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Abstract. Mercury is a chemical with widespread anthro-

pogenic emissions that is known to be highly toxic to hu-

mans, ecosystems and wildlife. Global anthropogenic emis-

sions are around 20 % higher than natural emissions and

the amount of mercury released into the atmosphere has in-

creased since the industrial revolution. In 2005 the European

Union and the United States adopted measures to reduce mer-

cury use, in part to offset the impacts of increasing emissions

in industrialising countries. The changing regional emis-

sions of mercury have impacts on a range of spatial scales.

Here we report 4 years (December 2011–December 2015)

of total gaseous mercury (TGM) measurements at the Cape

Verde Observatory (CVO), a global WMO-GAW station

located in the subtropical remote marine boundary layer.

Observed total gaseous mercury concentrations were be-

tween 1.03 and 1.33 ng m−3 (10th, 90th percentiles), close

to expectations based on previous interhemispheric gradi-

ent measurements. We observe a decreasing trend in TGM

(−0.05 ± 0.04 ng m−3 yr−1, −4.2 % ± 3.3 % yr−1) over the

4 years consistent with the reported decrease of mercury

concentrations in North Atlantic surface waters and reduc-

tions in anthropogenic emissions. The decrease was more

visible in the summer (July–September) than in the winter

(December–February), when measurements were impacted

by air from the African continent and Sahara/Sahel regions.

African air masses were also associated with the highest and

most variable TGM concentrations. We suggest that the less

pronounced downward trend inclination in African air may

be attributed to poorly controlled anthropogenic sources such

as artisanal and small-scale gold mining (ASGM) in West

Africa.

1 Introduction

Mercury is present in the atmosphere in three main forms:

gaseous elemental mercury Hg0, which is the most com-

mon form in the gas phase; oxidised mercury HgII (GOM

or RGM); and Hg bound to particulate matter (PBM). To-

tal gaseous mercury (TGM) is the combined measurement of

Hg0 (or gaseous elemental mercury (GEM)) + RGM, with

Hg0 typically contributing around 90–99 % of the total Hg or

TGM.

Anthropogenic sources of mercury account for around

30 % of the total amount and include emissions from coal

burning, mining, cement production, oil refining, and waste

incineration. One-third of the anthropogenic emissions are

thought to come from deliberate biomass burning with Africa

as the single largest continental source; therefore, in this re-

gion there could be an influence from Sahel African biomass

burning during the months of November through to Febru-

ary (Roberts et al., 2009; De Simone et al., 2015). Hg0 reacts

slowly with atmospheric oxidants with a global lifetime of

around 6–8 months (Selin et al., 2007; Holmes et al., 2010),

and so can be transported to remote regions. When oxidised

to less volatile HgII, it can be deposited either through wet

deposition processes (precipitation scavenging) or by surface

uptake (Sexauer Gustin et al., 2012; Schroeder and Munthe,
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1998; Sather et al., 2013; Wright et al., 2014). Hg0 also un-

dergoes slow dry deposition through air–surface exchange

with both terrestrial and aquatic surfaces (Zhang et al., 2009;

Wang et al., 2016). Once deposited, transformation to highly

toxic species such as the neurotoxic methylmercury allows

bioaccumulation in food chains and poses a health risk to hu-

mans and a damaging effect to ecosystems (US EPA, 1997).

Previously deposited mercury can also be reduced back to

Hg0 through the natural weathering of mercury-containing

rocks, geothermal activity, or from volcanic activity, and

then re-emitted back to the atmosphere (Smith et al., 2008;

Qureshi, 2011).

Reactions of Hg0 to HgII with the hydroxyl radical (OH)

and ozone (O3) were historically accepted as the dominant

photochemical oxidation mechanisms (Bergan and Rodhe,

2001; Lin et al., 2006; Seigneur et al., 2006; Selin et al.,

2007; Pongprueksa et al., 2008). Recent work has suggested

that there may be significant other oxidants such as atomic

halogens (Holmes et al., 2010; Wang et al., 2014) and more

complex two-step oxidation schemes, which include fur-

ther reactions with NO2 and HO2; however, the kinetics are

highly uncertain (Goodsite et al., 2004; Holmes et al., 2010).

Heterogeneous oxidation in clouds may also contribute but

is not experimentally proven (Ariya et al., 2009; Calvert and

Lindberg, 2005).

Strode et al. (2007) estimated that 36 % of all mer-

cury emissions in the Northern Hemisphere come from the

ocean both through primary emission (ocean upwelling and

mercury-containing rocks) and from re-emission of previ-

ously deposited mercury (as HgII), but this increases to 55 %

as one moves into the Southern Hemisphere (Strode et al.,

2007). The major anthropogenic source affecting the remote

marine boundary layer is likely to be long-range transport of

Hg0 from combustion (smelting, waste incineration, chem-

ical plants) rather than from HgII, which is more likely to

deposit regionally due to its relatively short lifetime of 4.8 h

(Zhang et al., 2012). Other industrial sources for Hg include

artisanal and small-scale gold mining (ASGM), which are

known to occur in West Africa (Telmer and Velga, 2009;

UNEP, 2013) and will likely regionally influence the mea-

surements described here. For the 2013 UNEP global assess-

ment, ASGM emission data were compiled from field and

industry reports but with an uncertainty of ca. ± 43 % due to

the multitude and varying nature of ASGM sites. In recent

years, global emissions from ASGM, and in particular the

proportion of global emissions attributed to South America

and sub-Saharan Africa, appear to be increasing; however,

this assumption may be due to improved reporting (Muntean

et al., 2014). The majority of global anthropogenic emissions

of Hg to the atmosphere in 2010 are associated with ASGM

(37 %), with one-third thought to be from sub-Saharan Africa

(UNEP, 2013).

A community strategy developed by the EU was adopted

in 2005 and listed 20 actions to reduce mercury emissions,

cut mercury supply and demand, and protect people against

exposure. This strategy had a strong focus on the need to

take a global approach and included actions relating to mul-

tilateral negotiations for the conclusion of a legally bind-

ing convention on mercury (http://ec.europa.eu/environment/

chemicals/mercury/strategy_en.htm). The UNEP Global

Mercury partnership led by the US Environmental Protec-

tion Agency took a similar approach (http://web.unep.org/

chemicalsandwaste/global-mercury-partnership) and these

initiatives formed the basis of the Minamata Convention on

Mercury, which was agreed in 2013 and is a global treaty to

protect human health and the environment from the adverse

effects of mercury (http://www.mercuryconvention.org/).

It has been a source of contradiction that in the North-

ern Hemisphere, while both measured atmospheric Hg con-

centrations and wet deposition fluxes have been decreasing

since 1990 (Soerensen et al., 2012) and 1996–2013 (Slemr

et al., 2011; Weigelt et al., 2015); global Hg emissions dur-

ing this period were calculated to be increasing (Pacyna et

al., 2010; Streets et al., 2011). Very recently, however, Zhang

et al. (2016), using a revised inventory and the global model

GEOS-CHEM, have shown that global Hg emissions may

also be decreasing. They suggest that a large discrepancy

in the emissions data was from locally deposited mercury

close to coal-fired utilities. It is thought that this source has

declined more rapidly than was previously predicted due to

shifts in mercury speciation from air pollution control tech-

nology targeted at SO2 and NOx (Zhang et al., 2016). Flue

gas desulfurisation (FGD) – which controls SO2 emissions –

washes out HgII, whilst selective catalytic reduction (SCR)

to control NOx emissions also oxidises Hg0 to HgII. These

effects of FGD, in addition to the recent phase-out of Hg

from commercial products (UNEP Minamata Convention on

Mercury) and lower global estimates from small-scale gold

mining, serve to explain the globally decreasing atmospheric

concentrations in the model. Zhang et al. (2016) also found

that the larger emission decreases observed in North Amer-

ica and Europe globally offset the increases from other ma-

jor polluted regions, e.g. from coal-fired utilities in East Asia

(Pacyna et al., 2010; Pirrone et al., 2013).

Using data from ship cruises, Soerensen et al. (2012)

observed a significant decreasing trend of atmospheric

mercury concentrations over the North Atlantic of

−0.046 ng m−3 yr−1 (−2.5 % yr−1), with smaller trends

at more southern latitudes (Soerensen et al., 2012). They

suggest that this decline is due to decreasing oceanic evasion

driven by declining subsurface water Hg0 concentrations

(−5.7 % yr−1 since 1999; Mason et al., 2012).

Here we report 4 years (December 2011–December 2015)

of TGM measurements at the Cape Verde Observatory

(CVO), a clean marine background station located in the sub-

tropical Atlantic. The measurements presented here are part

of the EU Global Mercury Observation System (GMOS) net-

work. The GMOS network of sites was established in 2011

with the aim of addressing known gaps in the spatial and tem-

poral measurement of mercury, as well as improving knowl-
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Figure 1. Cape Verde site location. Top right, image from Google Earth: V7.1.5.1557 (6 July 2016). São Vicente, Cape Verde,

16◦51′59.60′′ N, 24◦52′03.60′′ W; eye altitude 2.70 km. Wind rose for the measurement period is coloured by wind speed.

edge of Hg speciation. The data are being used to validate

regional and global scale atmospheric Hg models in order

to improve understanding of global Hg transport, deposi-

tion, and re-emission as well as providing a contribution to

future international policy development and implementation

(www.gmos.eu).

2 Experimental

The CVO was established in 2006 as a multilateral project

between the UK, Germany and Republic of Cape Verde.

Long-term atmospheric measurements include reactive trace

gases including ozone, carbon monoxide, nitrogen oxides

and volatile organic compounds (National Centre for Atmo-

spheric Sciences (NCAS), University of York, UK), long-

lived greenhouse gases (Max Planck Institute (MPI), Jena,

Germany), and physical and chemical characterisation of

aerosol (Leibniz Institute for Tropospheric Research (TRO-

POS), Leipzig, Germany). Details of the measurements and

characteristics of the station can be found in Carpenter et

al. (2010).

The CVO is positioned on the northeastern side of São

Vicente (16.85◦ N, 24.87◦ W), one of 10 islands in the

Cape Verde archipelago (Fig. 1). The island is of vol-

canic origin and the CVO is situated 50 m from the coast-

line. The climate is warm (mean annual air temperature is

24.0 ◦C ± 2.0 ◦C) and dry with extremely low annual rainfall

(< 200 mm), which occurs mostly during the rainy season of

July–November. The site receives air masses from the north-

easterly trade winds for 95 % of the time, which have trav-

elled typically for five days over the ocean. Research flights

carried out over the CVO in summer 2007 established that

the boundary layer is well mixed (Read et al., 2008). There

is no coastal shelf to the island at this location point, and the

CVO conditions are considered to be representative of the

North Atlantic open ocean boundary layer. Radiosonde and

ceilometer data show there is no diurnal pattern evident in

boundary layer heights, which suggests no systematic differ-

ence between daytime and night-time entrainment rates (Car-

penter et al., 2010).

Air is sampled from the main laboratory glass manifold

(10 m height of inlet, 2 in. diameter, residence time 4 s) and

then through a 2 m length of 1/4 in. Teflon tubing and a

particulate filter which is changed every 2 months. The en-

tire inlet is heated. A Tekran 2537B analyser (Tekran Inc.,

Toronto, Canada) was used for the TGM measurements and

is described in detail elsewhere (Steffen et al., 2014) and so

only a brief summary is presented here. The analytical prin-

ciple collects the TGM onto gold traps with subsequent ther-

mal desorption and detection by atomic fluorescence spec-

troscopy (λ = 253.7 nm; Bloom and Fitzgerald, 1988). It is,

however, likely that the measurement at this site is of GEM

rather than TGM since RGM is lost very easily to any salt

deposits in the inlet lines and filters. Samples of 5 L volume

are obtained every 5 min (1 L min−1 flow rate) with a de-

tection limit of around 0.1 ng m−3, using a dual-trap set-up.

Concentrations in ng m−3 are reported at a standard pressure

of 1013 hPa and a standard temperature of 273.14 K. Cali-
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Figure 2. Time series (December 2011–December 2015) of TGM data measured at the Cape Verde Observatory.

brations are performed every 72 h using an internal mercury

permeation source which injects a known amount of Hg0 into

mercury-free zero air (using a TEKRAN zero air filter, part

no: 90-25360-00). The calibration consists of a zero and a

span on each channel. The effective span was 19.08 ng m−3

for a sample volume of 5 L. The permeation rate was exter-

nally validated using manual injections of saturated mercury

vapour taken from a Tekran 2505 mercury vapour calibra-

tion unit and after 5 years found to be within ∼ 3.6 % of the

instrumental set point. The detection limit of the instrument

was 0.1 ng m−3.

Instruments to make trace gas and meteorological mea-

surements are provided by the Atmospheric Measurement

Facility (AMF), which is part of NCAS. Ozone measure-

ments were made using a UV photometric analyser (Thermo

Electron Corporation). The instrument had a detection limit

of 0.05 ppb and a precision of < 1 ppbV. Carbon monoxide

data presented here were measured using a vacuum UV

fluorescence technique (Aerolaser 5001). It was sensitive to

1 ppbV and linear up to 100 ppm. The accuracy of the mea-

surements was < 2 ppbV. In 2012 the Global Atmospheric

Watch (GAW) audited these measurements and the report

can be found at http://www.wmo.int/pages/prog/arep/gaw/

documents/CVO_2012.pdf. Nitrogen oxide measurements

were made using a low-detection, high-accuracy (sensitivity

0.3 and 0.35 pptV and accuracy of 5.5 and 5.9 % for NO

and NO2 respectively) chemiluminescence analyser (AQD

Inc.). The meteorological measurements presented here

were made using a Campbell Scientific automatic weather

station. For more information about the present NCAS

instrumentation at the CVAO refer to https://www.ncas.ac.

uk/index.php/en/the-facility-amf/291-amf-main-category/

cvao/cvao-amf-instrumnets/1557-cvao-amf-instrumnets.

Four years of data are presented here obtained between

5 December 2011 and 5 December 2015. In calculating

annual statistics, we have used data from 1 December to

30 November. The data were quality-controlled using the

central GMOS-Data Quality Management (G-DQM) system

(Cinnirella et al., 2014; D’Amore et al., 2015). The G-DQM

allows harmonisation of data across the network and is able

to acquire and process data in near-real time, allowing imme-

diate diagnosis of issues. It was developed using harmonised

standard operating procedures, which had been established

over many years by European and Canadian monitoring net-

works, together with recent literature (Brown et al., 2010;

Gay et al., 2013; Steffen et al., 2012). An additional filter has

been applied to the data presented here to exclude periods

when the relative humidity was higher than 90 %, as the data

were prone to increased uncertainties due to water condens-

ing in the instrument. Instrument issues led to some signif-

icant data gaps; a lamp failure caused major data gaps be-

tween July and August 2012 and May and June 2014, whilst

a pump failure caused downtime between October 2012 and

January 2013.

3 Results and discussion

3.1 Statistics and seasonal cycles

The mean TGM concentration over 2011–2015 was

1.191 ± 0.128 ng m−3 and the 4-year time series is shown in

Fig. 2. Sprovieri et al. (2016) showed that the CVO mea-

surements (site referred to as CAL rather than CVO) fit well

within the north–south gradient of TGM data. Other sites of

reference, which receive background air similar in origin to

CVO, include Mace Head, Ireland; Nieuw Nickerie, Suri-

name; and Cape Point, South Africa (Table 1). The remote-

ness of the CVO is reflected in the small variability of the

TGM measurements, compared to other sites.

The data shown in Table 1 illustrate the dominating effect

of emissions from the Northern Hemisphere compared to the

Southern Hemisphere, with Mace Head (53◦ 20′ N, 9◦54′ W)

TGM concentrations averaging 7–9 % higher than those ob-

Atmos. Chem. Phys., 17, 5393–5406, 2017 www.atmos-chem-phys.net/17/5393/2017/
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Figure 3. Seasonal cycle of TGM at CVO. The bars represent the standard deviation of the monthly averages.

Table 1. Average TGM concentrations and standard deviation statistics from comparable sites in 2013 and 2014. Data from Sprovieri et

al. (2016).

Site Mean ± standard deviation Mean ± standard deviation

(latitude, longitude) for 2013 (ng m−3) for 2014 (ng m−3)

Mace Head, Ireland 1.46 ± 0.17 1.41 ± 0.14

(53◦20′ N, 9◦54′ W)

Calhau, Rep. of Cape Verde 1.22 ± 0.14 1.20 ± 0.09

(16◦51′ N, 24◦52′ W)

Nieuw Nickerie, Suriname 1.13 ± 0.42 1.28 ± 0.46

(5◦56′ N, 56◦59′ W)

Cape Point, South Africa 1.03 ± 0.11 1.09 ± 0.12

(33◦56′ S, 18◦28′ E)

served at Cape Point. The site at Nieuw Nickerie experiences

10 % higher concentrations in the air arriving from the north

compared to the south (Müller et al., 2012) and is addition-

ally impacted by emissions from biomass burning and gold

mining from South America (Sprovieri et al., 2010). Com-

parisons to ship-borne field campaigns in the Atlantic made

between 1977 and 2001 (Sprovieri et al., 2010) show that the

data from CVO are more comparable with southern Atlantic

conditions than the northern Atlantic.

The CVO TGM monthly mean data show a weak sea-

sonal cycle (1.289 ± 0.134 ng m−3 December maximum,

1.130 ± 0.128 ng m−3 June minimum, Fig. 3) with gener-

ally higher concentrations in winter and lower in summer.

This cycle is similar, both in shape and magnitude, to that

observed within subtropical maritime air masses at Mace

Head, which is shallower than for other air masses (Weigelt

et al., 2015) and generally not so defined as that of other

remote sites in the Northern Hemisphere (Temme et al.,

2007; Holmes et al., 2010). Selin et al. (2007) show that the

mean seasonal amplitude of 12 northern mid-latitude sites

between the maximum in January (winter) and minimum Au-

gust (summer) is 0.19 ng m−3, compared to the CVO ampli-

tude of 0.14 ng m−3 (December–June).

A smaller seasonal cycle may mean that O3 plays a more

dominant role in the oxidation of Hg0 compared to other ox-

idants such as OH (Temme et al., 2007; Selin et al., 2007;

Holmes et al., 2010). The equatorial nature of the CVO site

means that solar irradiance and water vapour are high year-

round (Carpenter et al., 2010; Whalley et al., 2010). This may

lead to a less pronounced change in oxidation capacity be-

tween summer and winter when compared to sites at higher

latitudes.

An influence of air masses from the Southern Hemisphere

without any pronounced seasonal variation (Slemr et al.,

2015) may be another reason for the smaller amplitude in

the seasonal cycle at the CVO. However, air mass back tra-

jectory analyses show that the CVO receives very little air

representative of the Southern Hemisphere (∼ 1.3 % of all

data, Fig. S1, Supplement). Further, the highest frequency of

southerly air masses arriving at the CVO occurs during Au-

gust and September, which would serve to increase the mer-

cury seasonal cycle amplitude rather than reduce it.

www.atmos-chem-phys.net/17/5393/2017/ Atmos. Chem. Phys., 17, 5393–5406, 2017
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Figure 4. TGM trends for the full year and then separated by season at the Cape Verde Observatory. The green text shows the slope estimate,

with 99 % confidence intervals in brackets.

Anthropogenic emissions of mercury affecting the At-

lantic region include emissions from coal combustion, which

tend to have maximum impact in February–March due to

a dominance of air from continental regions such as North

America. This is also observed in the seasonal distribution of

anthropogenic combustion tracers such as carbon monoxide

(Selin et al., 2007; Weigelt et al., 2015; Read et al., 2009).

Ocean emissions of Hg0 from the reduction of HgII
aq to Hg0

aq,

driven by increased biological production are at a maximum

in June in the NH but December in the SH (Strode et al.,

2007). The seasonal trend may also be affected by meteoro-

logical differences in seasonal circulation patterns and cycles

in boundary layer heights, clouds, precipitation, and dry de-

position characteristics (Dastoor and Larocque, 2004; Selin

et al., 2007).

3.2 Four-year trends

The Theil–Sen function (Theil, 1950; Sen, 1968) was used

to evaluate the 4-year dataset inclination based on monthly

TGM medians by season. The results are shown in Fig. 4. In

this function the slopes between all x, y pairs are calculated

and the Theil–Sen estimate is the median of all these slopes.

This analysis was performed using the Openair package in

R (Carslaw and Ropkins, 2012). The advantage of using this

function is that it gives accurate confidence intervals and is

resistant to outliers. Statistics used for this plot can be found

in Table S1 in the Supplement.

Over 4 years the data show a weak downward in-

clination (0.042 ± 0.04 ng m−3 yr−1, p < 0.01 signif-

icance level). This decrease is more significant in

the data collected during the Cape Verdean summer

(−0.079 ± 0.054 ng m−3 yr−1, p < 0.001 in June–August)

than in the winter (−0.009 ± 0.179 ng m−3 yr−1, p < 0.1

in December–February). Previous studies have shown a

stronger decreasing trend in air that has been influenced

by anthropogenic emissions, for which there is more ready

detection of the impact of regulation (Selin et al., 2007; Cole

et al., 2014; Weigelt et al., 2015; Zhang et al., 2016).

The seasonal trends calculated here imply that there are

differences in the sources of mercury that affect the winter

months compared to the summer months, potentially with

a smaller decline in emissions over this winter period. This

may be because CVO measures Hg coming from the same

source region throughout the year but that the emission from

that source has not declined as much in winter as it has in

summer, e.g. from residential burning. Alternatively the dif-

ference could be explained by a difference in air mass be-

tween seasons bringing air from different sources that have

experienced different trends in emissions over the years. We

consider this latter scenario to be the more likely explanation,

since air masses originating from continental Africa, which

may be influenced by ASGM or biomass burning, frequently

reach the CVO in winter (Carpenter et al., 2010), but are

more rare in summer. A further alternative explanation for

the difference in trends between seasons would be a change

in global oxidant concentrations (such as OH) and that this

effect had a seasonal dependence, but there is no evidence to

support this from studies that estimate OH fields (Hartmann

et al., 2013).

In order to understand better the drivers of the TGM be-

haviour, observations were classified according to the origin

and pathways of air masses arriving at the CVO over a 10-day

period using the UK Met Office NAME dispersion model in

passive tracer mode (Ryall et al., 2001). The air mass classi-

fications have been used previously for evaluating the source

Atmos. Chem. Phys., 17, 5393–5406, 2017 www.atmos-chem-phys.net/17/5393/2017/
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Figure 5. (a) Boundary definition of the eight geographical regions: Coastal African, Europe, Sahara, Sahel, North America, Atlantic, South

America, and South Africa. (b) Trajectory frequency maps for each of the seven air mass types using HYSPLIT trajectories and Openair:

AAC – Atlantic and African coastal; AM – Atlantic marine; NAA – North American and Atlantic; NCA – North American and coastal

African; EUR – European (with minimal African influence); AFR – African (with minimal European influence); and EUR/AFR – European

and African.

Figure 6. Histograms of observed TGM classified by air mass for the full 2011–2015 dataset.

www.atmos-chem-phys.net/17/5393/2017/ Atmos. Chem. Phys., 17, 5393–5406, 2017
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Table 2. Statistics for the individual air mass classified data.

Mass Mean ± 1σ standard deviation % time the site

(25th–75th percentiles, number of points) ng m−3 receives air mass

AM 1.14 ± 0.11 (1.08–1.22, 432) 6 %

AAC 1.15 ± 0.12 (1.08–1.24, 1633) 24 %

NAA 1.21 ± 0.08 (1.17–1.27, 449) 7 %

NCA 1.20 ± 0.10 (1.15–1.27, 975) 15 %

EUR 1.18 ± 0.13 (1.08–1.26, 1161) 17 %

AFR 1.23 ± 0.16 (1.14–1.29, 1448) 22 %

EUR/AFR 1.22 ± 0.11 (1.16–1.30, 586) 9 %

Figure 7. A correlation matrix separated by season to show the cor-

relation between pairs of data, using the corPlot function in Openair

(Carslaw and Ropkins, 2012). The ellipses are visual representa-

tions of a scatter plot. The colour scale highlights the strength of

the correlation (red being the strongest and blue the weakest), and

the number is the r2 of the data. The data were daily averaged be-

fore correlating to remove any bias from diurnal variability. The or-

der the variables appear is due to their similarity with one another,

through hierarchical cluster analysis.

regions of reactive trace gases arriving at CVO (Carpenter et

al., 2010). For this study eight geographical regions were de-

fined (coastal African, polluted marine, Saharan Africa, Sa-

hel Africa, North America, Atlantic marine South America,

and tropical Africa), and from these seven air mass types

are classified based on the percentage time spent over each

of the eight regions (Fig. 5a and b). These are Atlantic and

African coastal (AAC), Atlantic marine (AM), North Ameri-

can and Atlantic (NAA), North American and coastal African

(NCA), European (with minimal African influence) (EUR),

African (with minimal European influence) (AFR), and Eu-

ropean and African (EUR/AFR). The eight regions are shown

in Fig. 5a and a trajectory frequency footprint of the trajecto-

ries (using all of the data from the measurement period) for

each of the seven classifications is shown in Fig. 5b.

Figure 6 shows histograms representing the data in each

of the seven classifications and Table 2 details the associated

statistics. The lowest variability in TGM was observed in air

that had travelled the longest period since contact with conti-

nental sources even though these would have been subjected

to greatest potential for ocean emissions (AM, NCA, NAA).

The lowest concentrations (1.144 ± 0.109 ng m−3) were ob-

served in Atlantic and African coastal air (AAC). During late

summer we occasionally (∼ 2 % of time) receive air that has

been influenced by the Southern Hemisphere (Fig. 5b and

Supplement). At these times the ozone mixing ratios drop to

∼ 15 ppbV and there can be a rare occurrence of rain lead-

ing to spikes in the mostly low TGM concentrations (Fig. 7).

Otherwise, the highest and most variable concentrations of

total gaseous mercury (mean of 1.23 ± 0.16 ng m−3) are ob-

served in air originating from continental Africa (AFR).

Paired t tests were performed (Wilcoxon signed rank test,

R) using the air mass datasets and the AFR dataset showed a

significant difference (significance level < 95 %) in the mean

concentration when compared to AAC, NAA, NCA, EUR,

EUR/AFR and AM. This suggests that the air classified as

AFR may be influenced by sources with different longer-

term emissions trends to those experienced when other air

masses are detected (t-test results can be found in Table S2

in the Supplement).

Biomass burning, of both anthropogenic and biogenic

origins, is prevalent in Africa. In Northern Hemisphere

Africa, burning occurs primarily in the Sahel, moving from

the northern to the southern Sahel between November and

February (Roberts et al., 2009). From Fig. 5b it would ap-

pear that there are few trajectories which originate from this

region; however, an influence from biomass burning could

be one explanation for the variable, and sometimes higher,

mercury concentrations within AFR air masses. Previous

studies have found a relationship between TGM and carbon

monoxide during such episodes (Slemr et al., 2006; Brunke
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Figure 8. (a) Time series of TGM and carbon monoxide. The plot is normalised by dividing by the compounds’ mean value, and the grey

dots indicate when the air was characterised as AFR. The shaded periods correspond to the 10-day back trajectories in (b). Clockwise from

top left: 15 December 2013, 03:00 GMT; 17 December 2013, 18:00; 23 December 2013, 03:00; and 20 December 2013, 00:00.

et al., 2012). Figure 7 shows a correlation analysis using a

matrix method between pairs of data at the CVO for AFR

air, separated by season. O3 and CO show a strong posi-

tive correlation particularly in spring, but also in summer

and winter, consistent with their shared pollution sources

and with CO being a precursor of O3 over long transport

times. Higher wind speeds tend to be associated with air

masses that have travelled further (from continental regions)

and therefore have undergone greater photochemical produc-

tion, which might explain the positive correlation of O3 with

wind speed. In spring a strong positive correlation of TGM

with CO and with O3 suggests a shared anthropogenic source

when these concentrations are at their seasonal high in the

Northern Hemisphere. The lack of correlation of O3 with

CO in autumn, however, suggests a more localised source for

CO, perhaps from biomass burning, but this is not reflected

in a positive relationship with the TGM concentrations. In-

stead, TGM has a strong correlation with NOx (NO + NO2),

which suggests that the TGM concentrations are influenced

by anthropogenic pollution sources within closer proximity,

for example from pollution emitted from cities on the coast

of West Africa. This may also explain the high variability

in the TGM concentrations observed in the air classified as

AAC, which has also travelled over the African coast; how-

ever, the concentrations in that air mass are lower due to

longer time spent over the ocean. Air classified as AFR and

EUR/AFR shows the highest levels of TGM and these may

be better explained by an additional source further in-land.

If sources of mercury from ASGM from West Africa have

any impact on these measurements and trends, then this may

be reflected in a weaker correlation with CO in autumn and

winter. This is because we speculate that the activity might

www.atmos-chem-phys.net/17/5393/2017/ Atmos. Chem. Phys., 17, 5393–5406, 2017
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Figure 9. (a) Time series of TGM and CO. The plot is normalised by dividing by the compounds mean value, and the grey dots indicate

when the air was characterised as AFR. The shaded periods correspond to the 10-day back trajectories in (b): left, 3 October 2015, 09:00;

right, 3 October 2015, 21:00.

be more commonly carried out in the dry season (November

to April) when crops cannot be grown; however, there is little

evidence to support this. There is no data for TGM in AFR

in summer.

We next consider episodes when TGM concentrations

were enhanced, to investigate the potential influence of

biomass burning on the measurements. On two occasions

TGM exceeded 1.7 ng m−3 (∼ 0.5 ng m−3 higher than the

mean levels detailed in Table 1). The first period was dur-

ing December 2013; Fig. 8a shows normalised CO and TGM

concentrations during this month. The shaded periods corre-

spond to AFR trajectories, shown in detail in Fig. 8b. The

figure shows that, for this period of relatively elevated con-

centrations in AFR classified air, there is no significant cor-

relation with CO, and that the trajectories do not originate

over the biomass-burning region of the Sahel. Thus, biomass

burning appears not to be a contributor to the high TGM con-

centrations during this period.

A similar analysis was performed for the period

19 September 2015 until the 19 October 2015 and the cor-

responding plots and trajectories are shown in Fig. 9. In this

case the period of elevated concentrations is shorter, with the

episode lasting around a week. From the trajectories the air

may have been influenced by air from the biomass region in

Sahel Africa, which is at its most northern location in the

month of October (Roberts et al., 2009). However, CO was

not elevated during the period of peak [TGM] suggesting that

biomass burning was not the source.

It has been previously established that West Africa is an

important source region for ASGM activity (Telmer and

Velga, 2009) but it is difficult to determine whether West

Africa is a growing source of emissions since data have been

limited and are subject to large uncertainty. It is likely, how-

ever, that the ASGM emissions are less regulated than an-

thropogenic emissions from coal combustion, ferrous/non-

ferrous metal and cement production from Europe and the

US (UNEP, 2013), and so is less likely to be decreasing in

source strength.

A further analysis using the Theil–Sen function was per-

formed to evaluate trends in the 4-year dataset within individ-

ual air masses, based on seasonal TGM medians (Fig. 10).

The overall data (top left panel) show a decrease of

−0.051 ng m−3 yr−1 (95 % confidence interval of −0.1

to −0.022 ng m−3 yr−1), as shown in the green text.

Over the 4-year period the concentration changes were

(in ng m−3 yr−1) −0.046 ± 0.037, −0.021 ± 0.043,

−0.052 ± 0.060, −0.061 ± 0.044, −0.058 ± 0.039,

−0.051 ± 0.043, −0.077 ± 0.034, for AAC, AFR, AM,

EUR, EUR/AFR, NAA, and NCA respectively (see Table S3

in the Supplement for the number of points used to derive
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Figure 10. 4-year TGM trends using a Theil–Sen function based on seasonal TGM medians separated by air mass. The data for all air masses

are shown in the top left panel with the rest of the panels showing the data separated by the seven air mass classifications. The green text

shows the slope estimate and the 95 % confidence intervals are in brackets. In each case the solid red line shows the trend estimate and the

dashed red lines show the 95 % confidence intervals for the trend based on resampling methods.

monthly medians). The symbol “∗∗∗” in green indicates that

the decrease is significant to the 0.001 level, “∗∗” to 0.01

and “∗” 0.05. Decreasing trends were observed in all the

air masses with the largest trends observed in NCA and

EUR, suggesting controls on anthropogenic emissions are

having an effect. Although there is some overlap in the 95 %

confidence intervals, the African (AFR) air clearly shows

the smallest decreasing trend and the only positive upper

confidence interval over the 4 years compared to all of the

other air masses.

From an analysis of trajectories it was found that the AFR

air was within the Sahel region outlined earlier for only

around 1–2 % of the time and mostly in October when the

burning is at its most northern point (Fig. 5b). In order to

evaluate whether these air masses biased the decrease in AFR

air, a sensitivity analysis was performed on the Theil–Sen

analysis with the October data removed. The data flagged

as southerly were also removed. The updated concentration

change was −0.022 ± 0.036 ng m−3 yr−1; thus, the filtering

had essentially no effect on the AFR trend.

Weigelt et al. (2015) observed an annual decrease in TGM

concentrations at Mace Head (53◦20′ N, 9◦54′ W; 10 m a.s.l.)

of between −0.021 and −0.023 ng m−3 yr−1 between 1996

and 2013, close to the upper confidence levels shown here

(Weigelt et al., 2015). Within subtropical maritime classi-

fied air masses (air from south of 28◦ N, west of 10◦ W) the

decrease was −0.016 ± 0.002 ng m−3 yr−1. Further south at

Cape Point, the trend for 17 years (1996–2013) was reported

as −0.018 ng m−3 yr−1 (95 % significance interval of −0.035

to −0.013 ng m−3 yr−1). These concentration decreases are

lower than the global calculation using the GEOS-CHEM

model for the northern Atlantic of −0.04 ng m−3 yr−1 (So-

erensen et al., 2012) but may not take into account the

very recent decreases in emissions (Weigelt et al., 2015;

Soerensen et al., 2012). The overall concentration decrease

(2011–2015) observed here of −0.05 ng m−3 yr−1 is more

similar to the GEOS-CHEM study.

4 Conclusions

We report a 4-year decreasing trend in total gaseous mercury

(TGM) concentrations over the subtropical North Atlantic of

−0.05 ± 0.04 ng m−3 yr−1, a rate of decline that is in agree-

ment with a GEOS-CHEM analysis for the northern Atlantic

(Soerensen et al., 2012). A downward trend in concentration

was observed in six out of seven different air mass types, all

associated broadly with long-range transport of air from the

US and Europe over the North Atlantic Ocean to the mea-

surement location. The smallest and least significant down-

ward trend (−0.02 ± 0.03 ng m−3 yr−1) was observed in air

that was influenced by West Africa, where emissions are less

understood and may well be static or possibly still increas-

ing. The UNEP Global Mercury Assessment report in 2013

suggested that more work is needed to improve emissions

estimates for West African sources, including field measure-

ments around ASGM sites.

Data availability. The data presented here are freely available

at the Centre for Environmental Data Analysis (CEDA) at http:

//catalogue.ceda.ac.uk/uuid/0ae5eb7ce3ad4885a7223dd7b69f4db6

(Read, 2010). Other levels of data are available within the

GMOS central database upon request at http://sdi.iia.cnr.it/geoint/

publicpage/GMOS/gmos_historical.zul (GMOS Database, 2014).
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