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90 Abstract

91 Protists are the most diverse eukaryotes. These microbes are keystone organisms of soil ecosystems 

92 and regulate essential processes of soil fertility such as nutrient cycling and plant growth. Despite 

93 this, protists have received little scientific attention, especially compared to bacteria, fungi and 

94 nematodes in soil studies. Recent methodological advances, particularly in molecular biology 

95 techniques, have made the study of soil protists more accessible, and have created a resurgence of 

96 interest in soil protistology. This ongoing revolution now enables comprehensive investigations of the 

97 structure and functioning of soil protist communities, paving the way to a new era in soil biology. 

98 Instead of providing an exhaustive review, we provide a synthesis of research gaps that should be 

99 prioritized in future studies of soil protistology to guide this rapidly developing research area. Based 

100 on a synthesis of expert opinion we propose 30 key questions covering a broad range of topics 

101 including evolution, phylogenetics, functional ecology, macroecology, paleoecology, and 

102 methodologies. These questions highlight a diversity of topics that will establish soil protistology as a 

103 hub discipline connecting different fundamental and applied fields such as ecology, biogeography, 

104 evolution, plant-microbe interactions, agronomy, and conservation biology. We are convinced that 

105 soil protistology has the potential to be one of the most exciting frontiers in biology.

106 1. Introduction

107 Protists are everywhere, in aquatic and terrestrial ecosystems, free-living, and as symbionts 

108 (including parasites) of many organisms including humans. These usually single-celled or colonial 

109 microorganisms are by far the most diverse eukaryotes (Adl et al., 2012) and their species-numbers 

110 might easily exceed 10 million (Global Soil Biodiversity Atlas; www.globalsoilbiodiversity.org). Since 

111 the term ‘protista’ was introduced (Haeckel, 1866), profound taxonomic re-orderings have taken 

112 place. The vast majority of eukaryotic lineages has been shown to be protists, with the exception of 

113 the derived monophyletic multicellular lineages: animals, plants, and some fungi (Burki, 2014). 
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114 Electron microscopy and molecular phylogenies have revealed that both algal and protozoan lineages 

115 are intermingled throughout the eukaryote phylogenies (Delwiche, 1999; Burki, 2014), and hence it is 

116 less confusing to use Haeckel’s broader category of ‘protist’. Similarly, the classical protozoan 

117 morphological categories: flagellates, testate and naked amoebae – but not ciliates - are not 

118 monophyletic  but distributed across the eukaryotic tree of life (Adl et al., 2012). A snapshot of the 

119 immense morphological and phylogenetic diversity of soil protists is visualized in Fig 1. We therefore 

120 recommend to use ‘protist’ as a term for all single celled phototrophic, mixotrophic and heterotrophic 

121 eukaryotes, with the exception of fungi. 

122 The huge diversity of protist species has only recently become evident as many morphospecies 

123 recognizable under the microscope were shown to hide many cryptic species (Boenigk et al., 2012a). 

124 This ‘dark matter of biodiversity’ suggests that protist taxon richness has been considerably 

125 underestimated. A recent study of environmental eukaryotic diversity based on state-of-the-art high-

126 throughput sequencing (HTS) showed that protists are considerably more diverse than plants and 

127 animals in the sunlit zone of oceans (de Vargas et al., 2015). HTS studies of soil protists have shown a 

128 wide diversity of non-phagotrophic protists and the diversity of protists in soils is at least as diverse 

129 as that in aquatic systems (e.g. (Bates et al., 2013; Geisen et al., 2015c). Nevertheless, soil protists are 

130 much less well studied than their aquatic counterparts and this gap is increasing (Fig. 2a).

131 Soil protists have received relatively little attention mainly due to methodological challenges, 

132 especially their isolation from the opaque soil matrix. These, however, do not entirely explain why 

133 soil protists are relatively less studied than other soil organisms, especially bacteria, fungi and 

134 nematodes (Fig. 2b). The volume of work on microbial bacteria and fungi far outweighs protist 

135 studies, possibly because of their direct role as primary decomposers, and they represent 

136 monophyletic groups that can more easily be studied with various targeted methodological 

137 approaches (Foissner, 1987; Mitchell, 2015). Even soil viruses have been subject to more studies than 

138 soil protists, despite being extremely challenging to study (Fierer et al., 2007) and their uncertain 

139 functional importance in soils. The under-studied nature of soil protists is exemplified by a 
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140 comparison between research on protists and on soil archaea, a domain erected in 1990 and 

141 reported to be functionally important in soil only decade ago (Leininger et al., 2006; Bates et al., 

142 2011). Historically studies mentioning soil protists in the title were eight times more abundant than 

143 those including archaea (Fig. 2b, Supplementary Table 2). However, in the last 15 years, this pattern 

144 entirely changed; studies on soil protists decreased by 15% while those on other common soil 

145 organisms increased by at least 30%, especially soil archaea which increased by 88% (Fig. 2b, 

146 Supplementary Table 2).

147 The relative decline of papers on soil protists strongly contrasts with what we now know about their 

148 ubiquity, diversity, and perhaps more importantly, their functional significance. Soil protists can both 

149 make an important contribution to primary production (Jassey et al., 2015; Schmidt et al., 2016) and 

150 play a key role in the decomposition pathways as consumers of bacteria (Clarholm, 1981; de Ruiter et 

151 al., 1995), fungi, other protists, and small invertebrates; they can also act as parasites of plants and 

152 animals (Adl and Gupta, 2006; Jassey et al., 2012; Geisen, 2016b). As predators, protists transfer 

153 nutrients to higher trophic levels in the soil foodweb (de Ruiter et al., 1995; Crotty et al., 2012). 

154 Protist predation also stimulates microbial activity and nutrient cycling via the microbial loop, thus 

155 stimulating plant growth (Bonkowski and Clarholm, 2012) and representing an important link 

156 between aboveground and belowground components.

157 The functional significance, abundance, environmental sensitivity, rapid response times and 

158 increasing ease of analysis of soil protists also makes them invaluable bioindicators of a variety of 

159 aspects of environmental change (Foissner, 1987; Gupta and Yeates, 1997; Payne, 2013). A particular 

160 example of this is in paleoecology, where the hard shells of testate amoebae, diatoms and 

161 foraminifera are widely used in the reconstruction of past environments and past climate change 

162 over a range of timescales (Mitchell et al., 2008; Adl et al., 2011; Charman, 2015). 

163 Most of these applications are, however, based on a few often small-scale studies. Thus significant 

164 taxonomic and functional aspects remain largely untouched. Our aim in this report is to pool expert 
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165 knowledge and opinion across the diverse field of soil protistology and soil microbial ecology to 

166 identify major knowledge gaps that need to be addressed and their significance for soil processes 

167 and ecosystem services.

168 2. Materials and Methods

169 2.1 Approach to identify the 30 most relevant questions

170 Our aim was to review research gaps both in the field of soil protistology and in general soil biology 

171 with a special focus on protists. In line with recent studies (Sutherland et al., 2013; Seddon et al., 

172 2014), we aimed to pool community expertise to identify the most important questions in different 

173 broad categories. We modified previously-used methods (Sutherland et al., 2013; Seddon et al., 

174 2014) to obtain a list of most interesting questions through a democratic, transparent, multi-step 

175 curation process.

176 The participants in this process are involved in a wide range of research areas, with self-determined 

177 primary research area expressed as being ecology (62%), palaeoecology (12%), evolution (9%), 

178 biogeography (6%), phylogeny (6%), taxonomy (3%), parasitology (3%). Each participant formulated 

179 up to 10 questions that they believed were most relevant for their future research. The resulting 368 

180 questions were then compiled via an integrative group effort into consensus questions and placed 

181 into six major categories following a discussion by 16 of the participants at the German Society for 

182 Protozoology meeting in February 2016. We included very broad, general questions as well as highly 

183 specialised topics into similar scaled consensus questions.

184 The resulting consensus questions were then re-evaluated and groupings adjusted in a vote. These 

185 questions (Supplementary Table 1) were sent out to all 47 participants, who individually indicated up 

186 to 12 priority questions with at least one being allocated in each of the six following categories: (i) 

187 Morphology, Phylogeny, Taxonomy, Evolution and Physiology, (ii) Diversity, Community Composition 
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188 and Biogeography, (iii) Interactions among Protists and other Organisms, (iv) Functions of Protists, (v) 

189 Global Change, Bioindicators and Applications, and (vi) Methodology.

190 All 47 participants were asked to provide their key scientific expertise and literature references for 

191 studies that (partly) addressed individual questions. Finally, minor comments raised by individual 

192 participants during the vote were integrated to clarify the questions and give consistent formatting 

193 without changing the meaning of the questions that had been voted upon.

194 All individual votes were combined and five questions per category chosen to result in the final list of 

195 30 key questions. When more than one question received the same number of votes (as present in 

196 categories 1, 2, and 4), these questions were sent out to all 47 participants for another vote on the 

197 selected questions only. 

198 2.2 Potential limitations

199 Biases in broad-scale studies are impossible to avoid (Sutherland et al., 2013). On the other hand, the 

200 more interdisciplinary the panel of authors is in terms of cultural and societal background and 

201 specific scientific expertise, the more biases are reduced. Researchers working on soil protists are 

202 often ecologists, whereas taxonomists, phylogeneticists, and physiologists more often focus on 

203 aquatic taxa that are easier to isolate and cultivate. Indeed, participants who indicated ecology as 

204 their first expertise dominated our list of participants (62%). Ecology, however, is a broad field and 

205 our division into finer categories such as biogeography, palaeoecology, community structure, and 

206 interactions resulted in a broad diversification into different subcategories. Additionally, 21% of the 

207 participants indicated topics such as taxonomy, phylogeny, evolution, and physiology as their main 

208 expertise corroborating the wide diversity of research fields among the co-authors.

209 The majority of participants are PhDs (Professor: 38%; Graduated scientists: 29%; Post-doc: 24%) 

210 with an average number of publications on protists of 43 (minimum = 1; maximum = 230). A high 

211 proportion of the participants work on multiple ecosystems (41%). Many focus on testate amoebae 

212 (41%) although 26% of them work on multiple morphogroups (ciliates, heterotrophic flagellates, 



10

213 amoebae, etc.). A majority (74%) of participants have a European background, but Asia, North and 

214 South America are also well represented, thus reducing potential impacts of geographic origin. 

215 Furthermore, most participants have international collaborations that partly compensate for gaps in 

216 the geographic distribution of individuals.

217 Despite these potential limitations, we found few biases in the way participants replied to questions 

218 (Supplementary Results 1). Most participants (70%) selected questions evenly distributed across the 

219 six categories, except a small group of people mostly constituted of researchers from the same 

220 institute and/or with the same kind of expertise (phylogeny, taxonomy and evolutionary; see 

221 Supplementary Results 1). This small group allocated 45% of their votes to the category (ii). Except 

222 this small bias, most participants selected questions regardless of their experience, age, geographic 

223 background, and most importantly, their expertise and group of interest.

224 Questions were differently formulated, hence we had to make decisions and remove some nuances 

225 as we merged similar questions. This resulted in some discussions about how questions should be 

226 best stated and consequently combined and grouped into non-predetermined categories. However, 

227 we preferred to receive non-restricted questions to stimulate lateral thinking as previously suggested 

228 (Sutherland et al., 2013); due to intensive exchange and to a democratic group effort at all steps of 

229 the procedure, we are convinced that we have reached a consensus format.
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230 3. Results and Discussion

231 3.1 The 30 most relevant consensus questions

232 From the 107 questions in the final vote, 94% received at least one, 79% two, 67% three and 50% five 

233 votes showing that the pre-selected questions had a wide general appeal to the scientific experts 

234 involved (Supplementary Table 1). Therefore, all questions seem to be relevant for future studies 

235 that focus on soil protists. However, as we aimed at providing a highly specific list of the major 

236 research gaps and open challenges in soil protistology, we only provide the top-ranked 30 questions 

237 classified in six major categories that most researches voted upon. 

238 3.2 Categories

239 I Morphology, Phylogeny, Taxonomy, Evolution and Physiology

1 How long can protists survive in an encysted form? What are the tolerances of (encysted) protists to 

stress and what is the importance of cysts for ecosystem resilience?

2 How much morphological and genetic variability exists within soil protists?

3 How do species that occur in both aquatic and soil systems adapt to differing demands?

4 What are the phylogenetic relations of true soil to aquatic protist taxa and how often have soils been 

colonized by aquatic protists and vice versa?

5 How widespread is sex in soil protists? 

240

241 Linking the individual topics of this category is one of the major tasks confronting soil protistology. 

242 The coupling of morphology and phylogeny is crucial to obtain a stable taxonomic framework for 

243 protists. This is, for instance, crucial to answer evolutionary questions on the origin of eukaryotes 

244 (López-García and Moreira, 2015). Soil protists may have an important role to play in such research 

245 as most taxa likely remain unknown and novel higher-level taxonomic groups are continuously being 

246 discovered (Berney et al., 2015; Bass et al., 2016; Singer et al., 2016; Tice et al., 2016). Soil protists 
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247 might fill remaining phylogenetic gaps from better-studied aquatic taxa to improve phylogenetic 

248 resolution within and between protist clades, as strict soil protist clades seem to be common (Bass et 

249 al., 2016). Sequencing whole genomes will reveal ancient traits of eukaryotes and potential changes 

250 in their function during the evolution of eukaryotes. In this respect, soil protists must certainly play a 

251 key role for understanding the evolution of the eukaryotic cell and, therefore, of life as a whole.

252 While the morphological and phylogenetic framework for ciliates is reasonably well established 

253 (Lynn, 2008; Foissner, 2016), it remains rudimentary for other morphogroups as well as phylogenetic 

254 clades of protists (Kosakyan et al., 2016). The taxonomy of the groups has profoundly benefited from 

255 (mainly) 18S rRNA gene-based characterisations that have often led to drastic changes in 

256 phylogenetic placements of individual species, genera, families or even orders (Boenigk et al., 2012a; 

257 Berney et al., 2015; Bass et al., 2016). This is exemplified by the morphologically and functionally 

258 diverse Cercozoa, which was the first protist clade inferred solely based on molecular phylogenetic 

259 information, and has become home to ever more morphologically different organisms (Bass et al., 

260 2016). Therefore, the true extent of morphological and genetic variability in different groups of soil 

261 protists remains largely unknown and is a key missing gap for future studies (Q2). 

262 A key feature of soil protist species is their capacity for cyst formation as this allows them to resist 

263 constantly changing conditions, especially with respect to moisture and temperature. Furthermore, 

264 given that protists can excyst after decades, even millennia (Shmakova et al., 2016), cyst formation 

265 may protect species from becoming extinct at local or even at the global scales, influence population 

266 dynamics and maintain biodiversity (Corliss and Esser, 1974; Jones and Lennon, 2010) The 

267 importance of the cyst bank in ecosystem functioning and resilience remains largely unknown and 

268 have consequently been identified as a key element for future studies (Q1). More generally, this 

269 applies to all specific (physiological) adaptations of soil protists in comparison to their aquatic 

270 relatives (Q3, Q4) and to reproduction (Q5)..
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271 II Diversity, Community Composition and Biogeography

6 What is the real diversity and community structure of soil protists in different systems (e.g. soils, 

rhizosphere, (plant) endosphere)?

7 How similar are the diversity patterns of soil protists and other soil biota along ecological gradients, 

and to what extent do different environmental factors shape their respective diversity?

8 What abiotic environmental factors influence the distribution and community composition of protists, 

and how?

9 How cosmopolitan are protists and how many endemic soil protist species are there? 

10 What are dominant groups of soil protists in terms of turnover, abundance and biomass?

272

273 We are progressively shedding light into the soil ‘black box’; however, knowledge on protists lags 

274 behind that of other groups (Fig. 2) (Wilkinson, 2008). Traditional studies have focused exclusively on 

275 a few of the ‘classic’ morphogroups, especially ciliates and testate amoebae, at least partly due to 

276 their ease of isolation and feature-rich morphologies (Foissner, 1999). Despite dominating many soil 

277 protist communities in terms of numbers and diversity, flagellates and naked amoebae have 

278 remained understudied, due to their often smaller sizes, lack of diagnostic features when studied by 

279 light microscopy, and the need to establish specialised enrichment cultivation for their isolation from 

280 soils (Berthold and Palzenberger, 1995; Foissner, 1999; Smirnov and Brown, 2004; Tikhonenkov et al., 

281 2010). The development of molecular tools such as DNA barcoding and metabarcoding has 

282 considerably improved the situation in the last decade (Pawlowski et al., 2012) and allowed a 

283 phylogenetically based (morphogroup-independent) and consequently much more detailed analysis 

284 of the entirety of soil protist communities. These studies have revealed an enormous diversity of 

285 protists inhabiting soils, a phylogenetic diversity that might be similar to that of bacteria (e.g., (Bates 

286 et al., 2013; Geisen et al., 2015c; Mahé et al., 2017). Also, groups of protists previously almost 

287 unknown from soils have been shown to be common e.g. choanoflagellates, foraminifera, 

288 dinoflagellates, parasitic apicomplexans and pathogenic oomycetes (Bates et al., 2013; Geisen et al., 
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289 2015c; Grossmann et al., 2016; Mahé et al., 2017). Therefore, we are only beginning to understand 

290 the diversity of soil protists (Q10), which part is active, how this diversity differs in different soil 

291 environments (Q6), how protist communities are structured by, e.g., abiotic factors (Q7, Q8) (Geisen 

292 et al., 2014a; Lentendu et al., 2014; Geisen et al., 2015c; Dupont et al., 2016).

293 In addition, the biogeography of (soil) protists has been addressed in some studies, but it is still 

294 unclear which and how many groups display a restricted biogeography and what the factors are that 

295 shape these distributions (Q8, Q9). Although distribution of bacteria may support the hypothesis that 

296 “everything is everywhere, but, the environment selects” (Baas-Becking, 1934), its extrapolation to 

297 protists has been countered, particularly, by work on ciliates and testate amoebae (Foissner, 2006, 

298 2008; Fernandez et al., 2016). The diversity and biogeographical distribution of protists, is, therefore, 

299 one of degree (rather than all cosmopolitan or all limited) and the possibility exists that the 

300 investigation of cryptic diversity within morphospecies will allow a finer-scale resolution of these 

301 questions.

302 III Interactions among Protists and other Organisms

11 How do protist taxa affect the composition of the soil microbiome and what other important 

interactions take place?

12 What are the biotic interactions of soil protists with other taxonomic groups, and how are 

protists linked within the soil food web?

13 What is the relative contribution of nutrient cycling (i.e. the microbial loop) versus modification 

of the rhizosphere microbiome in protist-induced stimulation of plant growth?

14 What are the mechanisms by which individual soil protist species affect plant performance, and 

do those mechanisms differ between plant species?

15 What is the impact of protists on the community functioning of other soil microbes?

303
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304 Soil protists are still predominantly considered as being mainly bacterivorous (Bradford, 2016; 

305 Geisen, 2016a). Differential feeding by protists stimulated by bacterial volatiles modifies the 

306 community composition of bacteria (Bonkowski, 2004; Glücksman et al., 2010; Schulz-Bohm et al., 

307 2017), which results in functional changes in the bacterial community structure (see next section). 

308 Many free-living bacteria can, in turn, defend themselves against certain protist predators and even 

309 kill them (Greub and Raoult, 2004; Jousset et al., 2006). Several bacteria, viruses, and even other 

310 protists can also parasitize protist hosts (Barker and Brown, 1994; Raoult and Boyer, 2010). 

311 The prey spectrum of protists has, however, repeatedly been shown to be much more diverse than 

312 bacteria. Indeed, archaea (Ballen-Segura et al., 2017), fungi (Gupta and Germida, 1988; Ekelund, 

313 1998; Adl and Gupta, 2006; Geisen et al., 2016), other protists (Page, 1977; Jassey et al., 2012), and 

314 nematodes (Bjørnlund and Rønn, 2008; Geisen et al., 2015b) constitute prey for diverse protist 

315 species. Recently, HTS approaches have revealed the ubiquitous presence and dominant roles of 

316 protist parasites and pathogens in soils, and they likely represent a key component controlling other 

317 soil organisms including larger soil metazoans (animals) and plants (Geisen et al., 2015a; Dupont et 

318 al., 2016; Geisen, 2016b). This draws attention to the enormous complexity and importance of 

319 protist interactions with other organisms (Bonkowski, 2004).

320 Due to our limited knowledge of protist diversity and because most studies have used only one or 

321 few protists as models, we lack understanding about most aspects of how soil protist communities 

322 interact with other organisms. Disentangling the diverse interactions of protists with other soil 

323 organisms (Q11, Q12, Q15), the exact mechanisms (Q14) and the resulting importance for 

324 functioning (Q13, Q14), therefore, are key knowledge gaps necessitating future research. 

325 IV Functions of Protists

16 What is the importance of soil protists in biogeochemical cycling?

17 How much functional redundancy is there in the soil protist community?

18 Does increased protist diversity affect ecosystem functioning?
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19 What is the comparative importance of eukaryotic microbes vs. prokaryotes in driving key soil 

processes?

20 Which individual functions are performed by distinct groups, and what is the entire functional 

diversity of soil protists?

326

327 Many acknowledged functions of soil protists are attributed to interactions with other organisms as 

328 outlined above. Especially important is the role of protists in driving the microbial loop, i.e. releasing 

329 nutrients (particularly nitrogen) bound in bacterial prey. The microbial loop has been demonstrated 

330 both in aquatic (Azam et al., 1983) and soil systems (Clarholm, 1985). This ground-breaking research 

331 identified protists as important drivers of the global ecosystem. Subsequent work on the microbial 

332 loop demonstrated that differential feeding by protists on bacterial prey is beneficial for plant 

333 growth (Bonkowski, 2004; Rosenberg et al., 2009). The main focus in earlier studies was, however, 

334 mainly on nitrogen cycling, and the importance of protists for cycling of other elements such as 

335 carbon and phosphorus has been relatively neglected, with few exceptions (Cole et al., 1977; Gupta 

336 and Germida, 1988; Treonis and Lussenhop, 1997; Frey et al., 2001; Murase et al., 2011; Eisenhauer 

337 et al., 2012; Jassey et al., 2015). Protists might even play a role in silica cycling as some use Si as 

338 reinforcing elements or in an exoskeleton (Aoki et al., 2007; Creevy et al., 2016). More thorough 

339 investigations about the functional roles of additional protist species and communities as a whole 

340 will likely reveal insights into the importance of protists in biogeochemical nutrient cycling. This was 

341 identified by most participants of this study as the most important question for future research 

342 (Q16).

343 In contrast to free-living protists, plant pathogenic protists, such as oomycetes or plasmodiophorids, 

344 have, not surprisingly, attracted considerable attention due to their agro-economic impact (Anderson 

345 et al., 2004; Bell et al., 2006; Neuhauser et al., 2014). These were, however, until very recently often 

346 considered as ‘fungi’ (Schardl and Craven, 2003; Gams et al., 2011). Similarly, soil protists with 
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347 immediate relevance for human diseases such as those directly harmful to humans (Schuster, 2002; 

348 Siddiqui and Ahmed Khan, 2012; Geisen et al., 2014b) and those that act as “Trojan horses” 

349 harbouring human-pathogenic bacteria (Brown and Barker, 1999; Molmeret et al., 2005) have 

350 received considerable attention. In turn, the role of protists in plant disease control due to, e.g., 

351 increasing bacterial biocontrol agents (Jousset, 2012) or by directly feeding on plant pathogens (Old 

352 and Chakraborty, 1986; Geisen et al., 2016) has received comparatively little attention. In line with 

353 their importance in nutrient cycling and as biocontrol agents, the role of individual protist species 

354 and that of protist diversity for the general functioning of soils and ecosystems (Q17, Q18, Q20), also 

355 in comparison to other groups of microbes (Q19), were identified as important questions to be 

356 addressed in future studies.

357 V Global Change, Bioindicators and Applications

21 How do changing climatic patterns affect the diversity of, community structure of and ecosystem 

services provided by soil protists?

22 Which protist clades can be used as bioindicators to assess soil properties, ecosystem state, and 

anthropogenic impacts? How could this be implemented?

23 Why are some species more sensitive to environmental change than others, why do some respond 

faster to environmental factors?

24 How can protists be used for nutrient mobilization and biocontrol in cropping systems? 

25 What is the importance of soil protists for biodiversity conservation and ecosystem management 

and restoration? Should we protect particular species or habitats?

358

359 Protist communities are often studied as bioindicators of past and present climatic conditions, land 

360 use changes and pollution (Gupta and Yeates, 1997; Mitchell et al., 2008). Abiotic changes affect 

361 protists in species-specific ways, thus forming the basis for their use as bioindicators (Fournier et al., 

362 2012). They may, for instance, provide information on soil state in agro-ecosystems (Foissner, 1997, 
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363 1999; Bharti et al., 2015). Testate amoebae and their subfossil remains have been used to evaluate 

364 wetland hydrological conditions, applied, for instance, in studies of peatland restoration (Marcisz et 

365 al., 2014) and reconstruction of Holocene environmental change (Turner et al., 2014; Lamentowicz et 

366 al., 2015; Payne et al., 2015). However, more generally, there has been little progress on evaluating 

367 protists as bioindicators even though reliable indicators to assess soil quality continue to be of high 

368 relevance (Griffiths et al., 2016) as also revealed here (Q22). Application of protists for stimulating 

369 plant performance in terms of nutrition, growth, productivity and disease suppression holds great promise 

370 but has received little attention (Q24)

371 Effects of ongoing global climate change and human impact on the environment are the focus of 

372 increasing scientific attention. Global warming has been shown to alter the abundance and 

373 community structure of protists (Tsyganov et al., 2011; Jassey et al., 2013) in the limited number of 

374 studies that have been done. Predicted changes in precipitation regime will likely affect water 

375 availability, which will impact protist communities directly (Clarholm, 1981; Bates et al., 2013; Geisen 

376 et al., 2014a). Elevated atmospheric CO2 has also been shown to increase abundance and changes 

377 community structure of rhizosphere protists, possibly due to increased plant productivity and 

378 enhanced release of root organic exudates (e.g., (Treonis and Lussenhop, 1997; Anderson and Griffin, 

379 2001; Rønn et al., 2002)). Increased air pollution by nitrogen, sulphur, tropospheric ozone and metals 

380 are also likely to alter protist abundance and diversity (Meyer et al., 2012; Payne et al., 2012; Payne 

381 et al., 2013). Most of these studies focused on testate amoebae, but it is important to study how 

382 global environmental changes affect entire protist communities (Q21, Q23, Q25) as these changes 

383 are likely to have significant impacts on ecosystem functioning/services and, consequently, on 

384 human welfare, and may provide more informative markers of environmental change. 

385

386 VI Methodology

26 What is the most practical taxonomic unit to measure protist diversity?
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27 How can we standardize and calibrate cultivation based and molecular methods to reliably 

quantify soil protist abundance, diversity and activity?

28 How should sampling be performed to adequately evaluate soil protist diversity?

29 At what scales (temporal, spatial/physical, morphological, phylogenetic) should we study protists 

to fully understand their diversity and function in soil; which one should be prioritized?

30 How can we infer functional traits of soil protists based on morphology or phylogenetic affiliation, 

and what taxonomic resolution is needed? 

387

388 Diverse methods are used to study community structures of soil protists. Even with respect to more 

389 classical culturing and morphological observational techniques, the application of methods of non-

390 protistological disciplines, such as mycology, have the potential of broadening our perspectives on 

391 the soil protist community (Spiegel et al., 2004). However, especially recent developments in 

392 molecular sequencing technologies, have changed and will continue to change our knowledge about 

393 protist diversity and community structure in soils (Bates et al., 2013; Geisen et al., 2015c). However, 

394 some issues relating to HTS-based efforts remain as they provide relative abundances of taxa without 

395 providing information on absolute abundances. For example PCR-based HTS efforts have been shown 

396 to artificially alter the observed community structure of soil protists, a problem which needs to be 

397 solved to decipher their real community structure (Geisen et al., 2015a). PCR-free ‘omics-

398 approaches’, i.e. metagenomics and metatranscriptomics, might resolve some of these issues (Geisen 

399 et al., 2015c; Jacquiod et al., 2016). Indeed, these sequence-based omics approaches and sequence-

400 independent metaproteomics provide valuable information not only on taxonomic diversity but also 

401 on their potential functions (Prosser, 2015). Calibrating, standardizing and adopting community-

402 defined methodologies to study soil protists will, consequently, be key for cross-study comparisons 

403 (Q27) and correct sampling and analyses through different scales need to be defined a priory (Q28, 

404 Q29). Furthermore, it is essential to identify the most meaningful taxonomic levels to use in the study 

405 of diversity and functioning of soil protists (Q26), but even the definition of a species remains a 
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406 challenge (Boenigk et al., 2012b) and integrating morphology to phylogeny to function remains 

407 missing (Q30).

408 In addition, medical and novel imaging techniques applied to soil are revolutionising in situ work 

409 allowing us to study protist species in undisturbed soil and on plant roots. These include applications 

410 of NanoSIMS technology to precisely locate isotopic markers and isotopic composition of material in 

411 fixed preparations and to study dynamics of nutrient fluxes (Stockdale et al., 2009), which allows 

412 tracing nutrient flow from microbial prey to protist predator and further in the food web in high resolution. This 

413 will allow detailed investigations how protists selective interact in microsites with their prey, how nutrients 

414 become released and where they are translocated. Applications of a variety of X-ray based synchrotron 

415 spectroscopy and tomography with undisturbed soil is becoming technically feasible and permits the 

416 study of dynamics and fluxes at a very fine resolution without interfering with the matrix (Keyes et 

417 al., 2013). The ability to use soils with intact fine roots, and examining undisturbed natural soil 

418 communities finally provides access to rhizosphere processes. Techniques to measure and analyse 

419 chemically soil community molecular interactions and communications are now only a few steps 

420 away. 

421 3.3 (Partial) knowledge gaps and future directions

422 In this paper we provide a guide to 30 highly relevant questions for future studies in soil protistology. 

423 Research has already been conducted on many of these questions. Literature searches and personal 

424 knowledge of the literature allowed us to identify studies that addressed 91 % of the initial and 97 % 

425 of the final questions. However, many of these studies focus on organisms other than soil protists 

426 (e.g. aquatic protists or non-protist microbes), and may not be directly applicable to the situation 

427 with soil protists. The fact that these 30 questions have been identified by our pool of experts 

428 strongly implies that previous research has been insufficient to provide conclusive answers. In 

429 Supplementary Table 1 we provide an extensive bibliography of previous research relevant to 

430 addressing these questions. This bibliography will be a valuable literature guide to the current state 

431 of the art on soil protistology.
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432 We are beginning to understand many aspects of soil protist biology, as we are identifying the 

433 hyperdiverse nature of protist communities, determining their (a)biotic drivers, deciphering 

434 interactions with other organisms, and shedding light on their importance in ecosystem dynamics. So 

435 far, however, we are only seeing the tip of the iceberg. Addressing many of the 30 questions 

436 highlighted here will undoubtedly reveal novel insights, not only into soil protists, but also into other 

437 organisms, soils, and fundamental ecological processes. We hope that these questions will be used to 

438 catalyse soil protistology and to build research agendas for the future. More specifically, we 

439 encourage both protistologists and researchers in closely related fields to consider these questions 

440 carefully and to use them to develop new and innovative individual and collaborative projects. With 

441 newly available techniques, an increase in knowledge and a growing awareness of the importance of 

442 soil protists, we are at the start of a bright future for soil protist research!
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769 Figures

770 Fig. 1: Common free-living soil protists as visualized by size (lengths), morphology and phylogenetic 

771 affiliation. Note, soil protists belong to a wide range of supergroups (in brackets), whereas animals 

772 are only placed in the supergroup Opisthokonta. Furthermore, soil protists span a much wider size 

773 range as commonly assumed. With the exception of ciliates, morphogroups are not phylogenetically 

774 conserved and are placed in different eukaryotic supergroups. Most soil protists can occur in 

775 different life forms including active form (amoeba, flagellate, ciliate), but most form cysts, while 

776 some can form special reproduction structures (sorocarps and fruiting bodies).

777 Fig. 2: (a) Overview of studies specifically mentioning protists in the title in 5-year intervals since 

778 1980. Soil studies represent only about a fraction of aquatic studies (separated into freshwater, 

779 marine and those that more broadly indicate aquatic) showing a strong increase in protist research in 

780 aquatic, but not soil environments; (b) Comparison of soil studies specifically mentioning protists in 

781 the title with those on other micro-sized organisms including viruses (blue filled circles), archaea 

782 (green open circles), bacteria (red diamonds), fungi (orange crosses) and nematodes (green 

783 triangles). See Supplementary Methods for details on the search.
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Highlights

 Protists are the most diverse eukaryotes in soils

 They are key elements in the soil food web and are essential for plant functioning

 Nevertheless, protists are highly understudied compared to other microorganisms

 We here provide an overview of missing research gaps to guide future studies

 This will allow bridging protistology to general microbiology and ecology in soils



We aimed at providing a list of major questions without ranking them by numbers of votes. Despite 

we obtained these numbers (Supplementary Table 1), we restrained from including them into the 

main text as the questions were often hard to compare in terms of their scope and due to the bias 

included through the selection of participants –  which, however, turned out to be absent or minor 

(see bias results below). We therefore include an overview of the analyses based on votes here.

Most votes (117) were placed into the category (ii) Diversity, Community Composition and 

Biogeography. (iv) Functions of Protists (103), received second most votes (99), followed by (vi) 

Methodology (99), (i) Morphology, Phylogeny, Taxonomy, Evolution and Physiology (81), (iii) 

Interactions among Protists and other Organisms (80), and (v) Global Change, Bioindicators and 

Applications (76). However, the highest number of votes per question was found for the categories 

with the least numbers of questions, i.e. (v) Global Change, Bioindicators and Applications (6.3 votes 

per question) and (i) Morphology, Phylogeny, Taxonomy, Evolution and Physiology (6.2 votes per 

question). We note that both rankings are biased, as most votes were placed in the categories where 

most questions were sent while the highest vote per question was affected by the necessity that 

researchers place at least one vote in each of the six categories. 

Potential biases

Based on the votes, the fuzzy c-Means ordination showed that participants aggregated in two clusters 

(Supplementary Figure 1): cluster I composed of 24 participants and cluster II composed of 10 

participants. The silhouette width showed that all participants well belonged to their respective 

clusters with an average silhouette of 0.31 and 0.28 for cluster I and II, respectively. Cluster I was 

composed of participants which equally voted to the proposed categories of questions, while cluster 

II was characterised by participants who mostly voted in the category Diversity, Community 

Composition and Biogeography. Main expertise, research institute and the type ecosystem studied 

mainly explained such grouping in the ordination space (Supplementary Figure 1). Cluster II was indeed 

characterised by participants from the same research area (phylogeny, taxonomy, and evolutionary), 

studying multiple systems and/or working in the same institution. Furthermore, variables such as 



experience, age, type of position and group of interest were not significantly related to the fuzzy c-

Means ordination space.

Supplementary Figure 1: Principal co-ordinate ordination associated with c-Means fuzzy clustering 

representing the dissimilarity of votes among participants. Solid and dashed lines define the different 

clusters found along axis PCoA1. The average membership of the participants (sites) to each cluster 

can be seen with the silhouette width value (Si). Pie charts show the proportion of votes for each 

question category and for each participant occurring in clusters I and II. Significant effect of explanatory 

variables (ANOVAs) between the PCoA axes and the individual explanatory variables are shown in 

boxes.



Supplementary Table 1: Questions sent for the final vote with category, total number of votes and references that (partially) addressed the respective 
question before.

Nr Question Category Votes References

1 How long can protists survive in an encysted form? What are the tolerances of (encysted) protists to stress 
and what is the importance of cysts for ecosystem resilience?

1 14 [1-6]

2 How much morphological and genetic variability exists within soil protists? 1 11 [7-15]
3 How do species that occur in both aquatic and soil systems adapt to differing demands? 1 9 [16]
4 What are the phylogenetic relations of true soil to aquatic protist taxa and how often have soils been 

colonized by aquatic protists and vice versa?
1 7 [8, 146-148]

5 How widespread is sex in soil protists? 1 7 [17, 18]
6 What is the real diversity and community structure of soil protists in different systems (e.g. soils, 

rhizosphere, (plant) endosphere)?
2 11 [26-29]

7 How similar are the diversity patterns of soil protists and other soil biota along ecological gradients, and to 
what extent do different environmental factors shape their respective diversity?

2 10 [30-37]

8 What abiotic environmental factors influence the distribution and community composition of protists, and 
how?

2 10 [30, 32, 37-48]

9 How cosmopolitan are protists and how many endemic soil protist species are there? 2 10 [49-60]
10 What are dominant groups of soil protists in terms of turnover, abundance and biomass? 2 7 [44, 62, 164, 165]
11 How do protist taxa affect the composition of the soil microbiome and what other important interactions 

take place?
3 14 [64-74]

12 What are the biotic interactions of soil protists with other taxonomic groups, and how are protists linked 
within the soil food web?

3 12 [44, 66, 75-83]

13 What is the relative contribution of nutrient cycling (i.e. the microbial loop) versus modification of the 
rhizosphere microbiome in protist-induced stimulation of plant growth?

3 9 [44, 82, 84-88]

14 What are the mechanisms by which individual soil protist species affect plant performance, and do those 
mechanisms differ between plant species?

3 8 [78, 85, 88-93]

15 What is the impact of protists on the community functioning of other soil microbes? 3 7 [74, 94-98]
16 What is the importance of soil protists in biogeochemical cycling? 4 18 [26, 99-106]
17 How much functional redundancy is there in the soil protist community? 4 12 [107-109]
18 Does increased protist diversity affect ecosystem functioning? 4 12 [26]
19 What is the comparative importance of eukaryotic microbes vs. prokaryotes in driving key soil processes? 4 9 [93]
20 Which individual functions are performed by distinct groups, and what is the entire functional diversity of 4 9 [110, 111]



soil protists?
21 How do changing climatic patterns affect the diversity of, community structure of and ecosystem services 

provided by soil protists?
5 12 [36, 112-116]

22 Which protist clades can be used as bioindicators to assess soil properties, ecosystem state, and 
anthropogenic impacts? How could this be implemented?

5 11 [44, 47, 82, 117-127]

23 Why are some species more sensitive to environmental change than others, why do some respond faster 
to environmental factors?

5 10 [128]

24 How can protists be used for nutrient mobilization and biocontrol in cropping systems? 5 8 [129]
25 What is the importance of soil protists for biodiversity conservation and ecosystem management and 

restoration? Should we protect particular species or habitats?
5 8 [130-133]

26 What is the most practical taxonomic unit to measure protist protist diversity? 6 20 [9, 11, 106, 134-136]
27 How can we standardize and calibrate cultivation based and molecular methods to reliably quantify soil 

protist abundance, diversity and activity?
6 9 [44, 137, 138]

28 How should sampling be performed to adequately evaluate soil protist diversity? 6 9 [138-140]
29 At what scales (temporal, spatial/physical, morphological, phylogenetic) should we study protists to fully 

understand their diversity and function in soil; which one should be prioritized?
6 8

30 How can we infer functional traits of soil protists based on morphology or phylogenetic affiliation, and 
what taxonomic resolution is needed? 

6 7 [26, 118, 128, 141, 142]

31 How much change in soil protists has there been over geological time? 1 7 [19-25]
32 Which taxa should be prioritized for genome and transcriptome sequencing analysis? And how should they 

be selected?
1 7 [143-145]

33 To what extent does horizontal gene transfer drive protist communities and ecosystem 
function/ecosystem services?

1 6 [149]

34 How do protists defend themselves against abiotic and biotic stressors? 1 5 [47, 150-152]
35 How often has social behaviour evolved in soil protists and do social protists dominate terrestrial 

ecosystems?
1 3 [153]

36 Can low Reynolds number physics be used to explain the reality of so called adaptations of soil protists? 1 2
37 How did the association between intracellular (potentially human pathogens) bacteria and their soil protist 

hosts evolve?
1 2 [154, 155]

38 Could bacteria and bacterial feeding soil protists be used as a model to experimentally study genome 
evolution - such as horizontal gene transfer events?

1 1 [156-158]

49 Do soil protists have latitudinal, longitudinal and altitudinal diversity patterns? If so, are these patterns the 
same as those exhibited by macroorganisms?

2 7 [30, 37, 49, 159-163]



40 How much of the soil protist community is active in different ecosystems - what part, when, and why? 2 7 [61-63]
41 How do protist communities vary over time? 2 6 [138, 166-175]
42 How does the micro-heterogeneity of soils affect protist diversity and distribution? 2 6 [46, 108, 176-181]
43 What types of processes (i.e. ecological, historical, evolutionary) produce latitudinal, longitudinal or 

altitudinal diversity patterns in soil protists? 
2 6 [37, 48, 182, 183]

44 How are soil protist communities structured in the soil profile? 2 5 [41, 174, 184-192]
45 How localized is the adaptation of protists to environmental conditions and environmental changes? 2 5 [193-196]
46 How much of the environmental DNA of protists in soils does not not belong to any organism actually 

living there?
2 4 [197]

47 What is the importance of historical factors in shaping soil protist communities in comparison to local 
conditions?

2 4 [35, 37, 183, 198]

48 How resilient / resistant is the active/dormant soil protist community? 2 4 [44, 45, 199, 200]
49 What is the diversity of active parasitic protists in soils and what are their hosts? 2 3 [32, 201-204]
50 What is the intraspecific diversity of soil protists? 2 3 [205-210]
51 Which soil habitats host the highest abundance and diversity of soil protists? 2 3 [175, 180, 211-217]
52 What are (unique) adaptations for protists to inhabit soils? 2 2 [195, 218]
53 How many and which soil protist taxa species have an expanding distribution, are invasive or are 

threatened of extinction?
2 2 [219]

54 Which are keystone taxa of soil protists in certain systems and how can we find them? 2 1 [220]
55 What is the diversity of soil protists that serves as intracellular refuges for human and animal pathogenic 

microorganisms?
2 1 [221]

56 How (phylogenetically) widespread is the ability of soil protists to live under anaerobic conditions? 2 0 [222]
57 What are the main parasites and pathogens of soil protists, and what impacts do they have? 3 5 [223-228]
58 How important are protist-protist interactions in structuring soil protist communities? 3 4 [99, 229]
59 Is there an especially strong connection between bacteria and soil protists as both groups have interacted 

for more than a billion years, and how does it compare with other microbes interacting in soils?
3 4 [230]

60 How do plant species (e.g. via exudates, volatiles etc.) affect the composition of soil protist communities? 3 4 [91, 231]
61 Is there a link between morphology and body size of soil protists and does this link to their position and 

role in food webs?
3 3 [72, 232]

62 Which protistan traits are most useful to predict in situ trophic interactions between bacterivorous soil 
protist and bacteria?

3 2

63 Which signals/receptors are involved in food recognition of soil protists? 3 2 [233-238]
64 How does the parasitic relationship between soil protist host and parasite establish itself? 3 1 [228, 239]



65 What is known about mutualistic associations between soil protists and other organisms? 3 1 [240-242]
66 What mechanisms are used  by soil protists to crack (physically) or lyse (enzymatically) their prey? 3 1 [243, 244]
67 How widespread is intra-guild predation of protists in soils (= protists feeding on other protists)? 3 1 [245-248]
68 Which chemical signals exchanged by soil protists and their prey increase stimulate protist activity 

resulting in e.g. increased feeding efficiency?
3 1

69 How does addition of nutrients affect resources utilization, stoichiometry and interactions between 
protists and other (micro)organisms in soil?

3 1 [85, 93]

70 Are protists important for bacterial dispersion in soil, and if so which taxa are mainly responsible? 3 0 [129, 249]
71 What is the impact of protists on the process of decomposition? 4 8 [100, 250]
72 What is the abundance, diversity and functional role of the many novel and unknown soil protist clades 

that have been revealed by molecular environmental sampling?
4 5 [110, 251, 252]

73 What is the potential role of protists as disease suppression and biocontrol agents in soils? 4 5 [44, 82]
74 What is the relative functional importance of non-bacterivorous soil protists and how does this differ 

between soils/biomes/ecosystems?
4 4 [32, 253]

75 How can we extrapolate soil protist activity, diversity, and community changes to those of general 
microbial and higher trophic level communities, and consequently ecosystem functioning?

4 4 [93]

76 How much C is channelled through protists to higher trophic levels in soil? 4 4 [254]
77 What is the importance/function of (plant- and animal-)parasitic protists in soil? 4 4 [32, 255]
78 What are the main metabolic pathways that affect soil protist communities and ecosystem function? 4 3 [256]
79 What is the primary production input from soil protists? 4 2 [26, 241]
80 Which soil protist groups belong to the rare biosphere and are they functionally important? 4 2 [7, 201, 252, 257]
81 What is the proportion of omnivorous soil protists and are they functionally important? 4 1
82 How does environmental filtering impact soil protist functional diversity between species (trait selection) 

or within species (phenotypic plasticity)?
4 1 [47]

83 What drives productivity in soil protists? 4 0 [258, 259]
84 Could soil protists be a novel mine of genetic resources with potential value for human well-being? 5 8
85 How can we maximise the accuracy and precision of protist bioindicators? 5 6 [119, 183, 260-262]
86 How do anthropogenic activities affect soil protists? 5 6 [219, 263-268]
87 How can we model community changes including soil protists in response to global change? 5 5 [232, 269, 270]
88 Were there rapid local adaptations within soil protists that may have lead to niche changes during the 

Holocene, thereby obscuring palaeoreconstructions. 
5 1 [128]

89 How can soil protists be used for resource production such as hydrogen? 5 1 [271]
90 How does a reduction of habitat space (e.g. due forest conversion) alter trophic level positions of indiviual 5 0



or the entire community of soil protists?
91 How can we develop a universal, molecular high-throughput sequencing approach to target the entirety of 

soil protist diversity?
6 6 [201, 272, 273]

92 How should protist (functional) diversity be treated so as to be incorporated in food web/microbial loop 
models?

6 6 [138, 274]

93 How can we define standard protocols for measuring the most important functional traits for the ecology 
of soil protists?

6 5 [117]

94 How can we use ecological network analysis (or other such association techniques) to link protists with 
other soil organisms or functions?

6 5 [275-280]

95 How can eDNA and genomic experiments targeting soil protists reveal the most meaningful, functional 
results?

6 4 [281, 282]

96 How can we use soil protists as model organisms to study community assembly, biodiversity, trophic 
interactions, and eco-evolutionary processes?

6 4 [283]

97 Do transcriptome molecular genetic analyses reliably reveal the genetic basis for the ecophysiological roles 
of soil protists under different conditions?

6 3 [7, 64, 284]

98 How many, and which, soil protist clades are missed with current molecular methods as well as with 
cultivation based methods and how can we identify them?

6 2 [7, 145, 284]

99 How can we select ecologically relevant soil protist "model species" to investigate plant-fungal-bacteria 
interactions in specific types of soil?

6 2 [44]

100 How can we define standard protocols for using soil protists in micro-mesocosm experiments (e.g. in eco-
evo studies)? 

6 2 [283]

101 How can we best visualise the distribution and form of protists in soils (e.g. Micro-CT)? 6 2
102 How reliable are identifications of soil protists based solely on morphology (no molecular barcoding) to 

answer (palaeo-) ecological questions and can they be optimized?
6 2 [285]

103 How consistent are results obtained in different ecological and taxonomic studies of soil protists 
considering identification biases, different resolutions and evolving taxonomy?

6 1 [202]

104 Which methods allow food preferences of protists to be studied in vivo? 6 1 [221, 245]
105 What is, and how can we access, the 'long-branch biosphere' (those with highly diverging sequences in 

barcoding regions) of soil protists?
6 1 [145]

106 Which soil protists are really unculturable and which can be cultivated using appropriate 
media/conditions?

6 0

107 How can we design representative "synthetic soil protist communities" that successfully establish in soils? 6 0
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Supplementary Table 2: Terms used to identify differences of protist research between different aquatic 

versus soil habitats (see Figure 1A).

    

Habitat terms Protist terms

Soil Alga

Soils AlgaeSoil

Terrestrial Algal

Fresh water Protist

Freshwater Protistan

Lake Protists

Pond Protozoa

Freshwater

River Protozoan

Marine Protozoans

Ocean

Salt water
Marine

Sea

Aquatic

WaterAquatic 

Waters



Supplementary Table 3: Terms used to compare research efforts for different soil organisms (see Figure 1B).

Habitat terms Organism terms

Soil Alga

Soils AlgaeSoil

Terrestrial Algal

 Protist

 Protistan

 Protists

 Protozoa

 Protozoan

 

Protists

Protozoans

 Fungal

 Fungi

 

Fungi

Fungus

 Nematoda

 Nematode

 

Nematodes

Nematodes

Bacteria
Bacteria

Bacterial

Archaea

 Archaeal

 

Archaea

Archea

 Bacteriophage

 Bacteriophages

 Phage

 Phages

 Viral

 Virus

 

Viruses

Viruses



Supplementary Table 4: Numbers of papers with the respective search terms in different time intervals (See Figure 1).

1800-1980 1981-1985 1986-1990 1991-1995 1996-2000 2001-2005 2006-2010 2011-2015 2016

Soil 989 257 196 255 268 273 234 232 41

Freshwater 2603 740 732 783 966 1108 1415 1482 150

Marine 4334 1095 1023 1174 1445 1685 1950 2209 200

Aquatic 1795 564 473 622 758 1072 1301 1344 142
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Freshwater, marine and aquatic 8732 2399 2228 2579 3169 3865 4666 5035 492

Protists

Fungi

989

2686

257

796

196
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268

1048

273

1358

234

2038

232

2612

41

321

Nematodes 1689 434 477 530 611 684 970 979 84

Bacteria 2202 541 554 793 1180 1559 2799 3881 491

Archaea 0 0 0 0 12 33 123 283 27

Viruses 514 141 184 154 118 162 239 87 14C
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n
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Supplementary Table 5: Summary of the explanatory variables used to describe the participants

Variable What does it describe?

Main and

secondary expertise 
This describes the research area of the participants

Research institute This shows where participants are working

Age Age of the participants

Type of position
Whether the participants are Professors, 

Scientists (PhD but not Professor), Post docs or PhD students

Number of publications on 

protists This shows the experience of participants on the subject

Main topic Whether protists are the main interest of the participants

Ecosystem studied
The type of ecosystem studied (e.g. forests, grasslands, wetlands, 

peatlands, freshwater, etc)

Morphogroup of interest

Whether the participants focused on diverse morphogroups or 

specifically on amoebae, ciliates, heterotrophic flagellates, naked 

amoebae, microeukaryotes, testate amoebae, etc


