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Abstract. Current understanding of mercury (Hg) behav-

ior in the atmosphere contains significant gaps. Some key

characteristics of Hg processes, including anthropogenic and

geogenic emissions, atmospheric chemistry, and air–surface

exchange, are still poorly known. This study provides a

complex analysis of processes governing Hg fate in the at-

mosphere involving both measured data from ground-based

sites and simulation results from chemical transport models.

A variety of long-term measurements of gaseous elemental

Hg (GEM) and reactive Hg (RM) concentration as well as

Hg wet deposition flux have been compiled from different

global and regional monitoring networks. Four contemporary

global-scale transport models for Hg were used, both in their

state-of-the-art configurations and for a number of numeri-

cal experiments to evaluate particular processes. Results of

the model simulations were evaluated against measurements.

As follows from the analysis, the interhemispheric GEM gra-

dient is largely formed by the prevailing spatial distribution

of anthropogenic emissions in the Northern Hemisphere. The

contributions of natural and secondary emissions enhance the

south-to-north gradient, but their effect is less significant. At-

mospheric chemistry has a limited effect on the spatial distri-

bution and temporal variation of GEM concentration in sur-

face air. In contrast, RM air concentration and wet deposi-

tion are largely defined by oxidation chemistry. The Br ox-

idation mechanism can reproduce successfully the observed

seasonal variation of the RM / GEM ratio in the near-surface

layer, but it predicts a wet deposition maximum in spring in-

stead of in summer as observed at monitoring sites in North

America and Europe. Model runs with OH chemistry cor-

rectly simulate both the periods of maximum and minimum

values and the amplitude of observed seasonal variation but

shift the maximum RM / GEM ratios from spring to summer.

O3 chemistry does not predict significant seasonal variation

of Hg oxidation. Hence, the performance of the Hg oxidation

mechanisms under study differs in the extent to which they

can reproduce the various observed parameters. This varia-

tion implies possibility of more complex chemistry and mul-

tiple Hg oxidation pathways occurring concurrently in vari-

ous parts of the atmosphere.

1 Introduction

Mercury (Hg) is widely recognized as a toxic pollutant that is

capable of long-range transport, bioaccumulation in ecosys-

tems and biota, and adverse effects on human health and the

environment. Although it is a natural element, its concen-

trations in the environment have been considerably enriched

by human activities since pre-industrial times (Fitzgerald et

al., 1998; Mason and and Sheu, 2002; Krabbenhoft and Sun-

derland, 2013). Once emitted to the atmosphere, Hg can be

dispersed globally, impacting remote regions through depo-

sition to aquatic ecosystems, transformation to a potent neu-

rotoxic form (methylmercury), and bioaccumulation in food

chains (Mahaffey et al., 2004; Sunderland et al., 2010; Ma-

son et al., 2012). The character of Hg transport and fate in the

atmosphere is largely determined by the properties of its var-

ious chemical forms. Mercury is emitted into the atmosphere

from anthropogenic sources in the form of both gaseous el-

emental mercury (GEM) and oxidized Hg chemical com-

pounds (Pirrone et al., 2010). The latter are typically divided

into two operationally defined forms: gaseous oxidized mer-

cury (GOM) and particle-bound mercury (PBM). In addition,

GEM can also originate from natural geogenic and secondary

sources (Mason, 2009). Reactive mercury (RM = GOM +

PBM) can also be produced in the atmosphere from gas-

and aqueous-phase oxidation of GEM (Lindberg and Strat-

ton, 1998). Relatively stable and slightly soluble GEM can

drift in the atmosphere for months, providing transport of

Hg mass around the globe (Schroeder and Munthe, 1998).

In contrast, RM is easily removed from the air by precipita-

tion scavenging (wet deposition) or surface uptake (dry de-

position) (Schroeder and Munthe, 1998; Gustin et al., 2012;

Sather et al., 2013; Wright et al., 2014). GEM can also con-

tribute to Hg dry deposition through air–surface exchange

with various terrestrial and aquatic compartments (Zhang et

al., 2009; Wang et al., 2014, 2016). Previously deposited Hg

can also be reduced to its elemental form and re-emitted back

to the atmosphere (Gustin, 2012; Qureshi et al., 2012).

Atmospheric redox chemistry plays an important role in

Hg long-range dispersion and deposition. However, the par-

ticular mechanisms of Hg oxidation in the atmosphere are

not well understood (Lin et al., 2006; Subir et al., 2011,

2012; Gustin et al., 2015; Ariya et al., 2015). Gaseous re-

active halogens, in particular atomic bromine (Br), are be-

lieved to play a major role in atmospheric oxidation of GEM

(Goodsite et al., 2004, 2012; Donohoue et al., 2006; Hynes

et al., 2009). Observational evidence exists that Br-initiated

chemistry is a dominant GEM oxidation pathway in some

atmospheric environments, including the marine boundary

layer, the polar regions, and the upper troposphere and lower

stratosphere (Hedgecock and Pirrone, 2004; Holmes et al.,

2009; Lyman and Jaffe, 2010; Obrist et al., 2011; Gratz et

al., 2015). However, very limited data exist with respect to

this mechanism in the global atmosphere (Kos et al., 2013).

Nevertheless, use of the Br chemistry as the only oxidation

pathway in a chemical transport model enables simulation of

the Hg atmospheric cycle and reproduction of available ob-

servations (Holmes et al., 2010; Soerensen et al., 2010; Amos

et al., 2012; Shah et al., 2016). However, in spite of theoreti-

cal doubts about the viability and significance of direct GEM

oxidation by ozone (O3) and hydroxyl radical (OH) under

atmospheric conditions (Calvert and Lindberg, 2005; Hynes

et al., 2009), numerous modeling studies using these reac-

tions as the main GEM oxidation pathways in the free tro-

posphere also demonstrate reasonable results compared with

observed GEM concentration and wet deposition flux (Chris-

tensen et al., 2004; Travnikov and Ilyin, 2009; Pan et al.,

Atmos. Chem. Phys., 17, 5271–5295, 2017 www.atmos-chem-phys.net/17/5271/2017/
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2010; Baker et al., 2012; Kos et al., 2013; Gencarelli et al.,

2014; De Simone et al., 2015; Cohen et al., 2016). Besides,

both theoretical and laboratory studies suggest that complex

Hg oxidation mechanisms involving O3 and OH can exist in

the atmosphere in the presence of aerosol particles and sec-

ondary reactants (Snider et al., 2008; Cremer et al., 2008;

Rutter et al., 2012; Subir et al., 2012; Ariya et al., 2015).

Note that recent comparative studies have shown that models

with diverse atmospheric chemistry formulations agree well

when used to simulate Hg transport on a global scale and the

source attribution of Hg deposition (Travnikov et al., 2010;

AMAP/UNEP, 2013a, 2015).

Chemical transport models complemented by extensive

measured data can facilitate a better understanding of the

principal mechanisms governing Hg dispersion and cycling

in the atmosphere. The effects of atmospheric redox chem-

istry as well as anthropogenic and natural emissions on the

fate of atmospheric Hg were investigated systematically in

a number of earlier modeling studies (Seigneur et al., 2006;

Seigneur and Lohman, 2008; Lohman et al., 2008). In more

recent work, Kos et al. (2013) performed a detailed anal-

ysis of the uncertainties associated with RM measurement

and modeling. A number of model sensitivity runs were car-

ried out to evaluate different chemical mechanisms and spe-

ciation of anthropogenic Hg emissions. In particular, they

found evident inconsistencies between the emission speci-

ation in existing emission inventories and the measured RM

concentration in surface air. Weiss-Penzias et al. (2015) used

a global-scale Hg model to analyze speciated atmospheric

Hg measurements from five high- and mid-elevation sites.

The results of the study suggested the presence of different

chemical regimes in different parts of the troposphere and

signalled that there is not necessarily one single global ox-

idant. Shah et al. (2016) used the same chemical transport

model to interpret aircraft measurements of RM and to place

new constraints on Br-initiated chemistry in the free tropo-

sphere. They found that standard model simulations signifi-

cantly underestimated observed RM and that modeling with

tripled Br concentrations or a faster oxidation rate constant

improved agreement with observations. A detailed process-

specific atmospheric lifetime analysis was carried out by Co-

hen et al. (2016) and provided important insights into the fate

and transport of atmospheric Hg as well as total Hg deposi-

tion to the Great Lakes. A global-scale chemical transport

model was also used by Song et al. (2015) for inverse model-

ing aimed at constraining present-day atmospheric Hg emis-

sions and relevant physiochemical parameters.

The current study uses four contemporary global-scale Hg

chemical transport models in combination with a variety of

long-term Hg concentration and wet deposition measure-

ments from different monitoring networks to analyze pro-

cesses governing Hg fate in the atmosphere. A number of

numerical experiments have tried to evaluate the effect of an-

thropogenic and natural/secondary emissions as well as dif-

ferent chemical oxidation mechanisms on the levels and spa-

tiotemporal variation of GEM and RM air concentrations and

Hg wet deposition. This study was performed as part of the

Mercury Modelling Task Force, a scientific cooperative ini-

tiative under the EU-funded project, Global Mercury Obser-

vation System (GMOS, www.gmos.eu).

2 Methods

2.1 Measurements

A variety of measured data were used to evaluate the

model experiments. The measured dataset was based on

the global GMOS monitoring network for Hg (Sprovieri

et al., 2016, 2017; GMOS, 2016), complemented by data

from the European Monitoring and Evaluation Programme

(EMEP) regional network for Europe (Tørseth et al., 2012;

EMEP, 2016) and by data from the Mercury Deposi-

tion Network of the National Atmospheric Deposition Pro-

gram (NADP/MDN) (Prestbo and Gay, 2009; NADP/MDN,

2016), the Atmospheric Mercury Network (AMNet) (Gay et

al., 2013; AMNet, 2016), and the Canadian National Atmo-

spheric Chemistry Database (NAtChem) (Cole et al., 2013;

Steffen et al., 2015; NAtChem, 2016) for North America.

Available measurements of GEM, GOM, and PBM concen-

trations in air were compiled, as well as wet deposition flux

measurements performed at ground-based sites in 2013. At

most of the sites of interest, the unspeciated measurements of

atmospheric Hg were performed as GEM (Gay et al., 2013;

Sprovieri et al., 2016; Angot et al., 2016). However, the sci-

entific evidence is still incomplete as to whether GEM or

total gaseous mercury (TGM) concentration is measured at

some particular sites because this largely depends on local

ambient conditions and the configuration of the measurement

setup (Gustin et al., 2015; Slemr et al., 2015). Nevertheless,

because the difference between long-term observations of

GEM and TGM commonly does not exceed a few percentage

points (Slemr et al., 2015), all unspeciated Hg measurements

were interpreted as GEM. Measured values of RM are used in

the study instead of observations of individual species GOM

and PBM. RM appears to be more valuable for the analysis

because measurements of the individual species are associ-

ated with higher uncertainties (Gustin et al., 2015; Weiss-

Penzias et al., 2015). Therefore, only sites with co-located

observations of GOM and PBM were used in the study.

The original measured data with high temporal resolution

were processed to obtain monthly and yearly mean values.

According to accepted criteria, monthly averages were used

for the analysis when the original data covered at least 15

days of the month. Monthly averages were used both to gen-

erate yearly mean values and to characterize the seasonal

variation of the observed parameter. In both cases, only sites

with temporal coverage of at least 7 months were selected.

The characteristics of the selected sites measuring GEM,

RM, and wet deposition are given, respectively, in Tables S1,

www.atmos-chem-phys.net/17/5271/2017/ Atmos. Chem. Phys., 17, 5271–5295, 2017



5274 O. Travnikov et al.: Multi-model study of mercury dispersion in the atmosphere

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��
�� ��

��

��
��

��

��

��

��
��

��

��

��

��

��

��

��

��

�� ��

��

��
��

��

��
����������

��

��

����

��

��

����
��

����

��

����

��

��

������

��

��
��

��

��

��
��

���� �� ��

������ ��
��

���� ����

��

��

����

��
����

�� ���� ��
��

��

��
��

��
��

��
�� ��

��

�� ��
��

�� ��
����

�� ��

��

��
�� ��

��

��

��

��
���� �������� ��

�� �� ��

����

��

��
��

��
��

��

��

���� ����

��

�� ��
��

��

��
�� ��

����

�� ��

�� ��

��

��
��

��

�� ��
����

��
��

��

�� ��

��

��

��

��

��
��
��
��

�� ��
��

��

��

��

GEM in air RM in air Hg wet deposition

Figure 1. Location of measurement sites used in the study

S2, and S3 in the Supplement. The geographical location of

the whole collection of sites is shown in Fig. 1. In total, the

dataset included 49 sites measuring GEM, 14 sites measur-

ing RM, and 124 sites measuring wet deposition. GEM ob-

servations are relatively uniformly distributed over the globe,

with somewhat higher density in the Northern Hemisphere.

In contrast, RM is observed mostly in northern temperate lat-

itudes, with only a few sites located in the tropics and further

southward. Most wet deposition measurements are located in

North America and Europe, limiting the possibility of model

evaluation in other regions.

2.2 Models

The model ensemble used in this study includes four chem-

ical transport models simulating mercury on a global scale

(Table 1). The models differ considerably in their general

formulation, spatial resolution, and physical and chemical

process parameterizations. The horizontal spatial resolution

of the models ranges from 1 to 2.8◦ in latitude and longi-

tude. The upper boundaries of the model domains vary from

10 hPa (∼ 30 km) to 0.01 hPa (∼ 80 km). Hence, the models

cover the entire troposphere and at least a significant part of

the stratosphere, which is enough to take into account most

processes governing mercury dispersion in the atmosphere.

Two of the models (GLEMOS,and GEOS-Chem) use offline

meteorological data prepared by an external pre-processor,

whereas the other two (GEM-MACH-Hg and ECHMERIT)

generate the meteorological fields along with the simula-

tion of pollutant transport. All the models used the same

Hg anthropogenic emissions dataset (AMAP/UNEP, 2013a,

b), with somewhat different speciations of mercury forms in

the base case. In the other model experiments, the emissions

speciation was harmonized by assuming all emissions to be

a form of GEM (Table 2). By contrast, total values of nat-

ural and secondary emissions differed significantly among

the models. Parameterization of these processes is an essen-

tial element of the model setup describing Hg cycling be-

tween the Earth’s surface and the atmosphere, which can-

not be easily changed or removed without disturbing the

entire model balance. The major chemical mechanisms in

the standard model configuration in the base case were also

essentially different. The base-case reactions of GLEMOS

and ECHMERIT included Hg oxidation by O3 and OH. The

GEM-MACH-Hg chemical scheme was based on the reac-

tion with OH, with Br chemistry applied in the polar regions.

GEOS-Chem considered Br chemistry as the only Hg oxi-

dation pathway in the gas phase. In addition, two of the four

models (GLEMOS and ECHMERIT) also included Hg redox

chemistry in the aqueous phase in cloud water. However, it

should be noted that the numerical experiments in this study

(see Sect. 2.4) were formulated to investigate particular pro-

cesses when all models used the same chemical mechanisms.

Considering these differences, the results, whether the mod-

els succeed or fail in reproducing the observed dependencies,

appear to be particularly valuable. A more detailed descrip-

tion of the model parameterizations is given subsequently.

2.2.1 GLEMOS

GLEMOS is a multi-scale chemical transport model devel-

oped to simulate environmental dispersion and cycling of

various chemicals including Hg based on the older MSCE-

HM-Hem hemispheric model (Travnikov, 2005; Travnikov

and Ilyin, 2009; Travnikov et al., 2009). The model simulates

atmospheric transport, chemical transformation, and deposi-

tion of three Hg species (GEM, GOM, and PBM). Atmo-

spheric transport of the tracers is driven by meteorological

fields generated by the Weather Research and Forecast mod-

eling system (WRF) (Skamarock et al., 2007) fed by opera-

tional analysis data from the European Centre for Medium-

Range Weather Forecasts (ECMWF) (ECMWF, 2017). In the

base configuration, the model grid had a horizontal resolution

of 1◦ × 1◦. Vertically, the model domain reached 10 hPa and

consisted of 20 irregular terrain-following sigma layers. The

atmospheric chemical scheme included Hg oxidation and re-

duction chemical reactions in both the gaseous phase and

aqueous phase of cloud water. The major chemical mech-

anisms in the gas phase included Hg oxidation by O3 and

OH radical, with the reaction rate constants from Hall (1995)

and Sommar et al. (2001), respectively. The latter mechanism

was scaled down by a factor of 0.1 in the cloud environment

and below clouds to account for reduced photochemical ac-

tivity (Seigneur et al., 2001). The O3 and OH concentration

fields were imported from MOZART (Emmons et al., 2010).

Two-step gas-phase oxidation of GEM by Br was included

as an option. Aqueous-phase reactions include oxidation by

O3, OH, and Cl and reduction by decomposition of sulfite

complexes (Van Loon et al., 2000). The model distinguished

between in-cloud and sub-cloud wet deposition of PBM and

GOM based on empirical data. The dry deposition scheme

was based on the resistance analogy approach (Wesely and

Hicks, 2000). Prescribed fluxes of Hg natural and secondary

emissions from soil and seawater were generated depending

on Hg soil concentration, soil temperature, and solar radia-

Atmos. Chem. Phys., 17, 5271–5295, 2017 www.atmos-chem-phys.net/17/5271/2017/
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Table 1. Characteristics of the participating global chemistry transport models.

Model GLEMOS GEOS-Chem GEM-MACH-Hg ECHMERIT

Spatial resolution

Horizontal 1◦ × 1◦ 2.5◦ × 2◦ 1◦ × 1◦ T42 (∼ 2.8◦×2.8◦)

Vertical 20 levels, top 10 hPa 47 levels, top 0.01 hPa 58 levels, top 7 hPa 19 levels, top

10 hPa

Driving meteorology

Data support type off-line off-line on-line on-line

Meteorological driver WRF/ECMWF GEOS-FP GEM ECHAM5

Anthropogenic emission

Global emission, t/y 1875 1875 1875 1875

Average speciation (base case)

GEM : GOM : PBM 81 : 15 : 4 81 : 19 : 0 a 96 : 3 : 1 81 : 15 : 4

Natural and re-emission

Definition prescribed/dynamicb prescribed/dynamicc prescribed/dynamicd prescribed/dynamice

Global emission, t/y (base case) 3995 5070 3660 8600

Gaseous chemistry (base-case reactions are in bold)

Reaction ratesf, cm3 molec−1 s−1

Hg0 + Br → HgBr 3.7 × 10−13 g 3.7 × 10−13 g 3.7 × 10−13 g 3.7 × 10−13 g

HgBr → Hg0 + Br 9.4 × 10−2s−1 h 9.4 × 10−2s−1 h 1.7 × 10−1s−1 i 9.4 × 10−2s−1 h

HgBr + Br → Hg0 + Br2 3.9 × 10−11 j 3.9 × 10−11 j — —

HgBr + Y → HgBrY,

Y = Br,OH

2.5 × 10−10 k 2.5 × 10−10 k 2.5 × 10−10 k 2.5 × 10−10 k

Hg0 + O3 → Hg(II) 3.0 × 10−20 l — 3.0 × 10−20 l 3.0 × 10−20 l

Hg0 + OH → Hg(II) (0.9 − 8.7) × 10−14 m — 3.0 × 10−14 n 8.7 × 10−14 o

Aqueous chemistry (in cloud water)

Oxidation agents O3, OH, HOCl/OCl− – – O3, OH

Reduction agents SO=
3 – – –

Model GLEMOS GEOS-Chem GEM-MACH-Hg ECHMERIT

Reference Travnikov and Ilyin

(2009), Travnikov et

al. (2009)

Holmes et al. (2010),

Amos et al. (2012),

Song et al. (2015)

Durnford et al. (2012),

Kos et al. (2013), Das-

toor et al. (2015)

Jung et al. (2009),

De Simone et al.

(2014)

a Dynamic gas–particle partitioning of RM in the atmosphere according to Amos et al. (2012). b Prescribed fluxes from terrestrial and aquatic surfaces as a function of
temperature and solar radiation; dynamic re-emission from snow. c Prescribed fluxes from terrestrial surfaces as a function of temperature and solar radiation; dynamic fluxes

from aquatic surfaces based on multi-media modeling. d Prescribed fluxes from terrestrial surfaces as a function of solar radiation and leaf area index; dynamic re-emission

from snow and aquatic surfaces. e Prescribed fluxes from terrestrial surfaces as a function of temperature and solar radiation; dynamically calculated ocean emissions. f

Temperature and pressure dependence applied to most reactions; the reaction rates are given at 298 K and 1 atm. g Donohoue et al. (2006). h Goodsite et al. (2012). i Dibble et

al. (2012). j Balabanov et al. (2005). k Goodsite et al. (2004). l Hall (1995). m Sommar et al. (2001) scaled down by a factor 0.1 in the cloud environment and below clouds to
account for reduction of photochemical activity (Seigneur et al., 2001). n Sommar et al. (2001) scaled down by a factor 0.34 to take into account possible dissociation/reduction
reactions. o Sommar et al. (2001). p Parrella et al. (2012). q Yang et al. (2005, 2010). r Emmons et al. (2010).

tion for emissions from land and proportionally to primary

production of organic carbon in seawater for emissions from

the ocean (Travnikov and Ilyin, 2009). In addition, an empir-

ical parameterization of prompt Hg re-emission from snow-

and ice-covered surfaces based on observed data was used.

2.2.2 GEOS-Chem

The GEOS-Chem global chemical transport model (v9-

02; www.geos-chem.org) is driven by assimilated meteoro-

logical data from the NASA GMAO Goddard Earth Ob-

serving System (Bey et al., 2001). GEOS-FP and GEOS-

5.2.0 data were used for the 2013 simulation year and

the spinup period, respectively (http://gmao.gsfc.nasa.gov/

products/). GEOS-Chem couples a 3-D atmosphere (Holmes

et al., 2010), a 2-D mixed-layer slab ocean (Soerensen et al.,

2010), and a 2-D terrestrial reservoir (Selin et al., 2008) at a

horizontal resolution of 2◦ × 2.5◦. Three Hg tracers (GEM,

GOM, and PBM) were tracked in the atmosphere (Amos et

al., 2012). A two-step gaseous oxidation mechanism initial-

ized by Br atoms was used. Br fields were archived from

a full-chemistry GEOS-Chem simulation (Parrella et al.,

2012), and the reaction rate constants were obtained from

www.atmos-chem-phys.net/17/5271/2017/ Atmos. Chem. Phys., 17, 5271–5295, 2017



5276 O. Travnikov et al.: Multi-model study of mercury dispersion in the atmosphere

Table 2. Specifications of model experiments.

Code Anthropogenic emissions Gas-phase chemistry Comment

BASE UNEP2010a Model standard configuration Base run

NoANT No emission Model standard configuration Effect of anthropogenic emissions

NoNATb – – Effect of natural/secondary emissions

BrCHEM1 UNEP2010, all emissions as GEMc GEM oxidation by Br Br dataset from GEOS-Chemd

BrCHEM2 UNEP2010, all emissions as GEM GEM oxidation by Br Br dataset from p-TOMCATe

O3CHEM UNEP2010, all emissions as GEM GEM oxidation by O3 O3 dataset from MOZARTf

OHCHEM UNEP2010, all emissions as GEM GEM oxidation by OH OH dataset from MOZARTf

a AMAP/UNEP (2013b). b Virtual experiment obtained by subtraction of NoANT results from the BASE case. c All GOM and PBM emissions summed to GEM to

keep constant total Hg emissions. d Parrella et al. (2012). e Yang et al. (2005, 2010). f Emmons et al. (2010).

Goodsite et al. (2012), Donohoue et al. (2006), and Bala-

banov et al. (2005). The GEM surface fluxes included anthro-

pogenic sources, biomass burning, and geogenic activities

as well as bidirectional fluxes in atmosphere–terrestrial and

atmosphere–ocean exchanges (Song et al., 2015). Biomass

burning emissions were estimated using a global CO emis-

sions database and an Hg / CO volume ratio of 1×10−7. Ge-

ogenic activities were spatially distributed based on the lo-

cations of Hg mines. For atmosphere–terrestrial exchange,

GEOS-Chem treated evasion and dry deposition of GEM

separately (Selin et al., 2008). Dry deposition was parame-

terized by a resistance-in-series scheme (Wesely, 1989). In

addition, effective GOM uptake by sea-salt aerosols was also

included over the ocean (Holmes et al., 2010). GEM evasion

included volatilization from soil and rapid recycling of newly

deposited Hg. The former was estimated as a function of soil

Hg content and solar radiation. The latter was modeled by

recycling a fraction of wet/dry deposited RM to the atmo-

sphere as GEM immediately after deposition (60 % for snow-

covered land and 20 % for all other land surfaces) (Selin et

al., 2008). GEOS-Chem estimated atmosphere–ocean GEM

exchange using a standard two-layer diffusion model. Ocean

Hg in the mixed layer was assumed to interact not only with

the atmospheric boundary layer but also with subsurface wa-

ters through entrainment and detrainment of the mixed layer

and wind-driven Ekman pumping (Soerensen et al., 2010).

2.2.3 GEM-MACH-Hg

GEM-MACH-Hg is a new chemical transport model for Hg

based on the GRAHM model developed by Environment and

Climate Change Canada (Dastoor and Larocque, 2004; Das-

toor et al., 2008; Durnford et al., 2010, 2012; Kos et al., 2013;

Dastoor et al., 2015). GEM-MACH-Hg uses a newer version

of the operational meteorological model of the Environment

and Climate Change Canada. The horizontal resolution of the

model is 1◦ × 1◦. GEM is oxidized in the atmosphere by the

OH radical. The reaction rate constant was obtained from

Sommar et al. (2001) but was scaled down by a coefficient

of 0.34 to account for possible dissociation and reduction re-

actions (Tossell et al., 2003; Goodsite et al., 2004). Gaseous

oxidation of Hg by Br was modeled in the polar regions using

reaction rate constants from Donohoue et al. (2006), Dibble

et al. (2012), and Goodsite et al. (2004). Atmospheric mer-

cury depletion events (AMDE) parameterization was based

on Br production and chemistry and snow re-emission of

GEM (Dastoor et al., 2008). OH fields were obtained from

MOZART (Emmons et al., 2010), and BrO was derived from

2007–2009 satellite observations of BrO vertical columns.

The associated Br concentration was then calculated from a

photochemical steady state (Platt and Janssen, 1995). Dry de-

position in GEM-MACH-Hg was based on the resistance ap-

proach (Zhang, 2001; Zhang et al., 2003). In the wet deposi-

tion scheme, GEM and GOM were partitioned between cloud

droplets and air using a temperature-dependent Henry’s law

constant. Total global emissions from natural sources and re-

emissions of previously deposited Hg (from land and oceans)

in GEM-MACH-Hg were based on global Hg budgets from

Gbor et al. (2007), Shetty et al. (2008), and Mason (2009).

Land-based natural emissions were spatially distributed ac-

cording to the natural enrichment of Hg. Land re-emissions

were spatially distributed according to historic Hg deposition

and land-use type and were dependent on solar radiation and

the leaf area index. Oceanic emissions depended on the dis-

tributions of primary production and atmospheric deposition.

2.2.4 ECHMERIT

ECHMERIT is a global online chemical transport model de-

rived from the ECHAM5 global circulation model, with a

highly flexible chemistry mechanism designed to facilitate

the investigation of atmospheric Hg chemistry (Jung et al.,

2009; De Simone et al., 2014, 2015, 2017). The model uses

the same spectral grid as ECHAM. The standard horizontal

resolution of the model is T42 (approximately 2.8◦
× 2.8◦),

whereas in the vertical dimension the model is discretized

with a hybrid-sigma pressure system with non-equidistant

levels up to 10 hPa. The base chemical mechanism includes

GEM oxidation by OH and O3 in the gaseous and aqueous

phases. Reaction rate constants were obtained from Som-

mar et al. (2001), Hall (1995), and Munthe (1992). OH

and O3 concentration fields were imported from MOZART
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(Emmons et al., 2010). Hg oxidation by Br was also op-

tionally available by means of a two-step gas-phase oxi-

dation mechanism with reaction rates from Goodsite et al.

(2004), Goodsite et al. (2012), and Donohoue et al. (2006).

ECHMERIT parameterized dynamic air–seawater exchange

as a function of ambient parameters, but using a constant

value of Hg concentration in seawater (De Simone et al.,

2014). Emissions from soils and vegetation were calculated

offline and derived from the EDGAR/POET emission in-

ventory (Granier et al., 2005; Peters and Olivier, 2003),

which included biogenic emissions from the GEIA invento-

ries (http://www.geiacenter.org), as described in Jung et al.

(2009). Prompt re-emission of a fixed fraction (20 %) of wet

and dry deposited Hg was included to account for reduction

and evasion processes that govern short-term Hg cycling be-

tween the atmosphere and terrestrial reservoirs (Selin et al.,

2008). This fraction was increased to 60 % for snow-covered

land and ice-covered seas.

2.3 Emissions data

A global inventory of Hg anthropogenic emissions for 2010

(AMAP/UNEP, 2013a, b) was used in the study. The orig-

inal dataset consisted of gridded emission data with a spa-

tial resolution of 0.5◦
× 0.5◦ for three Hg species (GEM,

GOM, and PBM). Total global Hg emissions from anthro-

pogenic sources were estimated at 1875 tonnes per year, with

the overall shares of GEM, GOM, and PBM emissions equal

to 81, 15, and 4 %, respectively. As mentioned earlier, some

models modified the original speciation of anthropogenic

emissions (Table 1) in the BASE case simulation. No infor-

mation on temporal variability of emissions was available in

the dataset. Geographically, significant Hg emissions were

predicted in industrial regions of East and South Asia, cen-

tral Europe, and the eastern part of North America (Fig. S1 in

the Supplement). In addition, high emission fluxes character-

ized some areas of Central and South America, sub-Saharan

Africa, and Southeast Asia due to Hg releases from artisanal

and small-scale gold mining. Almost no emissions were pre-

dicted in the Arctic and Antarctic regions.

2.4 Model experiments

The study was organized as multiple model experiments

to evaluate particular processes and mechanisms of Hg at-

mospheric chemistry as well as anthropogenic and natu-

ral/secondary emissions. A summary of the model experi-

ments is given in Table 2. All the models were used to per-

form the BASE case simulation representing the state-of-

the-art model configuration, which was used as a reference

point for other model experiments. All the models used the

same anthropogenic emissions, but with model specific spe-

ciation (Sect. 2.3). The NoANT run was based on the same

standard model configuration, but with anthropogenic emis-

sions turned off. Because Hg emissions from natural and

secondary sources were fully or partly represented in the

models as bi-directional air–surface exchange fluxes or as

re-emissions of previously deposited Hg (Table 1), simple

exclusion of this emission type from the simulations was

not feasible without disturbing the whole Hg cycle in the

model. In contrast, assuming additivity of Hg processes in

the atmosphere with respect to contributions from differ-

ent sources, the effect of natural and secondary emissions

(NoNAT) could be estimated by subtracting the NoANT re-

sults from the BASE case. Four additional model experi-

ments were intended to evaluate different chemical mecha-

nisms of GEM oxidation in the atmosphere. To avoid the in-

fluence of direct anthropogenic emissions on simulated RM

concentrations, all emissions were assumed to be a form of

GEM. The BrCHEM1 and BrCHEM2 model runs included

a single mechanism of GEM oxidation by atomic Br, but us-

ing two different datasets of Br concentration in the atmo-

sphere: one simulated by GEOS-Chem (Parrella et al., 2012)

and the other by p-TOMCAT (Yang et al., 2005, 2010). A

comparison of the spatial and temporal variations in Br con-

centration from these two datasets is given in Figs. S7 and

S10 in the Supplement. Two other experiments, O3CHEM

and OHCHEM, were based on O3- and OH-initiated oxida-

tion chemistry. The models used the same O3 and OH con-

centration datasets extracted from MOZART model simula-

tions results (Emmons et al., 2010). The spatial gradients and

seasonal variation of the reactants are shown, respectively,

in Figs. S8–S9 and S11–S12 in the Supplement. Note that

not all models were used to perform the whole simulation

program. The results presented below are based on available

simulations for each particular experiment.

2.5 Statistical analysis

Modelling results were compared with observations using

the following statistical parameters. Both spatial and tempo-

ral correlations of simulated and observed values were char-

acterized by the Pearson correlation coefficient:

Rcorr =

∑

i(Mi − M)(Oi − O)
√

∑

i(Mi − M)2
∑

i(Oi − O)2

, (1)

where Mi and Oi are monthly or annual mean simulated

and observed values, respectively, and M and O are aver-

age values. The averaging and summing were performed over

monthly values to calculate temporal correlations at particu-

lar sites or over annual mean values for all sites to calcu-

late spatial correlation coefficients. An arithmetic mean of all

temporal correlation coefficients for individual sites was then

used in the analysis. The discrepancy between simulated and

observed values was characterized by a symmetric relative

bias:

RBIAS = 2
M − O

M + O
100% , (2)
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where RBIAS varies within ±200 % and small deviations be-

tween model results and observations are characterized by

values close to zero.

3 Results and discussion

3.1 Gaseous elemental mercury

The GEM concentration in air is a parameter representing the

balance between Hg global emissions and sinks by chemical

transformation to other Hg forms or direct interaction with

the surface. Given the long residence time of GEM in the at-

mosphere, its spatiotemporal gradients likely characterize the

distribution of global emission regions as well as long-range

atmospheric dispersion and cycling in the atmosphere (Selin,

2009; Travnikov, 2012; Ariya et al., 2015). Figure 2 shows

the global distribution of GEM concentration in surface air as

simulated by four global models according to the BASE case,

along with ground-based observations represented by col-

ored circles in the same color palette. The models predicted

spatial Hg concentration patterns with a pronounced gradient

between the Southern Hemisphere (ca. 0.9–1.1 ngm−3) and

the Northern Hemisphere (ca. 1.1–1.6 ngm−3) and elevated

concentrations in the major industrial regions in East and

South Asia, Europe, and North America (above 1.4 ngm−3).

Elevated concentrations were also predicted in tropical ar-

eas of South America, central Africa, and Southeast Asia,

where considerable Hg emissions from artisanal and small-

scale gold mining are expected (AMAP/UNEP, 2013a). The

models generally agreed with ground-based observations, as

shown in Fig. 2. The measurements also provided evidence

of a statistically significant interhemispheric gradient and rel-

atively high concentrations in industrial regions (Sprovieri et

al., 2016). A more detailed comparison of modeling results

with measurements is given in Fig. S2 in the Supplement.

The model–measurement divergence commonly did not ex-

ceed ±30 %. In general, the models exhibited lower spatial

variations in annual GEM concentration than did the mea-

surements. This observation relates mostly to sites that are

compactly located in North America and Europe. It can be

explained by the relatively low spatial resolution of the model

grids (1–2 hundreds of kilometers), which made it difficult

for the models to reproduce the influence of local emission

sources and specific meteorological conditions at measure-

ment sites. Another reason can be associated with possible

overestimation of GEM residence time in the atmosphere,

leading to additional smoothing of the simulated concentra-

tion patterns. The possibility of a shorter GEM lifetime with

respect to oxidation was recently proposed in Horowitz et al.

(2017), but this would require the existence of a fast atmo-

spheric reduction process to match observations.

The model-to-model difference in simulated GEM con-

centrations did not exceed ±20 % (see also Fig. S5 in the

Supplement). Nevertheless, pronounced distinctions could be

observed among the spatial patterns simulated by different

models because of deviations in physical and chemical pro-

cess parameterizations. As mentioned in Sect. 2.2, the var-

ious models used quite different chemical mechanisms of

GEM oxidation in the atmosphere in their base configura-

tions. Moreover, even if they used the same anthropogenic

emissions data, they differed in their estimates of natural

and secondary emissions and Hg air–surface exchange. As

shown in Fig. 2 and Fig. S5 in the Supplement, all four mod-

els were in relatively agreement when simulating GEM con-

centrations in regions affected by direct anthropogenic emis-

sions (e.g., eastern North America, western and central Eu-

rope, East Asia). However, the differences between the mod-

els became larger as the distance from emission regions in-

creased. For instance, GLEMOS and ECHMERIT predicted

lower GEM concentrations (below 1.3 ngm−3) over North

America (mostly Canada) and eastern Siberia (Fig. 2a and

d). This phenomenon was caused by two factors: use of O3

oxidation chemistry with elevated O3 concentrations in the

northern midlatitudes (Fig. S8 in the Supplement) and use

of relatively low levels of natural/secondary emissions over

these regions. In particular, this led to some underestima-

tion of observed GEM levels at North American sites. In

contrast, GEM-MACH-Hg simulated higher GEM concen-

trations (above 1.4 ngm−3) than other models over the North

Atlantic and Pacific oceans due to relatively high Hg evasion

from seawater in these aquatic regions and use of the OH

oxidation mechanism. The latter provided weak oxidative

capacity in the temperate and high latitudes of both hemi-

spheres due to the pronounced meridional profile of OH con-

centrations, with high values in the tropics (Fig. S9 in the

Supplement). The elevated GEM concentrations over the Pa-

cific generally agreed with observations at Mauna Loa site

in Hawaii and at coastal sites in Europe (Fig. 2c). How-

ever, the former is a high-elevation site (3384 m a.s.l.), where

conditions are more like those in the free troposphere. Be-

sides, it can be affected by Hg emissions from the active Ki-

lauea volcano (Gay et al., 2013). Note that GLEMOS and

ECHMERIT also used the OH mechanism in their base con-

figurations. However, the effect described above diminished

when used in combination with O3 chemistry. Simultane-

ous use of these two oxidation mechanisms can probably

lead to surplus GEM oxidation or imply the existence of

an Hg reduction mechanism in the atmosphere. In particu-

lar, it can explain some underestimation of observed GEM

concentrations over the oceans by ECHMERIT. The effect

was less pronounced in the case of GLEMOS because it

used a reduced rate constant for the reaction with OH (Ta-

ble 1). Use of Br chemistry by GEOS-Chem provided rea-

sonable agreement with most observations (Fig. 2b). Unlike

GEM-MACH-Hg, it simulated lower GEM concentrations

over the North Atlantic and Pacific oceans, somewhat under-

estimating available observations in these regions. Note that

the Br oxidation mechanism predicted strong GEM oxidation

in the southern high latitudes due to high Br concentrations
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Figure 2. Spatial distribution of GEM air concentration in 2013 simulated according to the BASE case by four global models: (a) GLEMOS,

(b) GEOS-Chem, (c) GEM-MACH-Hg, and (d) ECHMERIT. Circles show observed values in the same color scale.

(Fig. S7 in the Supplement), which was compensated for

by large re-emission fluxes from seawater, leading to inten-

sive air–surface exchange in this region. All models tended

to overpredict GEM concentrations in the northern part of

South America as measured at two sites: Manaus (Brazil) and

Nieuw Nickerie (Surinam). As mentioned earlier, the high

simulated concentrations in this region were caused by large

expected emissions from artisanal and small-scale gold min-

ing, which were probably overestimated.

Figure 3 illustrates an analysis of the interhemispheric

GEM concentration gradient. The figure shows the merid-

ional distribution of both observed and model-predicted

concentrations in surface air. The latter are split into

two fractions contributed by anthropogenic and natu-

ral/secondary sources. All four models reproduced the ob-

served GEM concentration differences between the Southern

and Northern hemispheres. The lowest concentrations (below

1 ngm−3)were typical of the high and temperate latitudes

of the Southern Hemisphere. There was a weak maximum

of zonal-mean GEM concentration (1.4–1.6 ngm−3) in the

temperate latitudes of the Northern Hemisphere, correspond-

ing to the location of most anthropogenic emission sources.

Hence, the interhemispheric gradient is largely formed by

the contribution of direct anthropogenic emissions, which is

larger in the Northern Hemisphere. The contribution of natu-

ral and secondary emissions also increases northward, but the

gradient is commonly smaller. The models predicted some

decrease in concentrations further northward, which was not

evident from the observations. This decrease was mostly con-

nected with underestimation of Hg re-emissions from snow

and seawater. More detailed analysis of the modeling results

in the polar regions and a comparison with measurements

performed in the Arctic and Antarctica is given in the com-

panion paper (Angot et al., 2016). In particular, three of the

four models successfully reproduced the springtime GEM

concentration minimum caused by occurrence of AMDEs.

However, the models tended to underestimate the summer-

time maximum, which is determined by revolatilization from

snowpack and meltwater and evasion from the ocean.

Statistics for simulated and observed GEM concentrations

for different model experiments (Table 2) are illustrated in

Fig. 4 in terms of spatial and temporal correlation coefficients

and relative bias. Details of the statistics used are given in

Sect. 2.5. In the BASE simulation, all models produced con-

centration distributions that agreed well with measurements

(the spatial correlation coefficient was about 0.7 and the bias

approximately zero). However, the models differed in their

ability to reproduce temporal GEM variations in surface air.

The temporal correlation coefficient between simulated and

observed monthly mean values varied between −0.3 and 0.5.

(Fig. 4c). Sprovieri et al. (2016) found a consistent seasonal

cycle of observed GEM concentration at most measurement

sites in both Northern and Southern hemispheres, with higher

concentrations during winter and spring and lower concen-

trations in summer and fall. However, it should be noted that

the seasonal variation of monthly mean concentration was

not significant at temperate and low latitudes, where most of

the sites were located, and commonly did not exceed ±20 %.

Therefore, reproduction of GEM temporal variation is a chal-

lenging task for models in the absence of data on seasonal

variation in the anthropogenic emissions used in this study

(AMAP/UNEP, 2013b).

Switching off anthropogenic emissions (NoANT) led to

a decrease in GEM levels in the atmosphere (the bias was
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Figure 3. Global zonal-mean distribution of GEM air concentration in 2013 simulated by four models: (a) GLEMOS, (b) GEOS-Chem,

(c) GEM-MACH-Hg, and (d) ECHMERIT. Black dots are the same observations as in Fig. 2 and the dotted line is a polynomial approxima-

tion.

−40 %) and some decrease in the spatial correlation with

measurements. It is worth noting that the spatial distribu-

tion of Hg concentrations in this experiment was largely de-

termined by model-specific natural and secondary emissions

and that therefore the change in spatial correlation differed

considerably among the models. Removing anthropogenic

emissions from the model simulations did not affect the tem-

poral variation of the modeling results. In contrast, the results

of the experiment with no natural and secondary emissions

(NoNAT) demonstrated significant improvement in temporal

correlation with measurements for the models that showed

poor correlations in the base run. Besides, the exclusion of

natural and secondary emissions led to some decrease in spa-

tial correlation and a large negative bias (≃ 100 %). Sim-

ulations with different chemical mechanisms (BrCHEM1,

BrCHEM2, O3CHEM, and OHCHEM) provided somewhat

different spatial GEM concentration patterns in surface air.

The model run with the first Br dataset (BrCHEM1) showed

practically unbiased results, whereas the GEM concentra-

tions from the BrCHEM2 run based on the second dataset

were biased high (Fig. 4b) due to the lower Br concentrations

provided by this dataset compared to the first one (Fig. S7 in

the Supplement). The O3CHEM and OHCHEM simulations

also showed a positive bias, indicating the smaller oxidation

capacities of these mechanisms. The spatial correlation co-

efficient varied among the model runs with different chem-

ical mechanisms (0.61–0.73). Somewhat higher spatial cor-

relations were obtained for the oxidation reactions with Br

(BrCHEM1, 0.72±0.01) and OH radical (OHCHEM, 0.71±

0.02), which better reproduced the meridional profile of

GEM concentration. The reaction with O3 (O3CHEM) pro-

vided poorer spatial correlation (0.65 ± 0.04) because it lev-

eled the intercontinental GEM gradient. As mentioned ear-

lier, O3 concentrations are considerably higher in the north-

ern midlatitudes than in the Southern Hemisphere (Fig. S8

in the Supplement), leading to more intensive oxidation and

decreased GEM levels in the Northern Hemisphere.

3.2 Reactive mercury

The oxidized Hg species composing RM originate in the

atmosphere both from direct anthropogenic emissions and

through oxidation of GEM in the gas phase, in the aqueous

phase of cloud water, and in a heterogeneous manner at var-

ious atmospheric interfaces (Ariya et al., 2015). Therefore,

simulating RM with contemporary models is a much more

challenging task given the incomplete state of current knowl-

edge of Hg atmospheric chemistry as well as the sparsity and

uncertainty of measurements (Gustin et al., 2015). Figure 5

shows the global distributions of RM concentration in sur-

face air as simulated by the models for the BASE case. The

models predicted considerably different spatial RM concen-

tration patterns. The concentrations were comparable in in-

dustrial regions, which were affected by direct anthropogenic

emissions, but differed significantly in remote regions where

the influence of emissions was weaker. Hence, the simulated

patterns depended strongly on the chemical mechanisms and

removal process parameterizations used. Indeed, the models

that used O3 and/or OH oxidation chemistry in the BASE

case (Figs. 5a, c, d) predicted elevated RM concentrations

at low latitudes (the tropics and the equatorial zone) due to

high concentrations of these photo-oxidants (mainly the OH

radical) in these regions (see Fig. S9 in the Supplement). In
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Figure 4. Spatial correlation coefficient (a), relative bias (b), and

temporal correlation coefficient (c) of simulated and observed GEM

air concentration for different model experiments.

contrast, use of Br-derived chemistry (Fig. 5b) led to a spatial

pattern with elevated RM concentrations in the polar regions,

particularly in the Southern Hemisphere. This observation is

in agreement with the spatial distribution of Br in the atmo-

sphere (Fig. S7 in the Supplement). In addition, the model

parameterization of dry deposition also considerably affected

RM concentrations in surface air. Inclusion of effective RM

removal in the marine boundary layer by sea-salt aerosols

in GEOS-Chem (Holmes et al., 2010) resulted in lower RM

concentrations over the oceans than those simulated by other

models (Fig. 5b).

The scarcity of long-term RM observations did not per-

mit reconstruction of reliable spatial trends on a global scale.

Annual mean RM observations for the year under study are

available only at nine sites in North America, two sites in

Europe, one site in the Arctic, and two sites in the Southern

Hemisphere (Fig. 1). Considering the short lifetime of RM in

the atmosphere with respect to its deposition (Gustin et al.,

2015; Ariya et al., 2015) this limited observational dataset

cannot characterize spatial RM variation around the globe.

Nevertheless, the measurements can be used to evaluate mod-

eling results at particular locations. The models showed vari-

able performance in reproducing measured values. The scat-

ter plots of the model-to-measurement comparison shown in

Fig. S3 in the Supplement demonstrate significantly poorer

model agreement with observations than in the case of GEM.

From 30 to 90 % of the simulated values fell outside the range

of agreement within a factor of 3. In addition, there was a

general tendency to overestimate observed concentrations.

The level of overestimation varied among sites and among

models and can be explained by a number of factors, includ-

ing measurement uncertainties associated with losses due to

interference of oxidants and incomplete capture of GOM

(Lyman et al., 2010; Huang and Gustin, 2015; Gustin et al.,

2015), incorrect emissions speciation (Zhang et al., 2012;

Amos et al., 2012; Kos et al., 2013; Bieser et al., 2014), and

the uncertainties of atmospheric chemistry (Weiss-Penzias et

al., 2015; Ariya et al., 2015; Shah et al., 2016).

Figure 6 shows statistics for model-to-measurement com-

parisons of RM air concentration for different model exper-

iments. As mentioned earlier, the models considerably over-

estimated the observed values in the BASE case simulation.

Similar overestimation was observed by Kos et al. (2013)

when simulating Hg oxidized forms in a series of model

sensitivity runs. This observation was attributed to a signif-

icant extent to incorrect speciation of anthropogenic emis-

sions, with a too-high proportion of oxidized Hg forms. This

was also confirmed by the NoANT experiment in the cur-

rent study, where zeroed-out anthropogenic emissions led to

a significantly lower positive or even negative bias (Fig. 6a).

To reduce the effect of this uncertainty in the current study,

a modified speciation of emissions data was used for the

model experiments focused on comparing chemical mech-

anisms, with all Hg emissions treated as GEM (Sect. 2.4).

The overprediction of observed RM concentrations by a fac-

tor of 2.5 was also found by Weiss-Penzias et al. (2015) for

a number of high- and mid-elevation sites and was found to

be connected with the collection inefficiency of the KCl de-

nuder used for the GOM measurements (Gustin et al., 2013).

The models differed in their ability to reproduce the tem-

poral variation in RM concentration (the correlation coeffi-

cient varied from −0.5 to 0.6 in the BASE case) (Fig. 6b).

This variation was connected both with the different chem-

ical mechanisms used in the standard model configurations

(Table 1) and with deviations in model treatment of the re-

moval processes responsible for dry and wet deposition. Ex-
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Figure 5. Spatial distribution of annual mean RM air concentration in 2013 simulated according to the BASE case by four global models:

(a) GLEMOS, (b) GEOS-Chem, (c) GEM-MACH-Hg, and (d) ECHMERIT. Circles show observed values in the same color scale.
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Figure 6. Relative bias (a) and spatial correlation coefficient (b)

of simulated and observed annual mean RM air concentration for

different model experiments.

clusion of anthropogenic and natural/secondary emissions

(NoANT and NoNAT) only slightly affected the temporal

correlations of the modeling results with observations. How-

ever, it should be pointed out once again that the emissions

inventory used for this study (AMAP/UNEP, 2013b) did not

resolve the intra-annual variability of anthropogenic emis-

sions. Hence, one can expect a stronger effect of anthro-

pogenic emissions on RM temporal variation. Among the

chemical mechanisms, the best correlations between mod-

eled and observed values were obtained for reactions with Br

(BrCHEM1 and BrCHEM2), followed by the OH oxidation

mechanism (OHCHEM). Inclusion of the reaction with O3

led to a negative correlation with observations.

A more detailed analysis of chemical oxidation mecha-

nisms is illustrated in Fig. 7 in terms of simulated and ob-

served RM / GEM ratios. Indeed, atmospheric RM originates

either from direct emissions from anthropogenic sources or

as a product of GEM oxidation in the atmosphere (Selin,

2009; Travnikov, 2012; Kos et al., 2013; Ariya et al., 2015).

Hence, in the immediate vicinity of emission sources, the

RM / GEM ratio reflects the speciation of Hg emissions,

whereas in remote regions far away from any emissions, it

largely quantifies the oxidative capability of the atmosphere.

Given the short lifetime of RM in the atmosphere with re-

spect to deposition, the influence of direct emissions on the

RM / GEM ratio should quickly weaken with distance from

sources. Following the methodology suggested by Kos et al.

(2013) the sites used for the following analysis were classi-

fied with respect to their remoteness from significant emis-

sion sources, based on the model sensitivity run with Hg

atmospheric chemistry turned off. The simulated RM con-

centrations showed (Fig. S6 in the Supplement) that all the
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Figure 7. Scatter plots of simulated vs. observed ratios of annual mean RM concentration to GEM concentration in 2013 for different

model experiments: (a) BrCHEM1, (b) BrCHEM2, (c) O3CHEM, and (d) OHCHEM. Whiskers show standard deviation of monthly mean

simulated and observed values. Dotted red line depicts the 1 : 1 ratio; dotted black lines show deviation by a factor of 5.

selected sites (except one) could be classified as being far

from sources (0–30 pgm−3). This observation agrees with

the characteristics of the North American sites as given by

Lan et al. (2012). The only site that was probably directly

affected by anthropogenic emissions was Waldhof, Germany

(Weigelt et al., 2013). Nevertheless, because both the mean

levels and the seasonal variation of RM concentrations mea-

sured at this site did not differ significantly from other sites,

it was retained in the dataset. However, it should be noted

that this analysis essentially depended upon the emissions

data used and could translate any data uncertainties into the

classification results.

Figure 7 shows a comparison of simulated and observed

annual mean RM / GEM ratios for different chemical mecha-

nisms. The whiskers show the standard deviation of monthly

mean simulated and observed values. It should be pointed

out that the observed values of RM / GEM (1–10 pgng−1)

correspond to the background conditions of the continental

boundary layer and are considerably lower than those from

mountain sites analyzed by Weiss-Penzias et al. (2015) (10–

100 pgng−1). Exceptions are the site at Alert, Canada, lo-

cated in the High Arctic (86 pgng−1) and the elevated site at

Salt Lake City, United States (21 pgng−1). It is interesting to

note that the other elevated site (Longobucco, Italy) did not

show similarly increased RM / GEM values (9.5 pgng−1).

As shown in Fig. 7, the best qualitative agreement between

model and measurements was found in the BrCHEM1 exper-

iment with the Br chemistry and one of the Br concentration

datasets (Fig. 7a). Three of the four models demonstrated

good performance in this experiment, reproducing observa-

tions at most sites with a deviation within a factor of 3. The

fourth model (ECHMERIT) significantly overestimated the

observed values, which was also typical of the other model

experiments (except for O3CHEM). This overestimation was

caused not by the chemistry used but by underestimation of

wet scavenging as shown below. Use of Br chemistry with the

other Br concentration dataset (BrCHEM2) led to less con-

sistent results (Fig. 7b). The RM / GEM ratios simulated by

the models varied from moderate underestimation to over-

estimation of observed values. The inter-model differences

could have been caused both by discrepancies in removal

process formulation and by particular implementations of

the Br chemical mechanism (Table 1). Somewhat similar re-

sults were obtained in the experiment with OH chemistry
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(OHCHEM, Fig. 7d). The deviations between modeled and

measured RM / GEM were mostly within a factor of 5, and

the models tended to overestimate the observed values. Ap-

plication of the O3-initiated chemistry led to very consis-

tent results (O3CHEM, Fig. 7c). The models also somewhat

overestimated the measured RM / GEM ratios, with mini-

mum scattering of modeling results. However, the models

tended to underestimate considerably the intra-annual vari-

ation of monthly values, as shown by the whiskers. None of

the chemical mechanisms could reproduce the high annual

RM / GEM ratios (above 80 pgng−1) observed at the Arc-

tic site Alert, Canada (Fig. 7a–c). These high annual values

are connected with intensive Hg oxidation during springtime

AMDEs. Analysis of specific processes typical of the polar

regions is beyond the scope of this paper. A discussion of the

results of the study that focused on the polar regions can be

found elsewhere (Angot et al., 2016).

More insight into the effects of different chemical mech-

anisms can be obtained by analyzing RM / GEM seasonal

variation. Figure 8 shows both measured and simulated vari-

ation in the monthly mean RM / GEM ratio averaged over

selected sites. Because seasonal variation of both RM and

GEM differs in the Northern and Southern hemispheres and

because most of the study sites are located in North Amer-

ica and Europe, two sites situated north of the Equator were

selected for this purpose. In addition, the Arctic site (Alert)

and the two high-elevation sites (Salt Lake City and Longob-

ucco) were excluded to avoid the effects of specific condi-

tions in the polar regions and the free troposphere, respec-

tively. Hence, the collection of sites characterizes the sea-

sonality of Hg oxidation in the continental boundary layer

in northern temperate latitudes. The observed values demon-

strated pronounced seasonal changes in RM / GEM, with a

maximum in March and a minimum in September (Fig. 8).

Similar seasonal variations of Hg oxidized forms at back-

ground sites were observed in previous studies (Poissant et

al., 2005; Sigler et al., 2009; Nair et al., 2012; Weigelt et al.,

2013). The chemical oxidation mechanisms differed in their

ability to reproduce the observed seasonal variation.

Use of Br chemistry with both Br concentration datasets

(BrCHEM1 and BrCHEM2) provided the best agreement

with measurements. Three of the four models (GEOS-Chem,

GEM-MACH-Hg, and GLEMOS) reproduced the maximum

RM / GEM ratios during the spring months (Fig. 8a and b).

High levels of oxidized Hg in spring are evidently caused by

high Br concentrations in both the free troposphere and the

boundary layer in the Northern Hemisphere (Fig. S10 in the

Supplement). However, only GEOS-Chem reproduced cor-

rectly the time of the maximum in March. Two other models

moved the highest RM / GEM ratio to April and May. This

discrepancy can be explained by partitioning the GEM oxi-

dation products. GEOS-Chem is the only model that used dy-

namic gas–particle partitioning of RM (Table 1). This meant

that oxidized Hg originated from GEM oxidation was dy-

namically fractionated between GOM and PBM. This equi-

librium is sensitive to air temperature shifting to GOM under

warmer conditions (Amos et al., 2012). Furthermore, GOM

is more efficiently removed from the atmosphere than PBM

by both precipitation and surface uptake. This phenomenon

leads to higher deposition and lower RM concentrations in

late spring (April and May). Two other models predicted a

fixed share of the products of GEM oxidation by Br, thus

missing changes in RM concentration during the season. The

fourth model (ECHMERIT) predicted the highest ratios dur-

ing late summer independently of the chemical mechanism

used, a phenomenon that was determined by meteorological

conditions and removal processes. In particular, the model

simulated extremely low precipitation in late summer and

early fall (Fig. 12i and j). This led to significant underesti-

mation of wet RM removal and ultimately to overestimation

of oxidized Hg concentrations during this period.

Model simulations with OH chemistry (OHCHEM) pre-

dicted maximum RM / GEM ratios during the summer

months (Fig. 8d) in accordance with the seasonal variation

of OH concentration, which was also highest in summer

(Fig. S12 in the Supplement). Use of the O3-initiated chem-

istry did not lead to significant variation of Hg oxidation dur-

ing the year (Fig. 8c).

3.3 Wet deposition

Wet deposition is one of the major removal mechanisms re-

sponsible for Hg exchange between the atmosphere and the

Earth’s surface (Travnikov, 2012; Swartzendruber and Jaffe,

2012). It is largely determined by precipitation events on the

one hand and by availability of soluble Hg forms in the at-

mosphere on the other. Given the poor solubility of GEM

(Clever et al., 1985; Ariya et al., 2015), Hg wet deposi-

tion consists mostly of scavenging of Hg oxidized forms

(GOM and PBM). Therefore, Hg concentration in precip-

itation and ultimately wet deposition flux largely depends

upon three factors: direct emissions of oxidized Hg from an-

thropogenic sources, Hg oxidation in the atmosphere, and

precipitation amount. Figure 9 shows the spatial patterns of

annual mean Hg wet deposition as simulated by the four

models according to the BASE case. Available measure-

ments are also shown in the same color palette. Generally,

the simulated deposition maps have similar spatial distri-

butions, reflecting the influence of global precipitation pat-

terns and major emission regions. High deposition fluxes are

characteristic of Asia, Europe, and North America, where

significant anthropogenic sources are located, as well as of

regions with intensive precipitation (e.g., the Intertropical

Convergence Zone). The lowest wet deposition fluxes oc-

curred in dry regions (e.g., in northern Africa, Greenland, and

Antarctica). Divergences among the modeling results could

be mostly explained by the different chemical mechanisms

used by the models in the BASE case. For instance, GEOS-

Chem predicted elevated wet deposition in the high latitudes

of the Southern Hemisphere, where high Br concentrations
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Figure 8. Normalized seasonal variation of monthly ratio of annual mean RM concentration to GEM concentration. Black line with dots

shows observations averaged over selected sites (whiskers are standard deviation). Colored lines present model simulations averaged over

the same sites for different model experiments: (a) BrCHEM1, (b) BrCHEM2, (c) O3CHEM, and (d) OHCHEM.

(Fig. S7 in the Supplement) caused intensive GEM oxida-

tion in the atmosphere (Fig. 9b). In contrast, significant de-

position fluxes were simulated in the High Arctic by GEM-

MACH-Hg (Fig. 9c) because parameterizations of physical

and chemical processes occurring during AMDEs were used.

The models agreed relatively well with available long-term

observations of Hg wet deposition. Model-to-measurement

deviations commonly did not exceed a factor of 2 (Fig. S4 in

the Supplement). However, it should be noted that available

observations of Hg wet deposition are still mostly restricted

to two regions: North America and Europe. Only a few mea-

surements are available in other regions, particularly in the

Southern Hemisphere.

Figure 10 shows statistics of the comparison of simulated

and observed wet deposition fluxes. Results of the BASE

case simulation are characterized by significant temporal cor-

relation with measurements (0.4–0.6) and some slight bias

(±40 %) that varies among models. Direct anthropogenic

emissions of oxidized Hg contributed considerably to wet

deposition, and hence their elimination (NoANT) resulted

in a noticeable deposition decrease characterized by neg-

ative bias. In contrast to anthropogenic emissions, natu-

ral/secondary sources emit Hg mostly as GEM. Nevertheless,

turning off natural/secondary emissions (NoNAT) also led to

a substantial decrease in wet deposition, indicating their in-

direct effect through GEM oxidation on soluble Hg forms,

with subsequent scavenging by precipitation. The temporal

correlation of wet deposition was not sensitive to emission

changes. This is not surprising because the anthropogenic

emissions inventory used in this study did not contain infor-

mation on temporal emissions variation. Oxidation chemistry

considerably affected both the general level and the temporal

variation of Hg wet deposition. The Br oxidation mechanism

provided a relatively high correlation with observations, but

the results for the two Br concentration datasets (BrCHEM1

and BrCHEM2) differed widely in terms of relative bias. The

highest correlation was obtained for OH oxidation chemistry

(OHCHEM). Note that, unlike the other models used for this

study, ECHMERIT is based on the ECHAM climate model,

which is expected to reproduce actual weather behavior, in

particular precipitation events, over a relatively longer tem-

poral period and a wider area than the other models, but may

diverge on shorter timescales and over smaller regional ar-

eas (see, for example, Angálil et al., 2016). Because simu-

lated Hg wet deposition is largely driven by model-generated

precipitation, the results of the climate-based ECHMERIT

model can be significantly biased with regard to other wet

deposition models and observations (Fig. 10).

Similarly to RM concentration, Hg wet deposition is

strongly determined by atmospheric oxidation chemistry

(Selin and Jacob, 2008; Kos et al., 2013). Therefore, anal-

ysis of wet deposition can also be used to evaluate the chem-

ical mechanisms of Hg oxidation in the atmosphere. Unlike

near-surface RM observations, wet deposition measurements

characterize processes occurring in the free troposphere be-

cause scavenging of soluble Hg takes place both in the cloud

environment and below clouds along the whole precipita-

tion pathway. Figure 11 shows a comparison of simulated

and observed wet deposition fluxes for different model ex-

periments. Both measured and simulated values are aver-

aged over different groups of sites, including seven groups in

North America following the latitudinal ranges suggested by

Selin and Jacob (2008), three groups in Europe (southern Eu-

rope, western Europe, and northern Europe), and one group

per region in Asia, Australia, and the Indian Ocean (see Ta-

ble S3 in the Supplement). Note that the highest observed
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Figure 9. Spatial distribution of wet deposition flux in 2013 simulated according to the BASE case by four global models: (a) GLEMOS,

(b) GEOS-Chem, (c) GEM-MACH-Hg, and (d) ECHMERIT. Circles show observed values in the same color scale.
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Figure 10. Relative bias (a) and spatial correlation coefficient (b)

of simulated and observed annual mean wet deposition flux for dif-

ferent model experiments.

wet deposition values (30–45 ngm−2 day−1) are associated

with the southern United States, whereas the lowest values

(below 10 ngm−2 day−1) are characteristic of sites located in

East Asia and in the Southern Hemisphere (see Fig. 9). As

shown in Fig. 11, simulations with the Br oxidation mecha-

nism and the first set of Br concentration data (BrCHEM1)

satisfactorily reproduced observations (Fig. 11a). The mod-

els agreed relatively well with each other, and the model-to-

measurement deviations generally did not exceed a factor of

2. However, all models overpredicted low deposition fluxes

at Asian and southern sites. The overestimation of Hg wet

deposition at two high-altitude Asian sites (Mt. Waliguan

and Mt. Ailao) can be connected with the inability of the

coarse-spatial-resolution global models to reproduce com-

plex meteorological conditions in mountain regions. Over-

prediction at southern sites (Cape Grim and Amsterdam Is-

land) can be explained by the very high Br concentrations

predicted by the first dataset at temperate latitudes in the

Southern Hemisphere (Fig. S7 in the Supplement). Use of

the same mechanism with the other Br dataset led to con-

siderably lower wet deposition levels (Fig. 11b) due to use

of much lower Br concentrations, particularly in the free tro-

posphere (Fig. S7 in the Supplement). Hence, uncertainties

in the available estimates of Br atmospheric concentration

strongly affected simulation results for Hg cycling in the at-

mosphere. Model simulations with the O3 and OH oxida-

tion mechanisms (O3CHEM and OHCHEM) provided rea-

sonable agreement between modeling results and measure-

ments (Fig. 11c and d). Two of the three models (GEM-

MACH-Hg and GLEMOS) demonstrated fairly good corre-

lations with observations, but again tended to overestimate

lower observed values. The OH oxidation chemistry pro-
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Figure 11. Scatter plots of simulated vs. observed annual mean wet deposition flux in 2013 averaged over different territorial groups of sites

(see Table S3 in the Supplement) for different model experiments: (a) BrCHEM1, (b) BrCHEM2, (c) O3CHEM, and (d) OHCHEM. Solid

lines depict linear approximation. Dotted red line depicts the 1 : 1 ratio; dotted black lines show deviation by a factor of 2.

vided somewhat better agreement in terms of the slope of the

regression line, which was closer to the reference 1 : 1 line,

indicating better reproduction of both low and high wet depo-

sition fluxes. The third model (ECHMERIT) showed wider

divergence of simulation results because of the uncertainties

described above in its reproduction of precipitation events in

some locations. In particular, these uncertainties led to sig-

nificant underestimation of Hg wet deposition in the southern

part of North America.

More information on the performance of different chemi-

cal mechanisms can be obtained by analyzing seasonal wet

deposition patterns. Because most available wet deposition

measurements are obtained at sites in North America and Eu-

rope, further discussion will focus on these two regions. Fig-

ure 12 shows a comparison of modeled and measured tem-

poral variation of monthly mean wet deposition flux aver-

aged over sites in North America and Europe. The monthly

fluxes were normalized by the annual average value to re-

move absolute differences among the models and reveal pe-

culiarities of seasonal changes. The observations exhibit a

pronounced seasonal cycle, with a maximum in summer and

a minimum during the cold season (winter and early spring).

Similar seasonal variations have been reported in previous

studies (Guentzel et al., 2001; Keeler et al., 2005; Choi et

al., 2008; Prestbo and Gay, 2009; Sprovieri et al., 2017).

Sprovieri et al. (2017) attributed these seasonal changes to

variations in meteorological conditions (mainly precipitation

amount), more effective Hg scavenging by rain compared to

snow, and changes in availability of soluble Hg. As shown

in Fig. 12i and j, precipitation amounts measured in North

America and Europe do not reveal a similar seasonality to

explain the intra-annual variation of wet deposition. Sea-

sonal variation of precipitation amounts in North America

exhibits a similar pattern, with a maximum in summer and

a minimum in winter, but the amplitude of the variation is

much less than that of wet deposition. Average precipita-

tion amounts in Europe do not show an evident seasonal pat-

tern. Note that one of the four models (ECHMERIT) failed

to reproduce the seasonal cycle of precipitation amounts in

North America and Europe for the reasons mentioned pre-

viously. Because precipitation variation directly affects sea-

sonal variation of Hg wet deposition, the simulation results
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Figure 12. Normalized seasonal variation of monthly mean wet deposition flux in North America (left column) and Europe (right column).

Black line with dots shows observations averaged over all sites in the regions (whiskers are standard deviation). Colored lines present model

simulations averaged over the same sites for different model experiments: (a, b) BrCHEM1, (c, d) BrCHEM2, (e, f) O3CHEM, and (g,

h) OHCHEM. Seasonal variations of precipitation amount in North America and Europe are also shown in panels (i) and (j), respectively.

from this model were not used when analyzing the perfor-

mance of chemical mechanisms. However, the results them-

selves are shown in Fig. 12 for completeness. Availability of

soluble Hg in the free troposphere depends strongly on oxi-

dation chemistry. Therefore, different chemical mechanisms

should affect the seasonality of wet deposition differently.

Indeed, both model runs with the Br oxidation chemistry

(BrCHEM1 and BrCHEM2) predicted a maximum in wet

deposition during the spring months instead of in summer

(Fig. 12a–d), following the seasonal variation of Br concen-

tration in the atmosphere (Fig. S10 in the Supplement). Sim-

ulations with O3-initiated chemistry (O3CHEM) provided a

much lower seasonality of deposition flux (Fig. 12e–f). In

contrast, use of OH chemistry (OHCHEM) reproduced faith-

fully the observed seasonal variation of wet deposition in

both study regions (Fig. 12g–h). Similar results were ob-
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tained by other researchers. Selin and Jacob (2008) simu-

lated Hg wet deposition over the United States using com-

bined OH/O3 oxidation chemistry and successfully repro-

duced the measured seasonal variation. They attributed the

summer maximum in the northeast to GEM photochemical

oxidation and to inefficient scavenging by snow in winter.

Holmes et al. (2010) compared the Br mechanism with the

OH/O3 mechanism for simulating the Hg global cycle. They

found that the OH/O3 chemistry better simulated the south-

east Hg wet deposition summer maximum. It was postulated

that the maximum reflected scavenging of GOM from the

free troposphere by deep convection. Kos et al. (2013) also

performed a number of sensitivity runs with different chem-

ical process parameterizations and showed that the OH ox-

idation chemistry improved simulation of the seasonal cy-

cle of wet deposition in North America. Considering that Hg

wet deposition is largely defined by GEM oxidation (Selin

and Jacob, 2008), a significant effect of OH-initiated chem-

istry on Hg oxidation in the free troposphere can be expected.

Moreover, when comparing this conclusion with the results

presented in Sect. 3.2, where it was shown that the seasonal

dynamics of the RM / GEM ratio observed at ground-based

sites is dominated by Br oxidation chemistry, one can assume

the possibility of different Hg oxidation mechanisms occur-

ring concurrently in different parts of the atmosphere.

4 Conclusions

The study presented here provides a complex analysis of the

processes governing Hg cycling in the atmosphere, involv-

ing both measured data from ground-based sites and appli-

cation of chemical transport models. A variety of long-term

GEM and RM concentration measurements as well as wet

deposition flux readings have been compiled from different

global and regional monitoring networks. Four contemporary

global-scale Hg transport models were used, both in their

state-of-the-art configurations and for a number of numeri-

cal experiments aimed at evaluation of particular processes.

Results of the model simulations were evaluated against

measurements. The models predicted similar global spatial

GEM concentration patterns in near-surface air. The model-

to-model difference in simulated GEM concentrations did

not exceed ±20 % and agreed with observed values within

±30 %. Nevertheless, there were pronounced distinctions

among the spatial patterns simulated by different models,

which resulted from deviations in the parameterizations of

physical and chemical processes. All four models reproduced

the observed GEM concentration decrease from the Northern

to the Southern hemispheres. Analysis revealed that the inter-

hemispheric gradient is largely formed by the spatial distri-

bution of anthropogenic emissions that prevails in the North-

ern Hemisphere. The contributions of natural and secondary

emissions enhanced the south-to-north gradient, but their ef-

fect was less significant. Simulations with different chemi-

cal mechanisms provided somewhat different spatial GEM

concentration patterns in surface air. Higher spatial correla-

tions were obtained for the oxidation reactions with Br and

OH radical, enabling better reproduction of the meridional

GEM concentration profile. The reaction with O3 provided

poorer spatial correlation because it leveled the interconti-

nental GEM gradient.

Model simulation of RM is a much more challenging task

because of incomplete current knowledge of Hg atmospheric

chemistry and the scarcity and uncertainty of measured data.

The models differed considerably in their predictions of spa-

tial and temporal RM concentration patterns. The simulated

RM levels were comparable in industrial regions, which are

affected by direct anthropogenic emissions, but differed sig-

nificantly in remote regions where the influence of emissions

is weaker. Hence, the simulated patterns depended strongly

on the chemical mechanisms and removal process parameter-

izations used. Model-to-measurement comparisons demon-

strated significantly poorer model agreement with observa-

tions than in the case of GEM. From 30 to 90 % of the simu-

lated values fell beyond the agreement range within a factor

of 3. In addition, there was a general tendency to overesti-

mate observed RM concentrations, which can be attributed

to incorrect speciation of Hg emissions, the uncertainties

of Hg atmospheric chemistry, and incomplete RM capture

by measurements. Atmospheric chemistry strongly affected

the RM / GEM ratio in the atmosphere. The Br chemistry

provided the best agreement with observations, reproducing

both general levels and seasonal variation of the RM / GEM

ratio in the near-surface layer. However, the global distribu-

tion of Br concentration is highly uncertain. Model simula-

tions with the OH chemical mechanism predicted a shift in

maximum RM / GEM ratios from spring to summer, but O3-

initiated chemistry did not predict significant seasonal varia-

tions in Hg oxidation.

Wet deposition maps simulated by different models had

similar spatial distributions, reflecting the influence of global

precipitation patterns and the location of major emission re-

gions. High deposition fluxes are characteristic of Asia, Eu-

rope, and North America, where regions with significant an-

thropogenic sources and intensive precipitation are located.

The models agreed relatively well with available long-term

Hg wet deposition observations. The model-to-measurement

deviations commonly did not exceed a factor of 2. However,

there was a tendency to overpredict low deposition fluxes

measured in Asia and in the Southern Hemisphere. Simi-

larly to RM concentrations, wet deposition of Hg in back-

ground regions is strongly determined by atmospheric oxida-

tion chemistry. Model runs with the Br oxidation mechanism

predicted a wet deposition maximum in spring, instead of

in summer as observed at monitoring sites in North America

and Europe. O3 chemistry did not predict significant seasonal

changes of wet deposition flux in these regions. Use of OH

chemistry enabled reproduction of both the periods of max-
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imum and minimum values and the amplitude of observed

seasonal variations.

Hence, the performance of the Hg oxidation mechanisms

studied differed in the quality of their reproduction of the

various observed parameters, which can imply the possibil-

ity of more complex chemistry and multiple Hg oxidation

pathways occurring concurrently in various parts of the at-

mosphere. More extensive measurements of atmospheric RM

(including identification of Hg chemical species) and wet de-

position are needed in various geographic regions and under

different climatic conditions to achieve further improvement

of Hg chemical transport models.

Data availability. Mercury modeling and measurement data dis-

cussed in this paper are reported within the GMOS central

database and are available upon request at http://sdi.iia.cnr.it/geoint/
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