
This is a repository copy of Hoare semigroups.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/116277/

Version: Accepted Version

Article:

Struth, G. (2018) Hoare semigroups. Mathematical Structures in Computer Science, 28
(6). ISSN 0960-1295

https://doi.org/10.1017/S096012951700007X

This article has been published in a revised form in Mathematical Structures in Computer
Science [https://doi.org/10.1017/S096012951700007X]. This version is free to view and
download for private research and study only. Not for re-distribution, re-sale or use in
derivative works. © Cambridge University Press 2017.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Under consideration for publication in Math. Struct. in Comp. Science

Hoare Semigroups

Georg Struth

Department of Computer Science, University of Sheffield, UK

g.struth@sheffield.ac.uk

Received

A semigroup-based setting for developing Hoare logics and refinement calculi is

introduced together with procedures for translating between verification and refinement

proofs. A new Hoare logic for multirelations and two minimalist generic verification and

refinement components, implemented in an interactive theorem prover, are presented as

applications that benefit from this generalisation.

1. Introduction

Kleene algebra with tests (Kozen97) can be seen as the algebra of while programs. It

provides a two-sorted signature with one carrier set for programs equipped with oper-

ations for their nondeterministic choice, sequential composition and finite iteration. A

second carrier set models tests or assertions with operations for join, meet and comple-

mentation. It is well known that the rules of propositional Hoare logic for the partial

correctness of while programs—Hoare logic without assignment rules—can be derived

from its axioms (Kozen00). A simple expansion allows axiomatising Morgan’s speci-

fication statement and deriving a basic calculus for the stepwise refinement of while

programs (ArmstrongGS16).

From these foundations, program construction and verification components for interac-

tive theorem provers can be developed (Pous13; ArmstrongSW13; ArmstrongGS16). The

algebraic axioms can be linked with denotational semantics of the program store based

on binary relations or program traces by formal soundness proofs. Assignment laws can

then be derived in this concrete semantics and programs constructed and verified directly

within it. A main feature of this method is that the control flow level of programs, as

modelled by the algebra, is cleanly and modularly separated from the data level, which

is modelled within the concrete semantics (ArmstrongGS16).

Yet for simplifying such components and making them available for larger classes of

models and applications, it seems natural to review and try to generalise the algebraic

foundations on which they depend.

This motivates the definition of Hoare semigroups (or H-semigroups), which are sets

equipped with an associative multiplication, an addition of which nothing is required,

a transitive relation, with respect to which these operations are compatible, and an

operation of weak iteration that satisfies a simulation law (Section 2). A generic Hoare

logic is derivable in this minimalist setting when simple additional conditions are imposed

on the conditional and the loop rule. A basic refinement calculus is derivable in R-

semigroups, an expansion by one additional operation and two further axioms (Section 3).

Within this approach, Hoare triples are encoded à la Kleene algebra with tests, but

programs are not distinguished from tests or assertions.

Test H-monoids are introduced next to capture that distinction and provide a basic

abstract semantics for structured programs (Section 4). Hoare triples and specification

statements can then be restricted to assertions that capture pre- and postconditions and

yield a basis for Kleene algebra with tests and its relatives.

The derivation of refinement laws in R-semigroups uses the rules of Hoare logic in H-

semigroups directly. Beyond this, a simple algebraic setting is presented in which the two

sets of laws are interderivable. In addition it is shown that effective translations between

verification and refinement proofs are possible (Section 5).

Two main benefits of the H-semigroup approach to Hoare logic are as follows: First of

all, it allows developing such logics over arbitrary semirings, and it supports the instantia-

tion of the generic H-semigroup operations in various ways. Addition, for instance, can be

interpreted as nondeterministic choice or as parallel composition; weak iteration as finite

iteration in a Kleene algebra or possibly infinite iteration in a demonic refinement algebra

(Section 6). The development of a new Hoare logic for multirelations (FurusawaS15) with

rules for sequential and concurrent composition provides an extended example (Section 7)

with potential for probabilistic and quantum extensions.

Secondly, the approach supports the design of simple modular program correctness

components. A minimalist verification component based on H-semigroups and a refine-

ment component based on R-semigroups are presented as examples. Both have been im-

plemented in the interactive theorem prover Isabelle/HOL (NipkowPW02) from scratch

using only its main libraries; and both are correct by construction. The compactness

of the axioms makes the derivation of generic verification and refinement rules by au-

tomated theorem proving and the soundness proof with respect to a relational store

semantics very simple (Section 8 and 9), but some conceptual insights were of course

necessary to achieve this level of simplicity and modularity.

The final sections of this article provide a series of counterexamples that justify the

H-semigroup and R-semigroup axioms (Section 10), and a derivation of the rules of

propositional Hoare logic from the H-semigroup axioms by diagram chase (Section 11).

2. H-Semigroups and Verification

A set S equipped with an unconstrained operation of type S×S → S is sometimes called

magma or groupoid.

Definition 1. An H-semigroup is a structure (S, ·,+,◦ ,�) such that (S, ·) is a semigroup

and (S,+) a magma. The binary relation � on S is transitive; multiplication and addition

are left and right isotone with respect to it, that is, x � y implies zx � zy, xz � yz,

x+ z � y + z and z + x � z + y. The operation ◦ : S → S satisfies the simulation axiom

yx � xy ⇒ yx◦ � x◦y.

2

Definition 2. An H-monoid is an H-semigroup expanded by a multiplicative unit 1 in

which � is a preorder, that is, reflexive and transitive.

The elements of S can be interpreted as actions, events or tasks of a system, in partic-

ular as programs. The product xy could mean that x happens and then, after it finishes,

y. The relation x � y could mean that whenever x can happen, y can happen as well,

for instance because action y allows at least the behaviour of action x, or because task

y is less prescriptive than task x. In these situations, on the one hand, y has at least as

many reasons to be true as x, which gives x � y the flavour of material implication. On

the other hand it is always safe to perform x in place of y, as it would not allow any

behaviour prohibited by y. The sum x+ y could be a nondeterministic choice between x

and y or their parallel composition. Yet no algebraic assumptions are made and · will be

interpreted as a parallel composition in Section 7 as well. Finally, x◦ could model a weak

kind of repetition or iteration of x that could be empty, finite or infinite. In this case,

the simulation axiom states that y can happen after a sequence of x’s whenever it can

happen before such a sequence, provided that y can happen after a single x whenever it

can happen before it. Yet x◦ could also be an abstraction or projection of x.

Definition 3. An H-triple is a ternary relation H ⊆ S × S × S over an H-semigroup S

such that, for all p, x, q ∈ S,

H px q ⇔ px � xq.

This generalised Hoare triple captures the fact that whenever p can happen before x, then

q can happen after it. In the context of program verification, p and q are the precondition

and postcondition of program x. Then, H px q expresses in the style of Kleene algebra

with tests that whenever program x is executed from states that satisfy the precondition

p and whenever x terminates, then it does so in states satisfying postcondition q.

For deriving the rules of a generalised Hoare logic, two more concepts are needed.

Definition 4. Let S be an H-semigroup. An element p ∈ S is left superdistributive if

p(x+ y) � px+ py holds for all x, y ∈ S. It is right subdistributive if xp+ yp � (x+ y)p

holds for all x, y ∈ S.

Definition 5. An element x of an H-semigroup reflects y whenever xy � yxy.

This means that whenever y can happen after x, then it can happen before x, too. In other

words, if y happens after x, then executing y before x does not restrict x’s behaviour.

Reflection is the opposite of preservation yx � yxy, which means that if y can happen

before x, then it can also happen afterwards. Reflection is preservation when x and y

happen backwards in time.

Lemma 6. In every H-semigroup,

(i) x reflects y if and only if H xy (xy),

(ii) x reflects y if x and y commute and y is multiplicatively idempotent.

We are now prepared for the main result in this section.

3

Proposition 7.

(i) In every H-semigroup with left-superdistributive element t and right-subdistributive

element u,

H px q′ ∧ q′ � q ⇒ H px q, (HCons1)

p � p′ ∧H p′ x q ⇒ H px q, (HCons2)

H px r ∧H r y q ⇒ H p (xy) q, (HSeq)

H t v (tv) ∧H tw (tw) ∧H (tv)xu ∧H (tw) y u ⇒ H t (vx+ wy)u, (HCond)

H p q (pq) ∧H pr (pr) ∧H (pq)x p ⇒ H p ((qx)◦r) (pr). (HLoop)

(ii) In every H-monoid, in addition,

H p 1 p. (HSkip)

The relation H does not distinguish programs from tests or assertions. As a com-

pensation, reflection conditions have been imposed on some rules. Obviously, (HCons1)

and (HCons2) are generalised consequence rules; (HSeq) is a sequential composition rule

and (HSkip) a skip rule. (HCond) is a conditional rule with two reflection conditions

and (HLoop) an iteration rule with one reflection condition. Assignment rules cannot be

specified in this setting (cf. Section 8). In the tradition of Kleene algebras with tests I

call the rules in Proposition 7 propositional Hoare logic (PHL). In H-monoids one can

merge (HCons1) and (HCons2) into the single consequence rule

p � p′ ∧H p′ x q′ ∧ q′ � q ⇒ H px q. (HCons)

Lemma 32 below shows that the distributivity assumptions on (HCond) are necessary.

Section 8 presents a formal proof of Proposition 7 with Isabelle, Section 11 an alternative

one by diagram chase. By Lemma 34 below, the reflection conditions are necessary for

(HCond) and (HLoop), but without them, simplified versions can still be obtained.

Corollary 8. In every H-semigroup with left-superdistributive element t and right-

subdistributive element u,

H txu ∧H t y u ⇒ H t (x+ y)u,

H px p ⇒ H px◦ p.

The second law simply translates the simulation axiom. A frame rule is derivable, too.

Lemma 9. In every H-semigroup,

H pxp ∧H q x r ⇒ H (pq)x (pr).

The condition H pxp in Corollary 8 and Lemma 9, which is equivalent to px � xp, is a

strong preservation property. It expresses that if p holds before x, then it holds after x

as well. Loop invariants, of course, have this property. Another typical situation is that

the actions in p and x do not affect each other and are, in that sense, independent.

4

3. R-Semigroups and Refinement

It is straightforward to express Morgan’s specification statement (Morgan94) in H-semi-

groups by adding one operation and two axioms. A generalised refinement calculus can

then be derived. It allows the stepwise modular construction of programs from specifi-

cations by restricting their behaviour, usually by elimination of nondeterminism. In this

context, programs are often seen as executable specifications, or as implementations of

specifications in the sense that programs constructed must satisfy the correctness criteria

prescribed by their specifications. It is therefore necessary that each individual refinement

step preserves correctness.

Definition 10. An R-semigroup is an H-semigroup expanded by the operation R :

S × S → S in which ◦ is isotone and that satisfies

H p (Rp q) q,

H px q ⇒ x � Rp q.

Definition 11. An R-monoid is an R-semigroup that is also a H-monoid.

In every R-semigroup, by definition, the refinement statement Rp q is the greatest solu-

tion in x of H px q, that is, the greatest element x that satisfies H px q. In the context

of program refinement, when H px q states that program or specification x meets the

partial correctness specification in terms of precondition p and postcondition q, Rp q

thus models the most general program or specification that satisfies the specification

statement expressed by the Hoare triple.

The relation � serves as the converse of the usual refinement relation, which is some-

times modelled as an implication between specifications. In line with the interpretation

given in Section 2, a program or specification x can be used safely in place of y whenever

x � y, as it would not violate the correctness criteria prescribed by y. Hence, whenever y

is correct and x � y, then x must be correct as well. The minimal requirements on � im-

posed in Definition 1 are of course essential for refinement: transitivity makes refinement

incremental and the isotonicity properties guarantee its modularity.

Proposition 12.

(i) In every H-semigroup with left-superdistributive element t and right subdistributive

element u,

p � p′ ∧ q′ � q ⇒ Rp′ q′ � Rp q, (RCons)

(Rp r)(Rr q) � Rp q, (RSeq)

H t v (tv) ∧H tw (tw) ⇒ vR (tv)u+ wR (tw)u � R tu, (RCond)

H p q (pq) ∧H pr (pr) ⇒ (q(R (pq) p))◦r � Rp (pr). (RLoop)

(ii) In every R-monoid,

p � q ⇒ 1 � Rp q. (RSkip)

These formulas generalise Morgan’s refinement laws (Morgan94). In analogy to the rules

of PHL, from which they can be derived (see Lemma 21 below), I call them propositional

5

refinement calculus (PRC). A formal proof of Proposition 12 with Isabelle can be found

in Section 9. By Lemma 33 and Lemma 35 (1) and (2) below, the distributivity and

reflection conditions cannot be removed.

The laws x � R 0 1 and R 1 0 � x are often added to PRC for platonic reasons.

Obviously, x � R 0 1 ⇔ H 0x 1 ⇔ 0x � x, which holds in an R-monoid whenever the

element 0 satisfies 0 � x and 0x = 0. Moreover, H 1 (R 1 0) 0 ⇔ 1R 1 0 � (R 1 0)0,

whence R 1 0 = 0 � x holds in an R-monoid whenever x0 = 0. Another interesting law is

1 � Rpp, wich follows in R-monoids from (RSkip) and transitivity of �.

Finally, the following frame law holds.

Lemma 13. In every R-semiring,

H r (Rp q) r ⇒ Rp q � R (rp) (rq).

R-semigroups could have been axiomatised by using H px q ⇔ x � Rp q. The two

R-semigroup axioms above, and hence the laws of PRC, can be derived from this law.

However, by Lemma 35(3) below, this law is not implied by the two R-semigroup axioms,

which are therefore strictly weaker.

4. Test H-Monoids and Assertions

Hoare logics usually distinguish programs from assertions or tests. This cannot be cap-

tured by H-semigroups or R-semigroups alone. Structured programs such as conditionals

or loops, which depend on binary tests, cannot be specified either. To address this in a

semigroup setting, the following definition has been proposed in unpublished joint work

with Peter Jipsen.

Definition 14. A test monoid is a monoid (S, ·, 1) expanded by an antitest operation

− : S → S that satisfies

−(−(−0)) = −0,

−x · −(−x) = 0,

−x · −(−(−z) · −(−y)) = −(−(−x · −y) · −(−x · −z)).

Defining a test operation t x = −(−x) as well as 0 = −1, and using the test disjunction

operation defined as t x⊕ t y = −(−x · −y), these axioms can be written more succinctly

as t 1 = 1, −x · t x = 0 and −x · −(t z · t y) = −((t x⊕ t y) · (t x⊕ t z)).

Lemma 15. In every test monoid S, the operation t is a retraction, t ◦ t = t, hence

x ∈ t(S) ⇔ t x = x.

The elements of t(S), the image of S under t, are called tests, and according to Lemma 15,

tests are fixpoints of t. I henceforth write p, q, r, . . . for tests and x, y, z for general

elements. It is straightforward to show that t(S) = −(S). Lemma 15 is useful for proving

the following fact.

Lemma 16. In every test monoid, (t(S),⊕, ·,−, 0, 1) forms a boolean subalgebra of S.

6

This boolean structure is of course desirable for tests and assertions. The following defi-

nition links test monoids with H-monoids.

Definition 17. A test H-monoid is a structure (S,+, ·,−,◦ , 1,�) where (S,+, ·,◦ , 1,�)

is an H-monoid, (S, ·,−, 1) a test monoid, and all tests p ∈ t(S) are left subdistributive

and right superdistributive.

Note that � need not coincide with the lattice order on tests and that ⊕, which is

associative, commutative and idempotent, does not in general coincide with + on tests.

In test H-monoids, Hoare triples can be specified à la Kleene algebra with tests. The

rules of PHL, as instances of those in Proposition 7, are now derivable without reflection

conditions.

Lemma 18. If S is a test H-monoid, then H p q (pq) holds for all p, q ∈ t(S).

Conditional and loop commands can be defined as

if p then x else y = px+−py,

loop◦ p x = (px)◦ · −p.

Hoare triples can be restricted to tests in the first and third argument:H ⊆ t(S)×S×t(S).

The conditional and loop rules in Proposition 7 thus specialise as follows.

Corollary 19. In every test H-monoid,

H (tv)xu ∧H (t · −v) y u ⇒ H t (if v then x else y)u,

H (pq)x p ⇒ H p (loop q x) (p · −q).

A test R-monoid is an R-monoid that is also a test H-monoid in which the specification

statement is restricted to type t(S)× t(S) → S. The refinement laws for conditionals and

loops in Proposition 12 then specialise as follows.

Corollary 20. In every test R-monoid,

if v thenR (vt)u elseR (−vt)u � R tu,

loop◦(q,R (qp) p) � Rp (p · −q).

5. Verification vs Refinement

In practice it is often straightforward to transform verification proofs into refinement

proofs and vice versa. This section considers this observation from a formal point of

view. Related to this, I first collect some conditions under which verification rules and

refinement laws become interderivable.

Lemma 21. Let (S,�) be a preorder endowed with operations ·,+, R : S × S → S,
◦ : S → S and 1 ∈ S. Assume that ·, + and ◦ are isotone and that, for H px q ⇔ px � xq,

H px q ⇔ x � Rp q. (1)

Then (HX) ⇔ (RX) for X ∈ {Cons, Seq, Skip,Cond,Loop} under the usual distributivity

constraints on the conditional rules.

7

Proof. The R-monoid axioms H p (Rp q) q and H px q ⇔ x � Rp q are derivable from

(1) and can thus be used in the proof.

— (HCons) ⇔ (RCons). Suppose that p � p′ and q′ � q. Then

H p′ (Rp′ q′) q′ ⇒ H p (Rp′ q′) q ⇔ Rp′ q′ � Rp q

by (HCons). Conversely, H p′ x q′ ⇔ x � Rp′ q′ � Rp q ⇔ H px q by (RCond) and

the two assumptions.

— (HSeq) ⇔ (RSeq).

H p (Rp r) r ∧H r (Rr q) q ⇒ H p ((Rp r)(Rr q)) q ⇔ (Rp r)(Rr q) � Rp q

by (HSeq). Conversely, by (RSeq) and isotonicity of ·,

H px r ∧H r y q ⇔ x � Rp r ∧ y � Rr q ⇒ xy � (Rp r)(Rr q) � Rp q ⇔ H p (xy) q.

— (HSkip) ⇔ (RSkip). 1 � Rpp by (HSkip), and the claim follows from (RCons).

Conversely, (RSkip) implies H p 1 p.

— (HCond) ⇔ (RCond). First,

H (tv) (R (tv)u)u ∧H (tw) (R (tw)u)u ⇒ H t (vR (tv)u+ wR (tw)u)u

⇔ vR (tv)u+ wR (tw)u � R tu

by (HCond). Conversely,

H (tv)xu ∧H (tw) y u ⇔ x � R (tv)u ∧ y � R (tw)u

⇒ vx+ wy � vR (tv)u+ wR (tw)u � R tu

⇔ H t (vx+ wy)u

by (RCond) and isotonicity of · and +. The distributivity and reflection conditions

have not been mentioned explicitly. They are the same for (RCond) and (HCond).

— (HLoop) ⇔ (RLoop). First,

H (pq)(R (pq) p) p ⇒ H p ((qR (pq) p)◦r) (pr) ⇔ (qR (pq) p)◦r � Rp (pr)

by (HLoop). Conversely,

H (pq)x p ⇔ x � R (pq) p ⇒ (qx)◦r � (qR (pq) p)◦r � Rp (pr) ⇔ H p ((qx)◦r) pr

by (RLoop) and isotonicity of · and ◦. The reflection conditions have again not been

mentioned.

The derivation of PRC from PHL has already been reported in the context of Kleene

algebras with tests expanded by the refinement statement and (1) as an axiom (Arm-

strongGS16); the converse direction is new. Lemma 36 below yields a counterexample if

the R-semigroup axioms H p (Rp q) q and H px q ⇒ x � Rp q are assumed instead of

(1). In that case PRC follows from PHL, but not conversely.

Finally, condition (1) covers the interderivability of assignment rules. Hoare’s assign-

ment axiom is of the form H p[e/v] (v := e) p, where p[e/v] denotes that the value of

8

variable v in the program store is updated to e. The standard refinement rule for assign-

ments is (v := e) � Rp[e/v] p. Thus, obviously,

H p[e/v] (v := e) p ⇔ (v := e) � Rp[e/v] p (2)

is an instance of (1). Other typical refinement rules for assignments are derivable by using

the consequence and sequential composition rules of PHL (cf. Section 9).

The next lemmas show that PRC proofs can be constructed from step-wise proofs in

PHL and vice versa. In this context I assume the preorder axioms for �. If the rules PHL

from Proposition 7 have been added to them, I write H for the resulting set. Otherwise, if

the refinement laws PRC from Proposition 12 and the isotonicity laws for all operations

have been added, I write R. While programs are defined in the standard way as a recursive

data type or grammar over a given set of atoms.

Lemma 22. Every proof in H translates effectively into a proof in R if, for every atomic

program c, H ⊢ H p c q ⇒ R ⊢ c � Rp q.

Proof. By induction on H-proofs.

— There are two base cases. For 1, H ⊢ H p 1 q and R ⊢ 1 � Rpp by Proposition 7

and Proposition 12. Thus H ⊢ H p 1 q ⇒ R ⊢ 1 � Rpp. For atomic programs the

assumption applies.

— Suppose H ⊢ H px q and the last proof step was H ⊢ H p′ x q′ by (HCons) with p � p′

and q′ � q. Then R ⊢ x � Rp′ q′ by the induction hypothesis and R ⊢ x � Rp q with

the assumptions and (RCons).

— Suppose H ⊢ H p(xy) q and the last proof step was (HSeq). Then there were proofs

H ⊢ H px r and H ⊢ H ry q for some r ∈ S. Therefore R ⊢ x � Rp r and R ⊢ y � Rr q

by the induction hypothesis and R ⊢ xy � (Rp r)(Rr q) � Rp q with (RSeq) and

isotonicity of ·.

— Suppose H ⊢ H p (vx+ wy) q and the last proof step was (HCond). Then there were

proofs H ⊢ H (pv)x q and H ⊢ H (pw) y q. Therefore R ⊢ x � R (pv) q and R ⊢ y �

R (pw) q by the induction hypothesis and R ⊢ vx+wy � vR (pv) q+wR (pw) q � Rp q

by (RCond) with isotonicity of + and ·.

— Suppose H ⊢ H p ((qx)◦r) (pr) and the last proof step was (HLoop). Then there was

a proof H ⊢ H (pq)x p. Therefore R ⊢ x � R (pq) p by the induction hypothesis and

R ⊢ (qx)◦r � (qR (pq) p)◦r � Rp (pr) by (RLoop) with isotonicity of · and ◦.

For translating refinement proofs into verification proofs the following fact is useful.

Lemma 23. Let α, β be specification statements. The expressions generated by R satifsy

(i) if R ⊢ x � αβ then x = x1x2 and R ⊢ x1 � α and R ⊢ x2 � β for some x1, x2 ∈ S;

(ii) if R ⊢ x � yα + zβ then x = yx1 + zx2 and R ⊢ x1 � α and R ⊢ x2 � β for some

x!, x2 ∈ S;

(iii) if R ⊢ x � (yα)◦z then x = (yw)◦z and R ⊢ z � α for some w ∈ S.

Proof. The laws in R form a context-free grammar when the constraints are ignored.

9

The conditional rule can be seen as an infinite set of rules between nonterminals. It is

therefore clear that these rules generate trees. For instance x � αβ says that from a

certain tree α · β with terminal · one can expand to a tree x. Hence the tree x will

still have root · and two subtrees x1 and x2 stemming from the expansion of α and β,

respectively. In other words, x = x1 · x2. The arguments for the other cases are similar.

Lemma 24. Every proof in R translates effectively into a proof in H if, for every atomic

program c (e.g. an assignment statement), R ⊢ c � Rp q ⇒ H ⊢ H p c q.

Proof. By induction on R proofs.

— The base cases are trivial as in Lemma 22 and I do not repeat them.

— Suppose the last step is (RCons). Then there is a proof R ⊢ x � Rp′ q′ � Rp q and

the last step uses p � p′ and q′ � q. Then H ⊢ H p′ x q′ by the induction hypothesis

and H ⊢ H px q by (HCons).

— Suppose the last step is (RSeq). Then there is a proof R ⊢ x � (Rp r)(Rr q) � Rp q

for some r ∈ S. By Lemma 23 there are proofs R ⊢ x1 � Rp r and R ⊢ x2 � Rr q for

some x1, x2 ∈ S with x = x1x2. Then H ⊢ H p x1 r and H ⊢ H r x2 q by the induction

hypothesis, and H ⊢ H px q by (HSeq).

— Suppose the last step is (RCond). Then there is a proof x � vR (pv) q+wR (pw) q �

Rp q. By Lemma 23 there are x1, x2 ∈ S such that x = v+x1 +w+x2 and R ⊢ x1 �

R (pv) q and R ⊢ x2 � R (pw) q. Then H ⊢ H (pv)x1 q and H ⊢ H (pw)x2 q by the

induction hypothesis, and H ⊢ H px q by (HCond).

— Suppose that the last step is (RLoop). Then there is a proof R ⊢ x � (pR (pq) p)◦r �

Rp (pr). By Lemma 23 there exists an y ∈ S such that x = (qy)∗r and R ⊢ y �

R (pq) p. Then H ⊢ H (pq) y p by the induction hypothesis and H ⊢ H px (pr) by

(HLoop).

By (2), assignment rules translate as well. An example verification proof can be found in

Section 8; a refinement proof and a brief discussion of their translation in Section 9.

6. Instances

In H-semigroups and R-semigroups with or without tests, no algebraic axioms have been

imposed on addition and little interaction between addition and multiplication has been

assumed apart from the weak distributivity conditions for (HCond). This makes Propo-

sition 7 and 12 available in a wide range of algebras. Here I briefly review two classes of

instances: algebras without tests in which distributivity assumptions are subsumed, and

test algebras in which reflection assumptions are subsumed.

An H-semiring is a preordered semiring equipped with an operation ◦ that satisfies the

simulation axiom. In this case the distributivity laws x(y+ z) = xy+ xz and (x+ y)z =

xz + yz hold, and distributivity conditions are subsumed. Preordered means that the

carrier set of the semiring is a preorder and the operations of addition and multiplication

10

are isotone. If there is an additive unit 0, then it is reasonable to assume that S is positive,

that is, 0 � x for all x ∈ S. Obviously, every H-semiring is an H-semigroup.

Of particular interest are H-dioids, which are H-semirings S in which addition is idem-

potent; x+ x = x for all x ∈ S. This means that the additive semigroup is a semilattice,

whence every H-dioid is naturally ordered by the semilattice order x ≤ y ⇔ x+ y = y.

In both settings, PHL with the usual reflection conditions can be derived. The exten-

sions to R-semirings are obvious, and the rules in PRC can then be derived as well.

The operation ◦ of weak iteration can be instantiated in various ways, two of which

have been studied widely in the context of program correctness.

Firstly, a Kleene algebra is a dioid S with additive unit 0 and multiplicative unit 1

that is expanded by an operation ∗ : S → S that satisfies 1 + xx∗ ≤ x∗, 1 + x∗x ≤ x∗,

z + xy ≤ y ⇒ x∗z ≤ y, and z + yx ≤ y ⇒ zx∗ ≤ y. In this setting, the simulation law

yx ≤ xy ⇒ yx∗ ≤ x∗y is derivable (cf. (ArmstrongSW13b)), whence very Kleene algebra

is an H-monoid with ◦ instantiated by ∗.

Secondly, a demonic refinement algebra (vonWright04) is a Kleene algebra S expanded

by an operation ∞ : S → S that satisfies 1 + xx∞ = x∞, y ≤ xy + z ⇒ y ≤ x∞z and

x∞ = x∗ + x∞0. Now, the simulation law yx ≤ xy ⇒ yx∞ ≤ x∞y is derivable as

well (cf. (ArmstrongSW13b)). It follows that every demonic refinement algebra is an

H-monoid with respect to both ∗ and ∞.

The rules of PHL are thus derivable in Kleene algebras and demonic refinement alge-

bras, in particular loop rules for both ∗ and ∞ can be obtained in the latter. In these

algebras, ∗ models finite iteration whereas ∞ models potentially infinite iteration that

may or may not terminate. A strictly infinite iteration can also be modelled in the con-

text of dioids. While this operation is interesting for the verification of reactive systems,

it does not satisfy the simulation axiom needed for H-semigroups (ArmstrongSW13b)

and therefore does not yield a loop rule in the style of Proposition 7 or Corollary 8.

A wide range of test semirings has been introduced and formalised in Isabelle (Arm-

strongGS14). Their axioms are similar to those of test monoids, and it follows that each

of these variants forms a dioid and a test monoid. The most important examples are as

follows. A Kleene algebra with tests is a Kleene algebra that is also a test semiring. Every

Kleene algebra with tests is a test H-monoid, and, for loop∗(p, x) = while p do x, the

classical while-rule

H (pq)x p ⇒ H p (while q do x) (p · −q)

can be derived. Demonic refinement algebras with tests can be defined along the lines of

Kleene algebras with tests (ArmstrongGS14) and the conditional and loop laws can be

restricted accordingly.

Finally, the results discussed in this section are compatible with modal Kleene alge-

bras (DesharnaisS11), for which Hoare logics have been derived as well. Intuitively, a

modal Kleene algebra is a Kleene algebra S expanded with an antidomain operation

a : S → S that models those states from which a program is not enabled. Every modal

Kleene algebra is a Kleene algebra with tests (DesharnaisS11) because the antidomain

operations satisfies the axioms for antitests above. The results for Kleene algebras with

tests and PHL thus carry over seamlessly.

11

7. Hoare Logic for Multirelations

This section presents binary multirelations as an extended example. In this setting, the

rules of PHL can be instantiated in various ways, giving addition and multiplication of a

H-semigroup different interpretations as nondeterministic choice, sequential composition

and parallel composition. A slight caveat is that multirelations with sequential composi-

tion as multiplication only form H-monoids if some restrictions on factors are imposed.

Classes of multirelations that form H-monoids directly, for instance union-closed or up-

closed multirelations (cf. (FurusawaS15)) and similar restrictions relevant for modelling

probabilistic or quantum programs (e.g. (HartogV02; ChadhaMS06)) could have been

considered instead, but the slight mathematical inconvenience of the general case is cer-

tainly compensated by the fact that it leads to Hoare logics and refinement calculi for

all specialisations mentioned.

Peleg (Peleg87) has proposed a concurrent dynamic logic that aims to study concur-

rency in its purest form as the dual notion to nondeterminism. The semantics of this

logic can be presented in terms of an algebra of binary multirelations (FurusawaS15).

This section shows how multirelations can be endowed with a Hoare logic.

A multirelation over a set X is a binary relation of type X × P X. Hence an element

of a multirelation relates an element a ∈ X with a subset A of X. I write M (X) =

P (X × P X) for the set of multirelations over X.

Peleg’s sequential composition of multirelations R and S is rather complicated. It is

the multirelation

R · S = {(a,A) | ∃B. (a,B) ∈ R ∧ ∃f. (∀b ∈ B. (b, f b) ∈ S) ∧A =
⋃

b∈B

f b}.

By this definition, a pair (a,A) is in the multirelation R ·S whenever R relates a to some

intermediate set B and S relates each b ∈ B to a set f b in such a way that A =
⋃

b∈B
f b.

The unit of sequential composition is 1σ = {(a, {a}) | a ∈ X}. The parallel composition

of R and S is defined as the multirelation

R‖S = {(a,A ∪B) | (a,A) ∈ R ∧ (a,B) ∈ S}.

The unit of parallel composition is 1π = {(a, ∅) | a ∈ X}.

Multirelations P ⊆ 1σ, the (sequential) subidentities, form a boolean subalgebra of

M (X) in which ∅ is the least and 1σ the greatest element. Union is join and sequential

composition, which coincides with parallel composition, is meet. The complement in the

subalgebra is −P = 1σ ∩ P · U , where P is the complement of P on M (X) and U the

universal multirelation, which relates any element of X to any of it subsets.

It is easy to show that P ⊆ 1σ ⇔ −− P = P , and that − satisfies the test axioms for

arbitrary multirelations. However, multirelations do not form test monoids with respect to

sequential composition. The main reason is that sequential composition of multirelations

is not associative: (R ·S)·T ⊆ R ·(S ·T), but not in general R ·(S ·T) ⊆ (R ·S)·T . However

(R ·S) ·T = R · (S ·T) if one of R, S, T is a subidentity. Similarly, R ⊆ S ⇒ T ·R ⊆ T ·S

and (R ∪ S) · T = R · T ∪ S · T , but R · (S ∪ T) = R · S ∪ R · T holds only if R is a

subidentity. These properties suffice to prove the following fact.

12

Lemma 25. For all P, P ′, Q,Q′, R, S ∈ M (X) such that P, P ′, Q,Q′ ⊆ 1σ,

H P 1σ P,

P ⊆ P ′ ∧H P ′ RQ′ ∧Q′ ⊆ Q ⇒ H P RQ,

H P RP ′ ∧H P ′ S Q ⇒ H P (R · S)Q,

H (P ·Q)RP ′ ∧H (P · −Q)S P ′ ⇒ H P (ifQ thenR elseS)P ′.

This lemma—more precisely its sequential composition and conditional rule—is not an

immediate instance of Proposition 7, as subidentities are required in the right places to

apply the associativity properties needed. By contrast, the distributivity assumptions of

(HCond) hold in the multirelational setting according to the discussion above. With these

restrictions in place, each proof of the respective rule of PHL goes through as before. In

particular, all subidentities P and Q satisfy the reflection conditions H P Q (P · Q) as

their multiplication is commutative and idempotent.

Parallel composition is better behaved. (M (X), ‖, 1π) forms a commutative monoid,

and the distributivity laws (R‖S) ·T = (R ·T)‖(S ·T) and T ·(R‖S) = (T ·R)‖(T ·S) hold

if T is a subidentity. Thus, with subidentities occurring in the right places in equations,

multirelations under sequential and parallel composition almost form semirings (though

not dioids because parallel composition is not idempotent). Because subidentities sat-

isfy the subdistributivity and superdistributivity conditions of Corollary 8, the following

simple parallel composition rule is an immediate consequence of that corollary.

Lemma 26. For all P,Q,R, S ∈ M (X) such that P,Q ⊆ 1σ,

H P RQ ∧H P S Q ⇒ H P (R‖S)Q.

A star operation as the least fixpoint of λX. S ∪ R ·X has already been investigated

(FurusawaS15). Here, however, the least fixpoints of the dual functions

FSR = λX. S ∪X ·R,

FR = 1σ ∪X ·R

are needed for Hoare logic. Both are isotone on the complete lattice (M (X),∪,∩, ∅, U)

and thus have indeed least (pre)fixpoints. I write (S∗R) for the (binary) fixpoint µFSR

of FSR and R∗ for the (unary) fixpoint µFR of FR. Proving the simulation law of H-

semigoups requires showing that (P ∗R) = P · R∗, that is, µFPR = P · µFR, at least for

P ⊆ 1σ. This can be established by fixpoint fusion whenever P is a subidentity.

Theorem 27. (MeijerFP91) If f and g are isotone functions and h is a continuous

function over a complete lattice, then f ◦ h = h ◦ g implies µf = hµg.

Lemma 28. Let R,P ∈ M (X) and P ⊆ 1σ. Then (P ∗R) = P ·R∗.

Proof. Instantiate f = FSR, g = FR and h = H = λX.X · P in the fixpoint fusion

theorem. It is routine to show that H is continuous if P is a subidentity, P ·
⋃

i∈I
Ri =⋃

i∈I
P ·Ri. Moreover,

(FSR ◦H)x = P ∪ (P · x) ·R = P · (1σ ∪ x ·R) = (H ◦ FR)x

13

by left distributivity and associativity of multiplication with subidentities.

The following fact is then immediate from the (least) fixpoint properties of FR and FSR.

Lemma 29. Let P,R, S ∈ M (X) and P ⊆ 1σ. Then the following star unfold and

induction laws hold:

1σ ∪R∗ ·R ⊆ R∗,

P ∪ S ·R ⊆ S ⇒ P ·R∗ ⊆ S.

Lemma 30. Let P,R ∈ M (X) and P ⊆ 1σ. Then the star simulation law holds:

P ·R ⊆ R · P ⇒ P ·R∗ ⊆ R∗ · P.

Proof. Let P ·R ⊆ R·P . For P ·R∗ ⊆ R∗·P it suffices to show that P∪(R∗·P)·R ⊆ R∗·P

by star induction. Indeed, P ∪R∗ ·P ·R ⊆ P ∪R∗ ·R ·P = (1σ ∪R∗ ·R) ·P = R∗ ·P , by

associativity of multiplication in the presence of P , the isotonicities and distributivities

of multirelations and the star unfold law.

The following loop rule is thus derivable.

Lemma 31. For all P,Q,R ∈ M (X) such that P,Q ⊆ 1σ,

H (P ·Q)RP ⇒ H P (while Q do R) (P · −Q).

A refinement calculus for multirelations as in Proposition 12 can be obtained as well,

since all assumptions for Lemma 21 are satisfied.

It is interesting to note that (M (X),∪, ‖, ∅, 1π) forms a positive semiring. In this set-

ting, Hoare triples can be defined with respect to parallel composition as well, H̃ P RQ ⇔

P‖R ⊆ Q‖R, and for arbitrary P , Q and R. The rules of PHL can then be derived directly

as an instance of Proposition 7, including a loop rule with respect to a star for parallel

composition. The sequential composition rule then becomes

P‖R ⊆ P ′‖R ∧ P ′‖S ⊆ Q‖S ⇒ P‖R‖S ⊆ Q‖R‖S.

This law covers situation where P 6⊆ P ′ and P ′ 6⊆ Q. Similarly, even when P 6⊆ Q,

P‖R ⊆ Q‖R ∧ P‖S ⊆ Q‖S ⇒ P‖(R ∪ S) ⊆ Q‖(R ∪ S).

Assignment rules can be added to a multirelational program semantics in various ways.

The simplest case are deterministic assignments which can be modelled essentially as

outlined in the next section, using the fact that every binary relation R can be embedded

into a multirelation R† by (a, b) ∈ R ⇔ (a, {b}) ∈ R†. The consideration of demonically

nondeterministic, probabilistic or random assignments x := E, where E is a set of values

such as a probability (sub)distribution, can be expressed by multirelations, but is beyond

the scope of this article.

14

8. A Minimalist Verification Component

A main benefit of the generalisation of Hoare logics via H-semigroups and H-monoids

is that it makes the implementation of verification components in interactive theorem

provers easy: only very few simple algebraic properties need to be checked.

This section presents a minimalist verification component for while programs. It has

been implemented in Isabelle/HOL from scratch, using only Isabelle’s main libraries† (a

GCD component is needed for reasoning about Euclid’s algorithm). The general method

is as follows. In the first part of the Isabelle code below, H-monoids are defined as an

axiomatic type class. Hoare triples are then introduced and the rules of a generic and

polymorphic PHL are derived by automated theorem proving from the H-monoid axioms.

By contrast to Section 2, rule (HLoop) is refined to be used for while loops with invariants.

Next, polymorphic predicates are defined as boolean-valued functions from type ′a. A

polymorphic store is modelled, as usual, as a function from variables, which are repre-

sented by strings, to elements of type ′a. It can handle data of arbitrary type.

It is then shown that binary relations satisfy the simulation axioms of H-semigroups

and, by an interpretation statement, that binary relations over arbitrary unspecific

universes X under the identity relation Id = {(a, a) | a ∈ X}, relative composition

R;S = {(a, b) | ∃c. (a, c) ∈ R∧ (c, b) ∈ S}, set union and the reflexive-transititive closure

operation R∗ =
⋃

i∈N
Ri form H-monoids.

The assignment command v ::= e is then defined in this denotational relational store

semantics of H-monoids, using Isabelle’s built-in function update operation :=, and a

variant of Hoare’s assignment axiom is derived, using a function ⌈ ⌉ that embeds pred-

icates into relations. The last few lines set up syntactic sugar for while programs. Note

that the distributivity assumptions and reflection conditions have been discharged in the

conditional and while rules in the relational semantics.

theory H-Semigroup

imports Main GCD

begin

notation times (infixl · 70)
and relcomp (infixl ; 70)

class H-monoid = monoid-mult + plus +
fixes preo :: ′a ⇒ ′a ⇒ bool (infixl � 50)

and star :: ′a ⇒ ′a (-⋆ [101] 100)
assumes preo-refl : x � x

and preo-trans: x � y =⇒ y � z =⇒ x � z

and add-isol : x � y =⇒ z + x � z + y

and add-isor : x � y =⇒ x + z � y + z

and mult-isol : x � y =⇒ z · x � z · y
and mult-isor : x � y =⇒ x · z � y · z
and star-sim: y · x � x · y =⇒ y · x⋆ � x⋆ · y

begin

† https://github.com/gstruth/h-semigroups

15

definition H :: ′a ⇒ ′a ⇒ ′a ⇒ bool where H p x q ←→ p · x � x · q

lemma H-skip: H p 1 p

by (simp add : H-def preo-refl)

lemma H-cons: p � p ′ =⇒ H p ′ x q ′ =⇒ q ′ � q =⇒ H p x q

by (meson H-def local .mult-isol local .mult-isor local .preo-trans)

lemma H-seq: H r y q =⇒ H p x r =⇒ H p (x · y) q

by (simp add : H-def , rule preo-trans, drule mult-isor , auto simp: mult-assoc mult-isol)

lemma H-cond :
assumes

∧
x y. p · (x + y) � p · x + p · y and

∧
x y. x · q + y · q � (x + y) · q

shows H p v (p · v) =⇒ H p w (p · w) =⇒ H (p · v) x q =⇒ H (p · w) y q

=⇒ H p (v · x + w · y) q

by (meson H-def assms add-isol add-isor preo-trans H-seq assms)

lemma H-loopi : H i v (i · v) =⇒ H i w (i · w) =⇒ H (i · v) x i =⇒ p � i =⇒ i · w � q

=⇒ H p ((v · x)⋆ · w) q

by (meson H-cons H-def H-seq local .star-sim)

end

type-synonym ′a pred = ′a ⇒ bool

type-synonym ′a store = string ⇒ ′a

lemma rel-star-sim-aux : Y ; X ⊆ X ; Y =⇒ Y ; X ˆˆ i ⊆ X ˆˆ i ; Y
by (induct i , simp-all , blast)

interpretation rel-hm: H-monoid Id op ; op ∪ op ⊆ rtrancl

by (standard , auto simp: SUP-subset-mono rtrancl-is-UN-relpow relcomp-UNION-distrib relcomp-UNION-distrib2

rel-star-sim-aux)

definition p2r :: ′a pred ⇒ ′a rel (⌈-⌉) where ⌈P⌉ = {(s,s) |s. P s}

lemma p2r-mult-hom [simp]: ⌈P⌉ ; ⌈Q⌉ = ⌈λs. P s ∧ Q s⌉
by (auto simp: p2r-def)

definition gets :: string ⇒ (′a store ⇒ ′a) ⇒ ′a store rel (- ::= - [70 , 65] 61) where

v ::= e = {(s,s (v := e s)) |s. True}

lemma H-assign: (∀ s. P s −→ Q (s (v := e s))) =⇒ rel-hm.H ⌈P⌉ (v ::= e) ⌈Q⌉
by (auto simp: rel-hm.H-def p2r-def gets-def)

definition if-then-else :: ′a pred ⇒ ′a rel ⇒ ′a rel ⇒ ′a rel (if - then - else - fi [64 ,64 ,64] 63) where

if P then X else Y fi = ⌈P⌉ ; X ∪ ⌈λs. ¬ P s⌉ ; Y

definition while :: ′a pred ⇒ ′a rel ⇒ ′a rel (while - do - od [64 ,64] 63) where

while P do X od = (⌈P⌉ ; X)∗ ; ⌈λs. ¬ P s⌉

definition while-inv :: ′a pred ⇒ ′a pred ⇒ ′a rel ⇒ ′a rel (while - inv - do - od [64 ,64 ,64] 63) where

while P inv I do X od = (⌈P⌉ ; X)∗ ; ⌈λs. ¬ P s⌉

lemma rel-ref : rel-hm.H ⌈P⌉ ⌈Q⌉ (⌈P⌉ ; ⌈Q⌉)
by (auto simp: rel-hm.H-def p2r-def)

16

lemma sH-cons: (∀ s. P s −→ P ′ s) =⇒ rel-hm.H ⌈P ′⌉ X ⌈Q⌉ =⇒ (∀ s. Q ′ s −→ Q s)
=⇒ rel-hm.H ⌈P⌉ X ⌈Q⌉

by (rule rel-hm.H-cons, auto simp: p2r-def)

lemma sH-cond : rel-hm.H (⌈P⌉ ; ⌈T⌉) X ⌈Q⌉ =⇒ rel-hm.H (⌈P⌉ ; ⌈λs. ¬ T s⌉) Y ⌈Q⌉
=⇒ rel-hm.H ⌈P⌉ (if T then X else Y fi) ⌈Q⌉

by (simp only: if-then-else-def , intro rel-hm.H-cond , auto, (metis p2r-mult-hom rel-ref)+)

lemma sH-whilei : ∀ s. P s −→ I s =⇒ ∀ s. I s ∧ ¬ R s −→ Q s =⇒ rel-hm.H (⌈I ⌉; ⌈R⌉) X ⌈I ⌉
=⇒ rel-hm.H ⌈P⌉ (while R inv I do X od) ⌈Q⌉

by (simp only: while-inv-def , intro rel-hm.H-loopi , auto simp: p2r-def , (metis p2r-def rel-ref)+)

lemma euclid :
rel-hm.H ⌈λs::nat store. s ′′x ′′ = x ∧ s ′′y ′′ = y⌉
(while (λs. s ′′y ′′ 6= 0) inv (λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y)
do

(′′z ′′ ::= (λs. s ′′y ′′)) ;
(′′y ′′ ::= (λs. s ′′x ′′ mod s ′′y ′′)) ;
(′′x ′′ ::= (λs. s ′′z ′′))

od)
⌈λs. s ′′x ′′ = gcd x y⌉
apply (rule sH-whilei , simp-all , clarsimp simp: p2r-def , intro rel-hm.H-seq)
apply (rule H-assign, auto)+
using gcd-red-nat by auto

end

The verification of Euclid’s algorithm has been added as a simple example. Isabelle’s

syntax conventions require that program variables, which have been implemented as

strings, are decorated with double quotes.

This verification component is correct by construction relative to Isabelle’s small trust-

worthy core because the axiomatic extension introduced by the type class for H-monoids

is made consistent with Isabelle’s core by the interpretation proof with respect to the

relational program semantics. The verification could have been automated further by

programming tactics for verification condition generation in Isabelle, but this is not the

purpose of this section. Finally, the PHL rules for the control level are cleanly separated

from the data level. In fact, the relational semantics can be replaced in a modular fashion

by, for instance, a denotational trace semantics of programs.

9. A Minimalist Refinement Component

This section shows how the Isabelle verification component based on H-monoids can be

expanded to a minimalist refinement component based on R-monoids‡.

First, in the Isabelle code below, the type class of H-monoids is expanded to that

of R-monoids. The rules of PRC are derived next within this algebra. The relational

specification statement is then defined as the supremum of all the elements that satisfy the

associated H-triple, and it is shown by an interpretation proof that binary relations under

‡ https://github.com/gstruth/h-semigroups

17

the operations listed form R-monoids. After that, three assignment rules are derived in

the relational model; the second and third one allowing the introduction of assignments

after and before a block of code (Morgan94). Again the refinement laws are generic and

can be replaced in a modular fashion by other denotational semantics.

theory R-Semigroup

imports H-Semigroup

begin

class R-monoid = H-monoid +
fixes R :: ′a ⇒ ′a ⇒ ′a

assumes star-iso: x � y =⇒ x⋆ � y⋆

and R1 : H p (R p q) q

and R2 : H p x q =⇒ x � R p q

begin

lemma R-skip: 1 � R p p

by (simp add : H-skip R2)

lemma R-cons: p � p ′ =⇒ q ′ � q =⇒ R p ′ q ′ � R p q

using H-cons R1 R2 by blast

lemma R-seq: (R p r) · (R r q) � R p q

using H-seq R1 R2 by blast

lemma R-loop: H p q (p · q) =⇒ H p r (p · r) =⇒ (q · R (p · q) p)⋆ · r � R p (p · r)
by (simp add : H-loopi R1 R2 preo-refl)

lemma R-cond :
assumes

∧
x y. p · (x + y) � p · x + p · y and

∧
x y. x · q + y · q � (x + y) · q

shows H p v (p · v) =⇒ H p w (p · w) =⇒ v · R (p · v) q + w · R (p · w) q � R p q

by (simp add : assms H-cond R1 R2)

end

definition rel-R :: ′a rel ⇒ ′a rel ⇒ ′a rel where rel-R P Q =
⋃
{X . rel-hm.H P X Q}

interpretation rel-rm: R-monoid Id op ; op ∪ op ⊆ rtrancl rel-R

by (standard , auto simp add : rel-R-def rel-hm.H-def , blast)

lemma R-assign: (∀ s. P s −→ Q (s (v := e s))) =⇒ (v ::= e) ⊆ rel-R ⌈P⌉ ⌈Q⌉
by (simp add : H-assign rel-rm.R2)

lemma R-assignr : (∀ s. Q ′ s −→ Q (s (v := e s))) =⇒ (rel-R ⌈P⌉ ⌈Q ′⌉) ; (v ::= e) ⊆ rel-R ⌈P⌉ ⌈Q⌉

by (metis H-assign rel-hm.H-seq rel-rm.R1 rel-rm.R2)

lemma R-assignl : (∀ s. P s −→ P ′ (s (v := e s))) =⇒ (v ::= e) ; (rel-R ⌈P ′⌉ ⌈Q⌉) ⊆ rel-R ⌈P⌉ ⌈Q⌉
by (metis H-assign rel-hm.H-seq rel-rm.R1 rel-rm.R2)

lemma if-then-else-ref : X ⊆ X ′ =⇒ Y ⊆ Y ′ =⇒ if P then X else Y fi ⊆ if P then X ′ else Y ′ fi

by (auto simp: if-then-else-def)

lemma while-ref : X ⊆ X ′ =⇒ while P do X od ⊆ while P do X ′ od

by (simp add : while-def rel-hm.mult-isol rel-hm.mult-isor rel-rm.star-iso)

18

Once more Euclid’s algorithm is used as an example. The initial specification consists

of the precondition and postcondition used in the previous verification proof. The first

step brings the specification statement in shape for introducing a while loop in the second

step. The next three steps introduce the assignments in the body of the loop. The final

step ties these facts together by isotonicity; it shows that Euclid’s algorithm refines its

specification statement.

lemma euclid1 :
rel-R ⌈λs::nat store. s ′′x ′′ = x ∧ s ′′y ′′ = y⌉ ⌈λs. s ′′x ′′ = gcd x y⌉
⊇

rel-R ⌈λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y⌉ ⌈λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y ∧ ¬ s ′′y ′′ 6= 0⌉
by (intro rel-rm.R-cons, auto simp: p2r-def)

abbreviation P x y ≡ ⌈λs::nat store. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y ∧ s ′′y ′′ 6= 0⌉

lemma euclid2 :
rel-R ⌈λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y⌉ ⌈λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y ∧ ¬ s ′′y ′′ 6= 0⌉

⊇
while (λs. s ′′y ′′ 6= 0) do rel-R (P x y) ⌈λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y⌉ od

apply (simp only: while-def p2r-mult-hom[symmetric])
by (intro rel-rm.R-loop, auto simp: p2r-def rel-hm.H-def)

lemma euclid3 :
rel-R (P x y) ⌈λs. gcd (s ′′x ′′) (s ′′y ′′) = gcd x y⌉
⊇

rel-R (P x y) ⌈λs. gcd (s ′′z ′′) (s ′′y ′′) = gcd x y⌉ ; (′′x ′′ ::= (λs. s ′′z ′′))

by (intro R-assignr , simp)

lemma euclid4 :

rel-R (P x y) ⌈λs. gcd (s ′′z ′′) (s ′′y ′′) = gcd x y⌉
⊇

rel-R (P x y) ⌈λs. gcd (s ′′z ′′) (s ′′x ′′ mod s ′′y ′′) = gcd x y⌉ ; (′′y ′′ ::= (λs. s ′′x ′′ mod s ′′y ′′))
by (intro R-assignr , simp)

lemma euclid5 :
rel-R (P x y) ⌈λs. gcd (s ′′z ′′) (s ′′x ′′ mod s ′′y ′′) = gcd x y⌉
⊇

(′′z ′′ ::= (λs. s ′′y ′′))

by (intro R-assign, auto simp: gcd-non-0-nat)

lemma euclid-ref :
rel-R ⌈λs::nat store. s ′′x ′′ = x ∧ s ′′y ′′ = y⌉ ⌈λs. s ′′x ′′ = gcd x y⌉
⊇

while (λs. s ′′y ′′ 6= 0)
do

(′′z ′′ ::= (λs. s ′′y ′′)) ;
(′′y ′′ ::= (λs. s ′′x ′′ mod s ′′y ′′)) ;
(′′x ′′ ::= (λs. s ′′z ′′))

od

apply (rule dual-order .trans, subst euclid1 , simp, rule dual-order .trans, subst euclid2 , simp)
apply (intro while-ref) using euclid3 euclid4 euclid5 by fast

end

19

The proof steps could have been automated further once more by programming tactics

that apply the refinement laws and simplify the results of their applications.

The step-wise refinement proof of Euclid’s algorithm could be translated into a verifi-

cation proof as follows. The fifth, fourth and third step of the refinement proof translate

directly into a Hoare-style proof for the body of the while loop by using (1) and combin-

ing the results by using (HSeq). Alternatively, (RSeq) can be used first for obtaining a

refinement proof for the body of the loop, and then (1) can be used for translating the

result into a verification proof. It can be completed by applying the rule for while loops

and then the consequence rules.

Conversely, a fine-grained verification proof of Euclid’s algorithm could be translated

directly into a step-wise refinement proof by using the proof obligations generated by

Isabelle when applying the PHL rules as preconditions and postconditions in specification

statements. Isotonicity laws can then be used for breaking refinement proofs into pieces,

as in step three to five in the example above.

10. Counterexamples

When trying to find general algebras in which properties such as PHL or PRC are deriv-

able, the question of counterexamples arises. This section presents counterexamples re-

lated to the most important axiomatisations in this article. Isabelle’s Nitpick tool assisted

in their generation. Where possible and relevant, counterexamples are given in the pres-

ence of interesting additional structure.

The first two counterexamples relate to Proposition 7.

Lemma 32.

(i) In some dioid, without the left distributivity axiom, (HCond) does not hold.

(ii) In some dioid, without the right distributivity axiom, (HCond) does not hold.

Proof.

(i) Consider the structure with carrier set {a, b, 0, 1}, addition defined by 0 < 1 < b,

0 < a < b, whereas 1 and a are incomparable, and multiplication by aa = ba = a

and ab = bb = b. It is routine to check that it forms a dioid, but left distributivity

fails because a(1 + a) = ab = b 6= a = a1 + aa. Then H a 1 (a1), because a ≤ a,

H a b (ab), because ab = b = bab, H (a1) 1 a, because a ≤ a and H (ab) a a, because

aba = a = aa, but not H a (11 + ba) a, as a(1 + ba) = b 6< a = (1 + ba)a.

(ii) Consider the structure with carrier set {a, b, 0, 1}, with addition defined by 0 < a < 1

and 0 < b < 1 whereas a and b are incomparable, and multiplication by aa = ba = 0,

ab = a and bb = b. It is routine to check that this forms a dioid, but right distributivity

fails because (a+ b)b = b 6= 1 = ab+ bb. Then H 1 1 (11), H 1 b b, because b = bb and

H 1 a b, because a = a, but not H 1 (b+ a) b, as b+ a = 1 6< b.

The following counterexamples relate to Proposition 12.

20

Lemma 33.

(i) In some R-monoid, without the left distributivity axiom, (RCond) does not hold.

(ii) In some R-monoid, without the right distributivity axiom, (RCond) does not hold.

Proof.

(i) Consider the R-monoid with carrier set {a, 1}, partial order a ≺ 1, multiplication by

aa = a, iteration a◦ = 1◦ = 1 and tables for the other operations given by

R 1 a

1 1 a

a 1 1

+ 1 a

1 1 1

a 1 1

Then H 1 1 (11), but 1R (11) a+1R (11) a = a+a = 1 6≺ a � R 1 a. Note that addition

is commutative in this counterexample.

(ii) Consider the R-monoid with carrier set {a, b, 1}, partial order a ≺ 1 ≺ b, iteration

a◦ = b◦ = 1◦ = 1, multiplication defined by ab = bb = b and aa = ba = a, and the

remaining operations by

R 1 a b

1 b a b

a b 1 b

b b a b

+ 1 a b

1 b b b

a b a b

b b b b

Then H a b (ab) because ab = b = bab and H a 1 (a1), but bR (ab) a+ 1R (a1) a = b 6�

1 = Raa. Note that addition is again commutative.

In this case, a dioid-based counterexample for (1) was rather large whereas I did not

succeed to find one for (2). The following counterexamples relate again to Proposition 7.

Lemma 34.

(i) In some Kleene algebra, (HCond) without reflection conditions does not hold.

(ii) In some Kleene algebra, (HLoop) without reflection conditions does not hold.

Proof.

(i) Consider the Kleene algebra with carrier set {a, 0, 1}, addition defined by 0 < a < 1,

multiplication by aa = 0 and x∗ = 1 for x ∈ {a, 0, 1}. Then H (1a) 0 a and H (1a) 1 a,

but not H 1 (a0 + a1) a because a 6< 0 = aa.

(ii) Consider again the Kleene algebra from (1). ThenH (11) 1 1, but notH 1 ((11)∗a) (1a)

because 1∗a = a 6< 0 = aa.

The next counterexamples relate to Proposition 12 and the discussion at the end of

Section 3.

21

Lemma 35.

(i) In some R-Kleene algebra, (RCond) without reflection conditions does not hold.

(ii) In some R-Kleene algebra, (RLoop) without reflection conditions does not hold.

(iii) In some R-Kleene algebra, x ≤ Rp q ⇒ H px q does not hold.

Proof.

(i) Consider the R-Kleene algebra with carrier set {a, 0, 1}, addition defined by 0 < a <

1, multiplication by aa = 0, 0∗ = 1∗ = a∗ = 1 and

R 0 a 1

0 1 1 1

a a 1 1

1 0 0 1

Then aR (1a) a+ aR (1a) a = a 6≤ 0 = R 1, a.

(ii) Consider again the R-Kleene algebra from (1). Then 1R (11) 1)∗a = a 6≤ 0 = R 1 (1a).

(iii)Consider the Kleene algebra with carrier set {a, 0, 1}, addition defined by 0 < 1 < a,

multiplication by aa = a, 0∗ = 1∗ = 1 and a∗ = a and

R 0 1 a

0 a a a

1 0 a a

a 0 a a

Then 1 ≤ a = Ra 1, but H a 1 1 does not hold because a1 = a 6≤ 1 = 11.

The final counterexample relates to the discussion following Lemma 21.

Lemma 36. There is a preorder (S,�) equipped with +, ·, R : S × S → S, ◦ : S → S

and 1 ∈ S, such that ·, + and ◦ are isotone, H p (Rp q) q and H px q ⇒ x � Rp q hold

for H px q ⇔ px � xq, (RSeq) holds, but not (HSeq).

Proof. Consider the structure with carrier set {a, b, c}, preorder a ≺ b ≺ c and the

other operations defined by the tables

R a b c

a c c c

b c c c

c c c c

+ a b c

a a a a

b a a a

c a a a

· a b c

a a a b

b a a b

c b b b

◦

a b

b b

c b

It can be checked that all conditions hold, and in addition H c c c, and H c c b, because

cc = b = cb, but H c (cc) b fails because c(cc) = cb = b 6≺ a = bb = (cc)b.

22

11. Proposition 7 by Diagram Chase

Depict x � y by the following diagram:

•
x

**

y
44 •

Accordingly, H xy z and H xy (xy) are depicted as follows:

•
x //

y
��

•

y
��

• z
// •

•
x //

y
��

•

y
��

• x
// • y

// •

The rules (HCons1), (HCons2), (HSeq) and (HSkip) are then derived as follows:

•
p

//

x
��

•

x
��

•

q′
((

q
66 •

•

x
��

p
((

p′
66 •

x
��

• q
// •

•
p

//

x
��

•

x
��

• r
//

y
��

•

y
��

• q
// •

•
p

//

1
��

1

��

•

1
��

• p
// •

The next two export rules are helpful for deriving (HLoop) and (HCond).

H pr (pr) ∧H (pr)x q ⇒ H p (rx) q, (HExp1)

H q r (qr) ∧H px q) ⇒ H p (xr) (qr). (HExp2)

The first one is obtained by substituting r for x and pr for r and y for x in (HSeq), the

second one by substituting q for y and r and qr for q in (HSeq).

Finally, (HCond) is obtained with (HExp1) and (HLoop) with (HExp1) and (HExp2):

•
u //

w

��

v

��

•

w

��

v

��
•

x

��

u
// • v

// •

x

��

•
y

��

u // •
w // •

y
��

• q
// •

•
p

//

q
��

(qx)◦

��

•

q
��

(qx)◦

��

•

x
��

p
// • q

// •

x
��

• p
//

r
��

•

r
��

• p
// • r

// •

12. Conclusion

The range of Hoare logics and refinement calculi covered by H- and R-semigroups requires

further exploration. First of all, examples for Hoare logics over (non-idempotent) ordered

23

semirings beyond the parallel rules for multirelations in Section 7 remain to be found.

Matrix semirings might come to mind, but the definition of matrix orderings is rather

intricate and convincing examples are so far missing.

Hoare logics for probabilistic and quantum programs (e.g. (HartogV02; ChadhaMS06))

have already been developed, but further work is needed for relating them with H-

semirings, defining refinement calculi for them and implementing components for them

in Isabelle.

For the probabilistic case, a concise denotational semantics, e.g. relations between

probability (sub)distributions, and the operation of probabilistic choice, which is added

to nondeterministic choice, sequential composition and finite iteration, must be included

in the algebra. From an abstract point of view, values are mapped to distributions or

subdistributions of values, which resembles the multirelations in Section 7, but leads to

more pleasant algebraic properties.

Quantum Hoare logics further adapt the probabilistic approach. They seem to be

based predominantly on predicate transformer semantics, which encode Hoare triples

differently. Hence a relational semantics should be built before an integration. Such con-

siderations are left as interesting avenues for future work.

Acknowledgments. I am grateful to Alasdair Armstrong and Victor Gomes for their col-

laboration on building verification components in Isabelle/HOL and shaping the general

method that underlies Section 8 and 9; and in particular to Victor for discussions on the

relationship between verification and refinement proofs.

References

A. Armstrong, V. B. F. Gomes, and G. Struth. Kleene algebra with tests and demonic refinement

algebras. Archive of Formal Proofs, 2014.

A. Armstrong, V. B. F. Gomes, and G. Struth. Building program construction and verification

tools from algebraic principles. Formal Aspects of Computing, 28(2):265–293, 2016.

A. Armstrong, G. Struth, and T. Weber. Program analysis and verification based on Kleene

algebra in Isabelle/HOL. In S. Blazy, C. Paulin-Mohring, and D. Pichardie, editors, ITP

2013, volume 7998 of LNCS, pages 197–212. Springer, 2013.

A. Armstrong, G. Struth, and T. Weber. Kleene algebra. Archive of Formal Proofs, 2013.

R. Chadha, Mateus. P., and A. Sernadas. Reasoning about imperative quantum programs.

ENTCS, 158:19–39, 2006.

J. Desharnais and G. Struth. Internal axioms for domain semirings. Science of Computer

Programming, 76(3):181–203, 2011.

H. Furusawa and G. Struth. Concurrent dynamic algebra. ACM TOCL, 16(4):30:1–30:38, 2015.

J. den Hartog and E. P. de Vink. Verifying probabilistic programs using a Hoare like logic. Int.

J. Foundations of Computer Science, 13(3):315–340, 2002.

D. Kozen. On Hoare logic and Kleene algebra with tests. ACM TOCL, 1(1):60–76, 2000.

D. Kozen. Kleene algebra with tests. ACM TOPLAS, 19(3):427–443, 1997.

E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, en-

velopes and barbed wire. In J. Hughes, editor, Functional Programming Languages and Com-

puter Architecture, volume 523 of LNCS, pages 124–144. Springer, 1991.

C. Morgan. Programming from Specifications, 2nd Edition. Prentice Hall, 1994.

24

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order

Logic, volume 2283 of LNCS. Springer, 2002.

D. Peleg. Concurrent dynamic logic. J. ACM, 34(2):450–479, 1987.

D. Pous. Kleene algebra with tests and Coq tools for while programs. In S. Blazy, C. Paulin-

Mohring, and D. Pichardie, editors, ITP 2013, volume 7998 of LNCS, pages 180–196. Springer,

2013.

J. von Wright. Towards a refinement algebra. Science of Computer Programming, 51(1-2):23–45,

2004.

25

	Introduction
	H-Semigroups and Verification
	R-Semigroups and Refinement
	Test H-Monoids and Assertions
	Verification vs Refinement
	 Instances
	Hoare Logic for Multirelations
	A Minimalist Verification Component
	A Minimalist Refinement Component
	Counterexamples
	Proposition 7 by Diagram Chase
	Conclusion
	References

