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Abstract: This paper improves a recently proposed gain scheduling predictive control strategy on

the ACUREX distributed solar collector field at the Plataforma Solar de Almerı́a. Measured distur-

bances are an integral part of the plant and while simple classical, series and parallel, feedforward

approaches have been proposed and used extensively in the literature, the proposed approach in-

corporates a feedforward systematically into the predictive control strategy by including the effects

of the measured disturbances of the ACUREX plant into the predictions of future outputs. Models

of the measured disturbances are estimated around a family of operating points from input-output

data and using a subspace identification method while taking into account the frequency response

of the plant. Input-output data are obtained from a validated nonlinear simulation model of the

plant rather than the plant itself. The nonlinear simulation model is validated against measured

data obtained from the ACUREX plant and the effectiveness of the proposed control approach is

evaluated in the same nonlinear simulation environment. The paper also considers the impact of

incorporating the future behaviour of a measured disturbance along a given prediction horizon, a

theme which has received little attention in the literature.

1. Introduction

ACUREX is a parabolic trough technology-based solar thermal power plant. One of the biggest

challenges of such a plant is to maintain the field outlet temperature at a desired level despite

changes, mainly in solar radiation and the field inlet temperature [1].

1.1. The Use of Feedforward with ACUREX Distributed Solar Collector Field

Solar radiation and the field inlet temperature act as measured disturbances to the plant and hence

it is not surprising that many feedforward approaches have been proposed over the years to com-

pensate for their effects.

One of the early approaches can be traced back to the early nineties of the last century when

two simple alternatives, series and parallel feedforward compensation, were proposed [2]. Both

alternatives are derived from a nonlinear lumped parameter model of the ACUREX plant at steady-

state conditions. Experimental data were used to determine some unknown parameters. A similar

approach is proposed in [3] to compensate for changes in solar radiation. A static version of a
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nonlinear plant model is used and two unknown parameters had to be found experimentally while

the plant was in equilibrium using standard optimization techniques. Changes in the field inlet

temperature are compensated for dynamically by simple transfer functions. Series and parallel

feedforward compensation were assessed and it was found that in contrast to the series feedforward

compensation, the parallel feedforward compensation resulted in poor set point tracking. In [4],

measurements of solar radiation and field inlet temperature were used in an adaptive predictive

control strategy. Measurements of solar radiation pass through a filter in an attempt to mitigate

the fast changes in solar radiation. The parallel feedforward compensation in [2] is used in [5]

for the design of a dynamic compensation of the field inlet temperature and a simple proportional

compensation of solar radiation. The dynamic compensator includes a low pass filter and a delay

term and the proportional compensator is based upon the deviation of the measured solar radiation

from an estimated value.

By the beginning of a new century, a static version of a model that describes the internal energy

of the plant is used to compensate for changes in the field inlet temperature and solar radiation [6].

A few years later, a feedforward based on steady-state energy balance was proposed in [7]; the

feedforward compensates for changes in the field inlet temperature and solar radiation and in-

cludes a field inlet-outlet temperature time delay. The time delay depends on the flow rate of the

HTF and the length of the receiver tube. It is claimed that taking explicit account of the field inlet-

outlet temperature time delay improves the feedforward capabilities in terms of compensating for

changes in the field inlet temperature. In [8] and after performing some simplifications and Taylor

series expansions to a nonlinear distributed parameter model of the plant, transfer functions relat-

ing the dynamics of the field inlet temperature and solar radiation to the field outlet temperature

are obtained. The transfer functions are used for the design of a classical parallel feedforward

compensation. However, the use of the obtained transfer functions was not straightforward since

they have exponential expressions that had to be simplified using a first order Padé approximation

and, due to the noncausal nature of the obtained feedforward controllers, a causal version of the

resulting controllers had to be implemented. More recently, changes in solar radiation are consid-

ered in [9] as a load disturbance and incorporated into a first order plus dead-time model of the

plant. The effect of solar radiation is modelled as a gain times the variation of the current incident

solar radiation with respect to an initial value of the incident solar radiation.

In [10], it was argued that the ACUREX distributed collector field possesses resonance char-

acteristics, namely resonant modes that lie well within the desired control bandwidth and the res-

onance phenomena arise due to the relatively slow flow rate of the HTF and the length of the

receiver tube involved. It was also found that the phenomena have a significant impact on the

control performance and hence modelling the resonant modes sufficiently accurately is crucial to

ensure high control performance with adequate robustness. More importantly however, it was no-

ticed (using experimental data) that the dynamics relating the field outlet temperature to changes

in solar radiation are very similar to the dynamics relating the field outlet temperature to changes

in the volumetric flow rate of the HTF and yet, non of the feedforward approaches listed earlier

has explicitly appreciated this fact and utilised its potential for control implications.

1.2. Paper Contribution

This paper aims to confirm the experimental findings in [10] and then builds on this to show that

also fast and abrupt changes in the field inlet temperature can in fact excite the resonance dynamics

of the plant. The paper also aims to demonstrate that incorporating sufficient dynamic models of

the field inlet temperature and solar radiation, that take explicit account of the resonance phenom-
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ena of the plant, can significantly improve the control performance during the transient phase, set

point tracking and disturbance rejection. Finally, focus is given to an area that has received little

or no attention in the literature by considering the impact of incorporating the expected future be-

haviour of the measured disturbances along a given prediction horizon. In summary, bringing all

these aspects together, the main contribution of this paper, is to improve a gain scheduling (GS)

predictive control strategy proposed in [11] by incorporating a systematic feedforward design to

compensate for the measured disturbances of the ACUREX plant.

This paper is organised as follows: Mathematical models of the plant are described in Section

2. Section 3 is devoted to system identification and models of the measured disturbances. Section

4 outlines the proposed model-based predictive control (MPC) design. Section 5 shows some

simulation results and discusses the main findings. Finally, concluding remarks are presented in

Section 6.

2. Mathematical Models

This section gives a brief description of a nonlinear distributed parameter model used for simula-

tion and analysis purposes followed by a simpler nonlinear lumped parameter model which is used

solely for control design purposes.

2.1. Nonlinear Distributed Parameter Model

The dynamic behaviour of the plant can be described by the following set of energy balance partial

differential equations (PDEs):

ρmCmAm
∂Tm

∂t
= noGI −DoπHl(Tm − Ta)−DiπHt(Tm − Tf )

ρfCfAf
∂Tf

∂t
+ ρfCfq

∂Tf

∂x
= DiπHt(Tm − Tf )

(1)

where the subindex m refers to the metal of the receiver tube and f to the HTF [1]. Table 1 gives

a description of all the variables and parameters and lists their SI units.

2.1.1. Construction of a nonlinear simulation model: A nonlinear simulation model of the

plant has been constructed in [12] by dividing the receiver tube intoN segments each of length ∆x
and hence the nonlinear distributed parameter model in (1) has been approximated by the following

set of ordinary differential equations (ODEs):

ρmCmAm
dTm,n

dt
= noGI −DoπHl(Tm,n − Ta)−DiπHt(Tm,n − Tf,n)

ρfCfAf
dTf,n

dt
+ ρfCfq

Tf,n−Tf,n−1

∆x
= DiπHt(Tm,n − Tf,n)

, n = 1, ..., N (2)

with the boundary condition Tf,0 = Tf,inlet (field inlet temperature) and Hl,Ht,ρf and Cf being

time−varying. It has been shown [12] that dividing the receiver tube into 7 segments (N = 7)

is a reasonable trade-off between the prediction accuracy and computational burden while still

adequate enough to capture the resonant modes of the plant.

2.1.2. Validation of the nonlinear simulation model: The nonlinear simulation model pro-

posed in (2) is validated in this paper against measured data obtained from the ACUREX plant.

The measured data was collected on 15 July 2003 and after a series of step changes in the volumet-

ric flow rate of the HTF. During the data collection, the number of active loops were 9 and mirror

optical efficiency (no) was 56%.
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Table 1 Variables and parameters.

Symbol Description SI unit

ρ Density kg/m3

C Specific heat capacity J/kg◦C
A Cross-sectional area m2

T Temperature ◦C
t Time s
I Solar radiation W/m2

no Mirror optical efficiency −

G Mirror optical aperture m
Do Outer diameter of the receiver tube m
Hl Global coefficient of thermal losses W/m◦C
Ta Ambient temperature ◦C
Di Inner diameter of the receiver tube m
Ht Coefficient of metal-fluid heat transfer W/m2◦C
q HTF volumetric flow rate m3/s
x Space m

Fig. 1 shows the measured inputs (measured disturbances and manipulated variable) to the

ACUREX plant and Fig. 2 shows the measured output against model output. One can notice

that the measured disturbances have experienced significant changes during the early stage of the

flow rate changes and yet, the model output, as shown in Fig. 2, is still able to capture the main

dynamics with slight deviation from the measured output. Once the measured disturbances have

almost settled, the model output can be clearly seen converging smoothly to the measured output.

In summary, the nonlinear simulation model described by the system in (2) is accurate enough for

simulation and analysis purposes.

Remark 1. It is worth noting that the field outlet temperature at the ACUREX plant is measured

far away from the solar collector field at the end of a return tube which implies slight changes to

the dynamics at the solar collector field and more importantly a variable dead-time. Hence, as the

nonlinear simulation model represents the outlet temperature at the solar collector field and for a

fair comparison, the model output is validated against the outlet temperature of collector loop 5

which is located at the middle of the solar collector field and has the maximum temperature of the

ten collector loops. More information about the variable dead-time problem can be found in [13]

along with other supplementary dynamics of the plant.

2.2. Nonlinear Lumped Parameter Model

The dynamic behaviour of the ACUREX plant can also be described (approximately) by a simple

nonlinear lumped parameter model. Variation in the internal energy of the fluid can be described

by:

C
dTf
dt

= noSI −QPcp(Tf − Tf,inlet)−Hl(Tmean − Ta) (3)

where S is the collectors’ solar field effective surface, Q is the HTF volumetric flow rate, Pcp is a

factor that takes into account some geometrical and thermal properties and Tmean is the mean of

Tf and Tf,inlet [1].
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Fig. 1: Measured inputs to the ACUREX plant.

Remark 2. For a given operating point, a local model of the measured disturbances of the ACUREX

plant can be derived from first principles using the nonlinear lumped parameter model in (3). Un-

der the assumption that the volumetric flow rate of the HTF (q) is no longer a variable (assuming

steady-state condition) and with proper adjustment of the factor Pcp to compensate for the heat

losses (Hl(Tmean − Ta)), the variation of the internal energy of the fluid can be given as:

dTf
dt

= C1Tf + C2Tf,inlet + C3I (4)

where C1 =
−Pcpq

C
, C2 =

Pcpq

C
and C3 =

noS
C

.

The dynamic model in (4) is a typical first-order ordinary differential equation (ODE) with

multiple inputs (Tf,inlet and I) and single output (Tf ) which can be easily represented in a discrete-

time state space form.

3. System Identification and Models of the Measured Disturbances

It has been discussed in Section 1 that the dynamics of the measured disturbances of the ACUREX

plant have been underestimated in the literature. More specifically, the link between the resonant

modes of the plant and the dynamics of the measured disturbances has not been fully appreciated.

Hence, in this section, an approach towards an effective modelling of the measured disturbances

of the ACUREX plant is proposed. The proposed approach makes use of system identification and

takes into account the frequency response of the plant.

3.1. System Identification

Due to the nonlinearity of the ACUREX plant, local LTI state space models relating the volumetric

flow rate of the HTF (q) to the field outlet temperature (Tf ) were estimated in [11] directly from

input-output data around the operating points q = 0.004, 0.006, 0.008 and 0.010m3/s. Predictions

of these models are improved here by estimating models of the field inlet temperature (Tf,inlet) and

solar radiation (I) around the same operating points.
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Fig. 2: Measured output against model output.

The nonlinear simulation model of the plant described by the system in (2) was excited with a

set of full-length PRBS signals with a clock period equal to the process sampling time 39 s (the

process time constant is around 6 min). The identification process was carried out separately for

the field inlet temperature and solar radiation and a data set of 1100 samples was used for each of

the nominal operating points.

3.2. Models of the Measured Disturbances

Compact local LTI state space models of the field inlet temperature and solar radiation were iden-

tified around the nominal operating points using the subspace identification method N4SID dis-

cussed in [14]. The general form of a discrete-time LTI state space model is given as:

xk+1 = Axk +Buk + ξk
yk = Cxk +Duk + ηk

(5)

where xk ∈ R
n×1, uk ∈ R

m×1, yk ∈ R
l×1, ξk ∈ R

n×1 and ηk ∈ R
l×1 are the state vector, input

vector, output vector, process noise and measurement noise respectively at discrete time instant k.

A,B,C and D are the coefficient matrices of appropriate dimensions.

Models of the field inlet temperature and solar radiation were estimated under the assumptions

that there is no direct feedthrough from the input to the output (D = 0) and the system is determin-

istic (ξk = ηk = 0). Model order was estimated by inspecting the singular values of a covariance

matrix constructed from the observed data.

Model order and best fit criterion are shown in Table 2 for the field inlet temperature and in

Table 3 for solar radiation. Models 1, 2, 3, and 4 refer to the nominal operating points q = 0.004,

0.006, 0.008 and 0.010 m3/s respectively.

The best fit criterion reflects the ability of the estimated models to reproduce the main dynamics

of the plant at a given operating point and time horizon. The ability to capture the resonance dy-

namics of the plant in the model is validated by inspecting the frequency response of the estimated

models. Fig. 3 and Fig. 4 show the bode plots of the estimated models and one can clearly identify

the resonant modes of the plant and observe the dependence of their frequencies on the flow rate

of the HTF.
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Table 2 Model order and best fit criterion (Tf,inlet)

Model Model order Best fit criterion (%)

1 5th 96.56
2 7th 97.48
3 7th 97.91
4 7th 98.16

Table 3 Model order and best fit criterion (I)

Model Model order Best fit criterion (%)

1 4th 97.97
2 4th 98.51
3 5th 98.77
4 5th 98.91

Indeed, fast and abrupt changes in the field inlet temperature can excite the resonance dynamics

of the plant, especially at low flow rates, and as expected the dependence of the dynamics of the

field outlet temperature on solar radiation is very similar to the dependence of the dynamics of the

field outlet temperature on volumetric flow rate of the HTF.

4. Control Design

A predictive control strategy, namely dual mode MPC is proposed in [15] for the deterministic

state space case and used in [11] within a gain scheduling framework. In this section, the dual

mode MPC proposed in [15] is extended to include the effects of the measured disturbances of the

ACUREX plant.

4.1. Dual Mode MPC

As mentioned earlier, the main contribution of this paper is to improve the GS predictive control

strategy proposed in [11], where local dual mode MPC controllers were designed around the nom-

inal operating points q = 0.004, 0.006, 0.008 and 0.010 m3/s. The design steps of each of the

local controllers can be summarised as follows 1:

• For a deterministic version of the system in (5) and assuming no direct feedthrough from the

input to the output, the deviations x̄k, ȳk, ūk from some an estimated steady-state values xss,
uss and yss can be expressed as:

x̄k+1 = Ax̄k +Būk
ȳk = Cx̄k

(6)

• Hence, a standard dual mode cost function (online performance measure) J is given as [15]:

J =
nc−1∑

i=0

[
x̄Tk+1+iδx̄k+1+i + ūTk+iλūk+i

]
+ x̄Tk+nc

Px̄k+nc
(7)

1Detailed treatment of the dual mode MPC and proper definitions of the various variables and parameters can be found in [15].
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Fig. 3: Bode plots: Estimated models of the field inlet temperature.

where nc is the number of free d.o.f., δ and λ are weighting matrices of appropriate dimen-

sions and P is the terminal weight obtained from an appropriate Lyapunov equation.

• Optimisation of the cost function in (7) subject to system predictions meeting constraints can

be simplified (details omitted as standard in the literature) to take the form of a quadratic

programming problem and solved online as:

min
ū
→

ūT
→k−1

S ū
→k−1

+ ūT
→k−1

Lx̄k s.t. β ū
→

≤ γ (8)

where ū
→k−1

= [ūTk ūTk+1 ... ūTk+nc−1]
T , S and L depend upon the matrices A, B, δ, λ and

P , β is time-invariant and γ depends upon the system past input-output information.

The design steps can be summarised by the following algorithm.
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Local dual mode MPC (LMPC)

1: Given an operating point and the local process model in (6), define the parameters in (8).

2: At each sampling instant, perform the optimization in (8).

3: Solve for the first element of ū
→

and implement on process.

Note that the LMPC can be easily modified to cover a wide range of operation through gain

scheduling [11].

GS dual mode MPC (GSMPC)

1: For each of the nominal operating points and given the local process model in (6), define the

parameters in (8)

2: For a selected local controller and at each sampling instant, perform the optimization in (8).

3: Solve for the first element of ū
→

and implement on process.
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The LMPC and GSMPC are improved next by including the dynamics of the measured distur-

bances.

4.2. Feedforward Dual Mode MPC

In order to include the dynamics of the measured disturbances, slight but essential modifications,

to the local process model in (6) need to be made.

Remark 3. The local process model in (6) can be augmented to include the disturbance dynamics

as follows:




x̄k+1

x̄d1k+1

x̄d2k+1





︸ ︷︷ ︸

z̄k+1

=





A 0 0
0 Ad1 0
0 0 Ad2





︸ ︷︷ ︸

Ā





x̄k
x̄d1k
x̄d2k





︸ ︷︷ ︸

z̄k

+





B 0 0
0 Bd1 0
0 0 Bd2





︸ ︷︷ ︸

B̄





ūk
d̄1k
d̄2k





ψ̄k =
[
C Cd1 Cd2

]

︸ ︷︷ ︸

C̄





x̄k
x̄d1k
x̄d2k





︸ ︷︷ ︸

z̄k

(9)

where the subindices d1 and d2 indicate that the system has two measured disturbances. d̄1 and d̄2
at sample time k are the deviations of the measured disturbances d1 and d2 from some an estimated

steady-state values d1ss and d2ss respectively.

Appropriate modifications to the dual mode cost function in (7) and consequently the optimisa-

tion in (8) depend upon the assumptions made about the future of the measured disturbances.

Theorem 1. If the future behaviour of the measured disturbances along a given prediction horizon

is considered and given the augmented local process model in (9), then the optimisation in (8) is

extended as follows:

min
ū
→

ūT
→k−1

S ū
→k−1

+ ūT
→k−1

Lz̄k + ūT
→k−1

M d̄1
→k−1

+ ūT
→k−1

N d̄2
→k−1

s.t. β ū
→

≤ γ (10)

where S and L in this case depend upon the matrices Ā, B, δ, λ and P , M depends upon the

matrices Ā, B, Bd1, δ and P , and similarly N depends upon the matrices Ā, B, Bd2, δ and P .

Proof. Under the assumption that the first nc control moves are free and that the remaining moves

are given by a fixed feedback law, let the predictions be:

zk+i = Āzk+i−1 +Buk+i−1 +Bd1d1k+i−1 +Bd2d2k+i−1; uk+i−1 are d.o.f., i = 1, ..., nc

zk+i = [Ā− BK]zk+i−1 +Bd1d1k+i−1 +Bd2d2k+i−1; uk+i−1 = −Kzk+i−1, i > nc

(11)

Now given some steady-state estimates zss, uss, d1ss and d2ss and under the assumption that

d1k+i−1 = d1ss and d2k+i−1 = d2ss, ∀i > nc, then the deviation of zk+i, ∀i can be expressed

as:
z̄k+i = Āz̄k+i−1 +Būk+i−1 +Bd1 d̄1k+i−1 +Bd2 d̄2k+i−1

z̄k+i = [Ā− BK]z̄k+i−1

(12)

and hence, it is convenient to separate the cost:

J =
∞∑

i=0

z̄Tk+1+iδz̄k+1+i + ūTk+iλūk+i (13)

10



into two parts as follows:

J = J1 + J2;
J1 =

nc−1∑

i=0

z̄Tk+1+iδz̄k+1+i + ūTk+iλūk+i

J2 =
∞∑

i=0

z̄Tk+nc+1+iδz̄k+nc+1+i + ūTk+nc+iλūk+nc+i

(14)

Note that one can form the whole vector of future predictions up to a horizon nc as follows:









z̄k+1

z̄k+2

z̄k+3

...

z̄k+nc









︸ ︷︷ ︸

z̄
→k

=









Ā
Ā2

Ā3

...

Ānc









︸ ︷︷ ︸

Wx

z̄k +









B 0 0 · · ·

ĀB B 0 · · ·

Ā2B ĀB B · · ·
...

...
...

...

Ānc−1B Ānc−2B Ānc−3B · · ·









︸ ︷︷ ︸

Hx









ūk
ūk+1

ūk+2

...

ūk+nc−1









︸ ︷︷ ︸

ū
→k−1

+









Bd1 0 0 · · ·

ĀBd1 Bd1 0 · · ·

Ā2Bd1 ĀBd1 Bd1 · · ·
...

...
...

...

Ānc−1Bd1 Ānc−2Bd1 Ānc−3Bd1 · · ·









︸ ︷︷ ︸

Fx









d̄1k
d̄1k+1

d̄1k+2

...

d̄1k+nc−1









︸ ︷︷ ︸

d̄1
→k−1

+









Bd2 0 0 · · ·

ĀBd2 Bd2 0 · · ·

Ā2Bd2 ĀBd2 Bd2 · · ·
...

...
...

...

Ānc−1Bd2 Ānc−2Bd2 Ānc−3Bd2 · · ·









︸ ︷︷ ︸

Gx









d̄2k
d̄2k+1

d̄2k+2

...

d̄2k+nc−1









︸ ︷︷ ︸

d̄2
→k−1

(15)

Hence, substituting (15) into J1 in (14) gives:

J1 = [Wxz̄k +Hx ū
→k−1

+ Fx d̄1
→k−1

+Gx d̄2
→k−1

]Tdiag(δ)[Wxz̄k +Hx ū
→k−1

+ Fx d̄1
→k−1

+Gx d̄2
→k−1

]

+ ūT
→k−1

diag(λ) ū
→k−1

(16)

and according to [15]:

J2 = [Wncz̄k+Hnc ū
→k−1

+Fnc d̄1
→k−1

+Gnc d̄2
→k−1

]TP [Wncz̄k+Hnc ū
→k−1

+Fnc d̄1
→k−1

+Gnc d̄2
→k−1

] (17)

where Wnc, Hnc, Fnc and Gnc are the ncth block rows of Wx, Hx, Fx and Gx respectively.

Finally one can combine J1 and J2 from (16) and (17) to give:

J = [Wxz̄k +Hx ū
→k−1

+ Fx d̄1
→k−1

+Gx d̄2
→k−1

]Tdiag(δ)[Wxz̄k +Hx ū
→k−1

+ Fx d̄1
→k−1

+Gx d̄2
→k−1

]

+ ūT
→k−1

diag(λ) ū
→k−1

+ [Wncz̄k +Hnc ū
→k−1

+ Fnc d̄1
→k−1

+Gnc d̄2
→k−1

]TP [Wncz̄k +Hnc ū
→k−1

+ Fnc

d̄1
→k−1

+Gnc d̄2
→k−1

]

(18)
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which can be simplified to:

J = ūT
→k−1

[HT
x diag(δ)Hx + diag(λ) +HT

ncPHnc]
︸ ︷︷ ︸

S

ū
→k−1

+ ūT
→k−1

2[HT
x diag(δ)Wx +HT

ncPWnc]
︸ ︷︷ ︸

L

z̄k

+ ūT
→k−1

2[HT
x diag(δ)Fx +HT

ncPFnc]
︸ ︷︷ ︸

M

d̄1
→k−1

+ ūT
→k−1

2[HT
x diag(δ)Gx +HT

ncPGnc]
︸ ︷︷ ︸

N

d̄2
→k−1

+ α

(19)

where α does not depend on ū
→k−1

.

Remark 4. One can notice that the optimisation in (10) assumes the availability of na-step ahead

predictions of a measured disturbance d, however, this may not always be the case.

Corollary 1. Given a set of na-step ahead predictions of d1 and the current estimate of d2 (d2k =
d2k+1 = ... = d2ss), then the optimization required will take the form:

min
ū
→

ūT
→k−1

S ū
→k−1

+ ūT
→k−1

Lz̄k + ūT
→k−1

M d̄1
→k−1

s.t. β ū
→

≤ γ (20)

Proof. This falls directly out of the optimisation in (10). The assumption d2k = d2k+1 = ... = d2ss
implies d̄2

→k−1

= 0.

Local feedforward dual mode MPC 1-na-step ahead (LFFMPC1-na-step ahead)

1: Given an operating point and the local process model in (9), define the parameters in (20).

2: At each sampling instant, perform the optimization in (20).

3: Solve for the first element of ū
→

and implement on process.

Note that the current estimate of d2 at sample time k is handled implicitly by the optimisation

in (20). Note also that the optimisation in (20) suggests that an assumption needs to be made

regarding the estimation of the steady-state value d1ss in order to ensure a systematic inclusion of

integral action.

Remark 5. For a set of na-step ahead predictions of a measured disturbance d, the estimated

steady-state value dss is assumed2 to be equal to d at sample time k + na.

Remark 6. Note that a set of na-step ahead predictions of a measured disturbance d is considered

by the optimisation in (20) if and only if na ≤ nc.

Corollary 2. Given the current estimates of d1 and d2 (d1k = d1k+1 = ... = d1ss and d2k =
d2k+1 = ... = d2ss), then the optimisation required will take the form:

min
ū
→

ūT
→k−1

S ū
→k−1

+ ūT
→k−1

Lz̄k s.t. β ū
→

≤ γ (21)

It is clear from the optimisation in (21) that d̄1
→k−1

= d̄2
→k−1

= 0 which implies that the current

estimates of d1 and d2 at sample time k are dealt with implicitly.

2This is validated in the next section through simulation.
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Local feedforward dual mode MPC 1 (LFFMPC1)

1: Given an operating point and the local process model in (9), define the parameters in (21).

2: At each sampling instant, perform the optimization in (21).

3: Solve for the first element of ū
→

and implement on process.

Similar to the LMPC, the LFFMPC1 can also be easily modified to cover a wide range of

operation through gain scheduling.

GS feedforward dual mode MPC (GSFFMPC)

1: For each of the nominal operating points and given the local process model in (9), define the

parameters in (21).

2: For a selected local controller and at each sampling instant, perform the optimization in (21).

3: Solve for the first element of ū
→

and implement on process.

4.3. Alternative Formulations of LFFMPC1

Alternative formulations of LFFMPC1 can be obtained by making different assumptions about the

models of the measured disturbances and the number of measured disturbances available.

So far, it has been assumed that the models of the measured disturbances are obtained through

system identification as discussed in the previous section, however, as it has been pointed out

in Section 2, the measured disturbances can also be modelled from first principles and hence an

equivalent algorithm to LFFMPC1 can be developed as follows.

Local feedforward dual mode MPC 2 (LFFMPC2)

1: For a given operating point, represent the dynamic model in (4) in a discrete-time state space

form using a sampling time of 39 s (process sampling time).

2: Given the local process model in (9), define the parameters in (21).

3: At each sampling instant, perform the optimization in (21).

4: Solve for the first element of ū
→

and implement on process.

Another alternative of LFFMPC1 can be obtained by making an assumption that only a single

measured disturbance is available.

Local feedforward dual mode MPC 3 (LFFMPC3)

1: Given an operating point and the local process model in (9) and assuming a single measured

disturbance (x̄d2k = d̄2k = 0), define the parameters in (21).

2: At each sampling instant, perform the optimization in (21).

3: Solve for the first element of ū
→

and implement on process.

13



4.4. Summary

This section has discussed a number of variants of dual mode MPC tailored to the application

at hand. While the main contribution is the proposed GSFFMPC, the other proposed algorithms

are equally important to highlight issues like the significance of sufficient modelling of the mea-

sured disturbances of the plant and the impact of considering the future behaviour of a measured

disturbance along a given prediction horizon as will be shown in the next section.

For a better insight into the different dual mode MPC algorithms and before moving to the next

section, Table 4 lists all the discussed algorithms and shows their distinct features.

Table 4 Dual mode MPC algorithms

Algorithm Feedforward Gain scheduling Comments

LMPC No feedforward action No gain scheduling

Proposed in [15] and the

model used is obtained

through system identification

GSMPC No feedforward action
Includes gain schedul-

ing

Proposed in [11] and the

models used are obtained

through system identification

LFFMPC1-

na-step

ahead

Takes into account na-

step ahead of d1 and the

current measurement of

d2

No gain scheduling

Models of the measured

disturbances are obtained

through system identification

LFFMPC1

Takes into account the

current measurement of

d1 and d2

No gain scheduling

Models of the measured

disturbances are obtained

through system identification

GSFFMPC

Takes into account the

current measurement of

d1 and d2

Includes gain schedul-

ing

Models of the measured

disturbances are obtained

through system identification

LFFMPC2

Takes into account the

current measurement of

d1 and d2

No gain scheduling

Model of the measured dis-

turbances is derived from

first principles and based on

steady-state conditions

LFFMPC3

Takes into account the

current measurement of

d1 and not of d2

No gain scheduling

Model of the single mea-

sured disturbance is obtained

through system identification
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5. Simulation Results

The impact of the different assumptions made in the previous section about the future of the mea-

sured disturbances is explored here. More specifically, this section aims to:

• Show the efficacy of the proposed GSFFMPC during the transient phase, set point tracking

and disturbance rejection.

• Emphasise the significance of sufficient modelling of the measured disturbances of the plant.

• Draw attention to the impact of considering the future behaviour of solar radiation along a

given prediction horizon.

Three different scenarios have been designed in order to meet these aims, but before proceeding

any further with these scenarios, some preliminaries are discussed first.

5.1. Preliminaries

The plant is represented by the nonlinear simulation model described by the system in (2) with a

slight increase to thermal losses in order to make the scenarios more realistic. Field inlet temper-

ature (Tf,inlet) and ambient temperature (Ta) are kept fixed at 189◦C and 28◦C respectively. Even

though this may not be the case in the normal operation of the plant, this is still a reasonable as-

sumption during the steady-state phase. The HTF is assumed to be the synthetic oil Therminolr 55

and constrained to the range 0.002−0.012m3/s, where the minimum limit is normally for a safety

reason. Exceeding a temperature of 305◦C puts the synthetic oil at the risk of being decomposed.

The difference between the field inlet-outlet temperature is also constrained not to exceed 80◦C
in order to avoid the risk of oil leakage [1]. The latter has been taken care of implicitly when the

nominal operating points and the desired reference temperature were selected. The HTF flow rate

constraints are considered explicitly in the control design process as will be demonstrated in the

following scenarios.

5.2. Gain Scheduled Feedforward Control

The following scenario shows the efficacy of the proposed GSFFMPC compared to the previously

proposed GSMPC [11], that is, it demonstrates the benefits of utilising feedforward information

where available. The scenario is shown in Fig. 5, it starts with a clear day and slowly time-varying

solar radiation. During the transient phase (9 − 9.15 h) and while the GSFFMPC is performing

very well with fast transients and no overshoot, the GSMPC has somewhat poorer performance

with a large overshoot around 13 ◦C and an oscillatory control signal.

As the day goes by a sudden drop in solar radiation occurs at 13.15 h due to a passing and

persistent cloud. As can be clearly seen in Fig. 5, the GSFFMPC performs better than the GSMPC

with much less deviation from the desired reference temperature and a faster recovery time. Here

again, the control signal of the GSMPC is slightly oscillatory. Set point tracking performance

has been also evaluated for both algorithms over a short period of time during steady-state; Table 5

shows a numerical set point tracking performance of both algorithms over a period of 42m (11.16−
11.58 h). The GSFFMPC achieves lower root mean square error (RMSE) with a reduction of

approximately 12.55 %.
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Table 5 Set point tracking performance

Algorithm RMSE (◦C)

GSMPC 0.0271

GSFFMPC 0.0237

5.3. Local Feedforward Control

The scenario in Fig. 6 demonstrates locally the importance of sufficient modelling of the field

inlet temperature and solar radiation, even when the system uses a single controller, that is no gain

scheduling. In particular, it highlights the superiority of the LFFMPC1 over the LMPC, LFFMPC2

and LFFMPC3.

Controllers are designed around the nominal operating point 0.006 m3/s and similar to the

scenario in Fig. 5, the scenario in Fig. 6 starts with a clear day and slowly time-varying solar

radiation. During the transient phase (9 − 9.26 h), LMPC (which has no feedforward action) has

the worst control performance with significant overshoot around 17 ◦C and a substantial oscillatory

control signal. The LFFMPC2 has better performance than LMPC with a noticeable improvement

in the overshoot (being around 9.5 ◦C) and slight improvement in the control signal. Best control

performance is indeed exhibited by the LFFMPC1 with no overshoot and relatively smooth control

signal.

Note that the LFFMPC3 is designed based on the dynamics of the volumetric flow rate of the

HTF and solar radiation. In other words, dynamics of the field inlet temperature are not consid-

ered in the control design process. The impact of not considering the dynamics of the field inlet

temperature on the transient phase is fairly obvious. One would expect a large overshoot and quite

oscillatory control signal.

Fig. 6 also shows the behaviour of the four controllers during a sudden drop in solar radiation

across the period 12.45 − 13.15 h. While the impact of the passing cloud on the LFFMPC1 is

barely noticed, the LMPC gives notably poorer performance. The LFFMPC2 has a less effective

use of the feedforward information and gives a seriously poor control signal whereas, as expected,

the LFFMPC3 shows a similar response to LFFMPC1.

Table 6 gives numerical comparison of set point tracking performance during steady-state

(10.37− 11.42 h). Clearly, the LFFMPC1 and LFFMPC3 give the lowest RMSE. Note that the set

point tracking performance of the LFFMPC2 is still better than the LMPC.

Table 6 Local set point tracking performance

Algorithm RMSE (◦C)

LMPC 0.0413

LFFMPC1 0.0130

LFFMPC2 0.0207

LFFMPC3 0.0130

In summary, the LFFMPC1 has demonstrated that incorporating sufficient dynamic models of

solar radiation and the field inlet temperature can significantly improve the control performance

during the transient phase, set point tracking and disturbance rejection.
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5.4. Measured Disturbances Along a Given Prediction Horizon

This part of the section investigates the impact of incorporating the expected future behaviour of

solar radiation for a given prediction horizon. The performance of the LFFMPC1 for the current

incident solar radiation is compared to the performance of the LFFMPC1 when the solar radiation

is predicted 50-step ahead (32.5 min). The scenario here is quite extreme. Fig. 7 shows drastic

changes in solar radiation due to thick and scattered passing clouds.

Just before 12.15 h, the performance of the LFFMPC1 is fairly similar to the performance of

the LFFMPC1-50-step ahead. After 12.15 h and due to the strong disturbances, some differences

started to emerge, yet, the impact of the prediction capabilities is not quite clear. Hence Table 7

shows an online performance measure (J) of both algorithms.

Table 7 Online performance measure (J)

Algorithm J
LFFMPC1 7570.1

LFFMPC1-50-step ahead 7398.6

The LFFMPC1-50-step ahead gives the lowest numerical value to the cost. Note that, however,

the choice of 50-step ahead here is not optimal and needs further investigation.

As a final remark here, the steady-state value of a measured disturbance d was defined earlier

as d at sample time k + na and in order to validate this assumption, a typical daily cycle of solar

radiation on a clear day is simulated. The cycle has a mean value of 800 W/m2 and covers a range

of 5 h 27 min and 36 s (504 samples). Fig. 8 shows the deviation of solar radiation after applying

the LFFMPC1-50-step ahead for a desired reference temperature of 237 ◦C. The deviation can be

clearly seen converging to zero for each sample time k.

6. Conclusion

This paper has discussed the main feedforward approaches that have been proposed over the years

for the ACUREX distributed solar collector field as well as the need for the development of a

new feedforward approaches. Moreover, the paper has shown that the dynamics of the field outlet

temperature due to changes in solar radiation are very similar to the dynamics of the field outlet

temperature due to changes in the volumetric flow rate of the HTF, which is consistent with the

experimental findings in [10] and the analysis in [3].

This paper has also taken the analysis of the measured disturbances of the ACUREX plant a

step further by investigating the dynamics of the field inlet temperature and showing that indeed

fast and abrupt changes in the field inlet temperature can excite the resonance dynamics of the

plant.

The GS predictive control strategy proposed in [11] is improved in this paper by including the

effects of the measured disturbances of the ACUREX plant in the predictions of future outputs

(systematic feedforward design). Using a validated nonlinear simulation model of the ACUREX

plant, models of the measured disturbances are estimated around a family of operating points

directly from input-output data using the subspace identification method N4SID while taking into

account the frequency response of the plant.

Simulation results have shown that incorporating sufficient dynamic models of the measured

disturbances can significantly improve the control performance during the transient phase, set point
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tracking and disturbance rejection. The results have also shown that deriving a dynamic model of

the measured disturbances from first principles and based on steady-state conditions is an under-

estimation of their actual dynamics, which thus can result in a poor control performance during

disturbance rejection.

Finally, the paper has attempted to draw attention to the impact of considering the future be-

haviour of solar radiation along a given prediction horizon. Even though the results were positive,

one might argue that the improvements over that current incident solar radiation are not that signif-

icant. It is worth noting that questions like ”How far ahead should one predict?” and accordingly

”How significant the improvements can be?” still need to be answered.
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Fig. 5: A performance comparison: GSMPC against GSFFMPC.
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Fig. 6: A local performance comparison.
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Fig. 7: A local performance comparison: LFFMPC1 against LFFMPC1-50-step ahead.
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