp-En is introduced in order to avoid the bias caused in 

the case of ApEN [26], resulting from the counting of self-

matches [27, 28]. Samp-En indicates more self-similarity in 

signal analysis and it is a simpler algorithm, compared to 

ApEn and, that needs approximately half the computational 

effort. In addition, via the CSE algorithm, one can analyse and 

quantify the asynchrony between two related signals, estimate 

the probability of similar patterns between these signals 

without depending on direction [25].  

The CSE algorithm estimates the conditional probability of 

how many times two similar sequences of m points matches to 

m+1 points with tolerance d. Negative natural logarithm of the 

previous results, gives the CSE. The CSE algorithm follows 

[25, 29]:  

For two normalized sequences x(i) and y(i), 1≤i≤N, the vector 

sequences Xi
m and Yj

m were formed as follows:  

 

X
i

m = x(i), x(i +1),..., x(i + m −1){ }
  

(5) 

 

Y
j

m = y( j), y( j +1),..., y( j + m −1){ }
 
(6) 

where 1≤ i, j ≤ N − m, N is the number of data points of each 

time series and m (embedding dimension) and r (tolerance 

limits of similarity) are fix parameters. 

The distance between Xi
m and Yj

m is defined as:  

d
i , j

m = d[X
i

m ,Y
j

m] = max x(i + k) − y( j + k)
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where 1≤ k ≤ m −1.  

For each i ≤ N − m, denote: 
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(10) 

High asynchrony corresponds to high CSE values [25].  

III. PROPOSED METHODOLOGY 

The overall feature selection framework is shown in the flow 

chart of [Fig. 2].  

 

 
Fig. 2 Feature selection framework - flow chart 

 

The process starts by a data pre-processing step that includes 

the normalisation of the data set. The dataset is also split into 

three separate sub-sets, a training dataset (to train the model), 

a checking dataset (to check for over-fitting during training) 



and finally a testing dataset (for testing the model’s 

performance after training).  

A. Structural and Parametric Optimisation 

The optimisation of the model is performed in two steps, the 

structural optimisation of the RBF-NF model (in terms on 

number of rules), and the parametric optimisation of the 

model’s weights (centre and sigma for each membership 

function, as well as output TSK weights) [19]. Fuzzy c-means 

is used to cluster the raw data. This produces the desired 

number of rules (via heuristic adjustment as well as use of 

cluster validity measures), which also includes the initial 

values of centre and sigma for each of the membership 

functions. The parametric optimisation of the modelling 

structure follows, which includes the use of an adaptive-EP 

algorithm. Again, heuristically, the best optimisation 

parameters need to be established, such as the total number of 

training epochs, the initial rates of learning and momentum for 

the gradient descent, as well as the decreasing and increasing 

factor for the adaptive weights [19].  

B. Feature Selection 

The novelty of the proposed methodology is in the use of the 

correlation between the output layer weights (TSK)  [Fig.3] of 

the RBF model to the model’s training RMSE [Fig.4] as a 

measure of input (feature) relevance.  

Fig.3 shows an example of how the feature weights in the TSK 

output polynomial change during training (for 300 iterations) 

for one rule. The TSK polynomial for each rule is of the form: 
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where wj is the weight for the correspond input xj. 

Similar to regression analysis, the goodness of fit can be 

correlated to the coefficient of determination to estimate (and 

rank) the relevance of a particular feature in a dataset. In this 

paper an information theoretic approach is used, and the 

goodness of fit (RMSE in this case) is correlated to the 

variance of individual feature weights in the TSK polynomial.
 

 
Fig. 3 TSK output layer example: feature weights per rule 

 

 

 
Fig. 4 Model training performance - RMSE  
 

Two measures are tested for their effectiveness in the feature 

selection task, MI and CSE. Both implementations provide a 

numerical index that presents the relationship between the two 

vectors, in our case the two vectors include the feature’s 

weight vector in the TSK polynomial and the model’s training 

performance measured as the RMSE. The proposed approach 

is calculated for each rule, and repeated for the rest of the 

Fuzzy Logic rules in the rulebase. Final feature relevance is 

derived, after aggregating the relevance of each feature across 

all Fuzzy Logic rules. In the case of MI, higher indices’ values 

correspond to more important features [3], and for CSE the 

inverse can be assumed [25] (i.e. lower absolute value). This 

information can then be used to rank all the features in the 

dataset in terms of their relevance/importance to the model’s 

predictive performance.  

IV. SIMULATION RESULTS 

To demonstrate the effectiveness of the proposed 

methodology, three case studies of 4, 5 and 15 dimensional 

spaces are reported here. First we explore the proposed 

method’s ability to rank relevant features by using the Iris 

plant dataset [30] that is one of the most used literature case 

study. The second case study under simulation is the Airfoil 

Self-Noise [30] problem, which represents a 

manufacturing/design example. The third case is also from the 

manufacturing sector, and it involves the Heat Treatment of 

Steel [31].  

The use of these three data sets secures three main 

characteristics for the evaluation procedure:   

 

• Reliability in the data sets, that already have been 

used and tested in previous studies (for the purpose of 

fair comparison). 

• Inclusion of both categorical and continuous data. 

• Variety in the number of instances/samples, ranging 

from 150 to a few thousand samples.  

 

For the evaluation of the proposed method, the three datasets 

were normalised and then randomised. As discussed in the 

methodology section, three sub-sets were created (using 

random sample selection) for each case study. Subsequently, 

FCM clustering was used for the structural optimisation of 

each model and adaptive-EP for the parametric optimisation. 



As detailed in Section III, the parameters for the structural and 

parametric optimisations were established heuristically. For 

the purpose of simulation consistency, and to be able to 

perform a fair comparison of the methodology between 

different case studies, in all three cases the datasets were 

separated in a similar fashion. The data sampling was 

randomly performed, and resulted in approximately 55% 

samples for training, 20% for checking and 25% for testing. 

For the application of the MI and CSE the process of model 

training and feature selection was repeated for each dataset 

after inverting the vector direction. Statistical analysis (t-test) 

between both directions it was carried out to confirm that the 

proposed algorithm doesn’t depend on data direction (common 

challenge in Samp-En algorithms). Finally, the above process 

was repeated a number of times for checking the repeatability 

of the algorithm/results. The simulation results are presented 

in the following sub-section, shown ‘per case study’. 

A. Case Study: IRIS dataset 

The Iris dataset contains three main categories, namely; a) Iris 

Setosa, b) Iris Versicolour and c) Iris Virginica of 50 instances 

each, where each category refers to a type of an iris plant. 

Systematic simulations were carried out to establish that the 

best model performance is obtained via fifteen (15) Fuzzy 

Logic rules and three hundred (300) training epochs, 

representing a good compromise between model accuracy and 

overall computational simplicity. 

 
TABLE I, presents the MAE between the model’s prediction and 
the actual output; the model’s classification accuracy is also 

shown in percentage as mean±sd (%). There is a similar 

performance level between the training and checking sets, 
hence ensuring avoidance of over-fitting, and the also good 
testing performance reveals the good generalisation properties 
of the RBF-NF modelling structure. Overall, the model exhibits 
good predictive performance, comparable to existing published 
work, hence it can be considered as a reliable model for use in 
feature selection [32, 33].  

 

TABLE I. IRIS - MAE AND MODEL CLASSIFICATION ACCURACY PERCENTAGE 

(%) 

 

 

IRIS - MAE% and Percentage of Classification 

Accuracy 

MAE%  

(mean±sd) 

Classification Accuracy% 

(mean±sd) 

Training 2.59±0.11 100.00±0.00 

Checking 2.23±0.05 97.22±0.68 

Testing 3.67±0.98 95.61±1.52 

 

TABLE II, presents the order of significance of input 
parameters in IRIS dataset using both MI and CSE as proposed 
in this paper.  

 

 

TABLE II.  IRIS – FEATURE SELECTION ACCURACY 

 

Feature 
Order of significance of input  

MI CSE 

Sepal length (cm) (1st) 3 4 

Sepal width (cm) (2nd) 4 3 

Petal length (cm) (3rd) 1 1 

Petal width (cm) (4th) 2 2 

 

As in [32, 33], the petal length and width are identified by the 

proposed feature selection algorithm as the most important 

variables for classification in the IRIS dataset, hence both 

variations of the algorithm successfully identify the important 

parameters for this case study. 

B. Case Study: Airfoil Self-Noise  

This example employs the Airfoil Self-Noise, a NASA-created  

data set that contains five inputs, namely; a) Frequency 

[Hertzs], b) Angle of attack [degrees], c) Chord length  

[meters], d) Free-stream velocity [meters per second] and e) 

Suction side displacement thickness [meters] and one output, 

the a) Scaled sound pressure level [decibels]. Airfoil Self-

Noise includes 1503 instances, that obtained from a series of 

aerodynamic and acoustic tests on different size NACA 0012 

airfoils at various wind tunnel speeds and angles of attack [30, 

34]. In this case study, the best model performance was 

obtained for fifteen (15) Fuzzy Logic rules and two hundred 

(200) training epochs. 

 

TABLE III, presents the MAE percentage of model in mean±sd 

(%) form that presented by simulating the three randomized 

Airfoil datasets and the results confirm the good performance 

of the predictive model with an average testing error less than 

4%. 

 
TABLE III. AIRFOIL – MAE PERCENTAGE (%) 

 

 
AIRFOIL - MAE% Percentage  

MAE% (mean±sd) 

Training 2.59±0.11 

Checking 2.23±0.05 

Testing 3.67±0.98 

 
TABLE IV, presents the order of significance of input 

parameters in AIRFOIL dataset by using MI and CSE. In this 
case a differentiation between the results of the two 
implementations (MI and CSE) is observed. While four out of 
the five parameters are similarly ranked, the parameter of 
frequency is ranked as 1st and 5th, by the MI and CSE 
implementations respectively. The frequency variable (input) is 
known to have a non-linear effect on the noise level (output), 
which can be significant depending on the level of the other 
variables. In this case, the MI-based algorithm appears to be 
better suited to identify this correlation correctly.  

 



TABLE IV. AIRFOIL – FEATURE SELECTION ACCURACY 

 

Feature 
Order of significance of input 

MI CSE 

Frequency (Hz) (1st) 1 5 

Angle of attack (degrees) (2nd) 3 2 

Chord length (meters) (3rd) 5 3 

Free-stream velocity (meters 

per second) (4th) 
2 1 

Suction side displacement 

thickness (meters) (5th) 

4 4 

 

C. Case Study: Steel Heat Treatment 

This case study is used to evaluate the proposed method in a 

real industrial case study, where very high data measurement 

noise is expected. The example consists a data set related to 

Steel Heat Treatment and consists of 3760 measurements [19]. 

The dataset has 15 inputs (process parameters), and 1 output 

(Tensile Strength). In this simulation, the best model 

behaviour is observed for twelve (12) Fuzzy Logic rules and 

for three hundred (300) training epochs.  

TABLE V, presents the MAE percentage of predictive 

performance of the model; demonstrating the very good 

overall performance of the model, with less then 1.5% error in 

the testing dataset. 

TABLE V.  STEEL – MAE PERCENTAGE (%) 

 

 
STEEL - MAE% Percentage  

MAE% (mean±sd) 

Training 1.25±0.11 

Checking 1.48±0.14 

Testing 1.43±0.01 

 
TABLE VI, presents the order of significance of input 

parameters in STEEL dataset following the use of both MI and 
CSE algorithms, as presented in Section III.  

TABLE VI. STEEL – FEATURE SELECTION ACCURACY 

 

Feature 
Order of significance of input 

MI CSE 

Sample test depth (1st) 5 2 

Sample size (2nd) 12 10 

Test size (3rd) 13 14 

C% (4th) 6 4 

Si% (5th) 8 13 

Mn% (6th) 14 12 

S% (7th) 2 1 

Cr% (8th) 9 9 

Mo% (9th) 7 6 

Ni% (10th) 3 7 

Al% (11th) 4 3 

V% (12th) 10 11 

Hardening Temperature (13th) 11 5 

Cooling Medium (14th) 15 15 

Tempering Temperature (15th) 1 8 

Existing research work [31], as well as experts’ knowledge 

suggest as the main critical feature for this process the variable 

of Tempering Temperature. This is indeed the ‘control’ 

parameter for heat treatments in steel, which helps the 

operators, establish and control material properties. This is 

because of the metallurgical effect (on microstructure) that 

heat treatment has on steel. Other important parameters 

include C% and S% content, as well as alloying elements Ni% 

and Al%. In our simulation results, as in the previous case 

study, the MI-based algorithm implementation provides the 

more consistent results, correctly identifying the Tempering 

Temperature as the most critical parameter, but also correctly 

identifies the importance of the main chemical elements. The 

CSE-based implementation also correctly identifies some – 

but not all – of the main chemical elements, it fails however to 

rank high enough the Tempering Temperature variable. 

V. CONCLUSIONS 

In this paper, a popular implementation of Neural-Fuzzy 

systems is used to create and evaluate an embedded method of 

feature selection. The Radial Basis Function – Neural Network 

modelling structure is used, as an equivalent implementation 

of a Neural-Fuzzy system with universal approximation 

properties. In the output layer of the modelling structure a 

TSK Fuzzy Logic implementation is realised, based on a 

linear polynomial function. Based on the TSK layer of the 

modelling structure, the proposed algorithm establishes a 

method for assessing the importance of the model’s features 

(inputs) in correlation to the model’s performance, based on 

information measures. Two information measures are 

evaluated in this article, Mutual Information, and Cross-

Sample Entropy. The proposed methods’ results in a 

systematic approach to creating a modelling structure while 

also performing in parallel a feature selection task. Using the 

information measures in the proposed work, one can rank the 

features of a case study/dataset in terms of their importance to 

the process. Existing work, demonstrates the use of such 

information measures for feature selection as univariate filters, 

as well as the integration of information measures to Neural-

Fuzzy modelling for feature selection as wrappers. However, 

the presented work addresses for the first time the use of 

information measures within a RBF-NF modelling structure as 

an embedded method. 

The proposed methodology is tested against two popular 

datasets in the literature (IRIS – plant data, AirFoil – 

manufacturing/design data), and one more case study relevant 

to manufacturing - steel making. Results show that the 

proposed method creates a) accurate models, that can be used 

reliably for embedded feature selection and b) the feature 

selection task is performed satisfactorily in all cases, with the 

Mutual Information –based implementation of the algorithm 

having better success rates, compared to the Cross-Sample 

Entropy –based implementation. 

Recommendations for further work in this research direction 

include the wider evaluation of the proposed methodology 

against other popular feature selection algorithms, as well as 

the inclusion in the evaluations of more benchmark functions 



as well as well real complex case studies that include 

uncertainty in the data. 
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