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We have used the results of micromagnetic simulations to investigate the effects of 

nanowire geometry and domain wall magnetization structure on the characteristic 

parameters of magnetic atom traps formed by domain walls in planar ferromagnetic 

nanowires. It is found that when traps are formed in the near-field of a domain wall both 

nanowire geometry and wall structure have a substantial effect on trap frequency and 

adiabaticity. We also show that in certain regimes a trap�s depth depends only on the 

amplitude of an externally applied rotating magnetic field, thus allowing it to be tuned 

independently of the trap�s other critical parameters. 

Introduction 

Contemporary laser cooling techniques allow clouds of atoms to be routinely prepared with 

temperatures in the micro-Kelvin range.  In such conditions atom clouds represent idealised quantum 

mechanical systems that not only allow insight into fundamental phenomena, such as the behaviour of 

quantum degenerate matter [1,2], but also have great technological potential through the development 

of matter wave interferometry [3], novel sensors [4] and in information processing [5,6]. 

To realise these applications atom clouds must not only be confined in velocity space, but also trapped 

physically. This can be achieved using either optical interactions [7-10] or, for paramagnetic atoms, 

magnetic interactions [11]. In the latter case atoms are subject to  magnetic field gradients created 

from either current carrying conductors [e.g. 12-14], or ferromagnetic patterns/microstructures [e.g. 

15-20]. The possibility of miniaturising these systems and integrating them into substrate-bound 

�atom chips� [21]  makes such approaches extremely attractive for technological applications. 

In a previous publication we have used micromagnetic simulations to demonstrate the feasibility of 

creating atom traps using the monopole-like magnetic fields emanating from domain walls (DWs) in 

planar magnetic nanowires [22]. These DWs have particle-like properties and can be transported 

controllably around complex nanowire networks [e.g. 23]. The resulting mobility of atom traps 

created by such DWs is non-typical for magnetic atom traps based on patterned magnetic 

microstructures and is extremely attractive for quantum information processing applications. 

Furthermore, DW atom traps will allow tight confinement of atoms in all three dimensions.  Recently 



we have demonstrated substantial progress towards our goal of experimentally realising DW atom 

traps by using an array of DWs in nanowires to create a reconfigurable �atom mirror� [24] 

While we have previously established the basic feasibility of trapping ultra-cold atoms using a DW, 

the dependence of trap parameters on the specific properties of the nanomagnetic system forming it 

has not yet been explored. Here we address this issue by using the results of micromagnetic 

simulations to investigate how the critical parameters of a DW atom trap, namely its depth, frequency 

and adiabaticity, depend on both nanowire geometry and the internal magnetisation structure of the 

DW. The direct effects of these parameters are isolated from those due to variation in the DWs� net 

monopole moment by maintaining a constant nanowire cross-sectional area throughout our 

calculations.  

Our results show that for traps formed above a DW, nanowire geometry substantially alters an atom 

trap�s frequency, adiabaticity and the maximum obtainable trap depth. We also show that in certain, 

physically realisable, regimes the trap depth is dependent only on the magnitude of the externally 

applied rotating magnetic field that is used to ensure that the trap has a non-zero field minimum. This 

effectively allows the trap frequency and adiabaticity to be �tuned� independently from the trap depth. 

In combination, these properties are likely to be useful for designing DW atom traps that can be 

experimentally realised.  

Theoretical Description 

The magnetic shape anisotropy of a planar nanowire confines its magnetisation to lie along its length, 

and hence DWs represent regions of either converging magnetisation (Head-to-Head, H2H) or 

diverging magnetisation (Tail-to-Tail, T2T) (see figure 1(a)). Each DW therefore carries a net 

monopole moment with effective �magnetic charge� wtMq s02µ±=  [24,25], where 
sM  is the 

nanowire�s saturation magnetisation, w and t are the nanowire�s width and thickness, and 
0µ  is the 

permeability of free space. In previous publications [25, 26] we have shown that the field emanating 

from a DW can be approximated by assuming that this charge acts as a point-monopole at the DW 

centre, resulting in the coulomb-like magnetic field: 

( ) rrB �
4 2DW

r

q

π
=  (equation 1) 

where r is the distance of a point from the DW centre. While highly accurate in the far-field, the finite 

spatial distribution of magnetic poles within the DW causes substantial deviations from this model 

when considering points closer to the nanowire [26]. This spatial distribution is modified as the 

geometry of the nanowire and DW magnetisation structure are altered, leading to the dependence of 

trap parameters on nanowire geometry that we will present later. In this paper the point-monopole 



model will be used to provide the reader with an intuitive picture of how DW atom traps are formed 

and as a reference through which to understand how the finite spatial distribution of poles within a 

DW affects the atom trap it creates. From this point onwards BDW will be used generically to refer to 

the field from a DW, rather than solely that calculated using the point-monopole model. 

Figure 2(a) illustrates schematically how a magnetic field with form similar to BDW can be 

manipulated to create an atom trap.  A paramagnetic atom moving adiabatically in a magnetic field 

gradient B∇ will experience a force
 

BF ∇−= BFF µgm
, 

where Fm is the atom�s magnetic 

quantum number, Fg  is the Landé g-factor and Bµ is the Bohr magneton.  Atoms in states where 

0FF >gm  are attracted to minima in the magnetic field, and are termed �weak�field-seeking�. In this 

paper we will consider 87Rb atoms that have been optically pumped into the weak-field seeking 52S1/2 

F = 2, mF = 2 (gF = 1/2) state. 

Because DWB increases as distance to the DW decreases, in isolation a DW will simply repel weak-

field seeking atoms. To create a field minimum that may be used to trap atoms, an external magnetic 

field, BDC, is applied in opposition to the dominantly z-axis orientated field directly above the DW.  At 

some height, ztrap, BDC exactly cancels BDW yielding the required field minimum (Fig. 2(b)).
 

To achieve tight traps with long lifetimes it is required that the magnetic field at the trap center, 

0
min

>B . If this criterion is not met atomic states with different mF become degenerate at the trap 

minimum, allowing the atoms to perform Majorana spin flips to untrapped states and being lost from 

the trap. To overcome this problem we consider the Time Orbiting Potential (TOP) approach [27] and 

apply a rotating magnetic field in the x-y plane, BTOP(t). Providing that the frequency, Ȧ, of BTOP(t) is 

high enough the atoms will only experience a time-averaged field landscape with minimum 

TOPmin BB = .  

With the application of BDC and BTOP the instantaneous components of the magnetic field at a time, t, 

are: 
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where BDW is calculated either from the point monopole model or from more complex analytical [26] 

or numerical [22] models of domain wall pole distributions, and Ȧ is the angular frequency of BTOP. 

Assuming that the atoms follow the field adiabatically and experience only the time averaged-field 

they will then be subject to a magnetic field-landscape defined by: 



( ) ( ) dtt
T

T

∫=
0

,
1

rBrB  (equation 4) 

 

where 
ω

π2
=T . This integral does not have an analytic solution even for the simple monopole model, 

and hence all of the calculations of ( )rB  presented in this paper were performed numerically. We 

note that our approach here assumes that the DW remains fixed as BTOP rotates. In reality the larger 

TOP fields considered in this paper might be sufficient to induce DW motion, however this could be 

easily prevented by patterning artificial defects into the nanowires. 

Having established the basic form of the fields that are used to create a DW atom trap we now turn 

attention to the critical parameters that define an atom�s interaction with a trap. 

 The trap depth, U, defines the minimum energy barrier an atom must overcome to escape from an 

atom trap, and therefore has a strong influence on an atom�s average lifetime within the trap. In 

general, the depth of a magnetic atom trap can be calculated using ( )
minBFF BB −=

∞
µgmU , where 

∞
B is the field far from the DW, outside of the trapping potential. In this paper we express U as an 

effective trap temperature
Bk

E
T

Δ
= , where Bk is Boltzmann�s constant.   

For DW atom traps 
∞

B  is purely due to the isotropic externally applied fields and 

hence
2

TOP

2

DC BBB +=
∞

. The trap depth is therefore given by: 
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For a TOP trap the calculation of trap depth is complicated by the addition of a second route via 

which the atoms may escape. While BTOP removes the field-zero at the trap centre in the time-

averaged field landscape, as it rotates it creates a circle of instantaneous field zeros in the x-y plane 

below the trap. If an atom encounters this �circle of death� there is a high chance of it performing a 

spin-flip to an untrapped state and therefore being lost. By considering that for any point on the circle 

TOP

2

y

2

x ),(),( Brr =+ tBtB  and 
DCz )( Br =B it can be shown that the time-averaged strength 

of the magnetic field at any position on the �circle of death� is given by: 

π

TOP4 B
B =

circle  (equation 6) 



The trap depth, Tcircle, due to this effect is therefore given by:  

( )
TOP

B

BFFcircle

4
B

k
gmT

π

π
µ

−
=  (equation 7) 

In the above we assume that ( )rǺ  always increases consistently along all vectors between the trap 

centre and the �circle of death�. We have found that this is the case for all of the traps considered in 

this paper, however we observe empirically that for DCTOP 2 BB > a field maximum may be 

found prior to reaching the circle. This is likely to affect the trap depth in cases where large values of 

BTOP are used, or when a trap is formed far from the DW. 

In practice the trap depth is limited by whichever of Tcircle and ∞T is lower. As Tcircle increases with 

increasing
TOPB , while ∞T decreases, the trap depth will be limited by Tcircle  at low 

TOPB and by 

∞T at higher
TOPB , with a crossover between the two depths occurring at: 

( )
DC

2

cross

TOP

16
BB

π

π

−
=  (equation 8) 

As Tcircle is only dependent on the value of 
TOPB this leads to the remarkable conclusion that for low 

values of the TOP field the trap depth is entirely independent of the monopole moment of DW that is 

used to form the trap. It should be noted that this analysis of Tcircle was not included in our previous 

study of DW atom traps [22]. 

A second important characteristic parameter of an atom trap is the trap frequency, Ȧtrap, which 

determines the spatial confinement of trapped atoms, and also the spacing of energy levels within the 

trap. Treating the trap as a quantum harmonic oscillator (i.e. a quadratic potential): 

2

2

A

B

i
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dr

d

m

Bµ
ω =

 (equation 9)
 

3
zyxtrap ωωωω =  (equation 10) 

where Ȧi is the characteristic frequency of the trap along Cartesian axis ri and mA is the mass of the 

traped atom. In general the potential landscapes created by DW atom traps are not purely quadratic, 

and hence the value of Ȧtrap best representing the system depends to some degree on the temperature 

of the trapped atoms. In this paper we simplify this problem by fitting values of the trap frequency 

over a fixed distance of ± 100 nm from the trap centre. Ȧtrap is a particularly critical parameter for 



TOP traps, as for trapped atoms to respond to the time-averaged magnetic field the TOP field must be 

rotated at a frequency much greater than the characteristic trap frequency (i.e. ωω <<trap ). This 

criteria represents a significant consideration in the design of DW atom traps, as creating large time-

orbiting fields at high frequencies is technically challenging, particularly in an ultra-high-vacuum 

environment.   

An important parameter related to Ȧtrap is the trap�s adiabaticity, which is defined here as trapL /ωω , 

where ȦL is the minimum value of a trapped atom�s Larmor frequency as found at the trap centre: 

¥
TOPB

L

Bµ
ω =  (equation 11) 

where ƫ is the reduced Plank�s constant. As the Ȧtrap effectively describes the rate at which the 

magnetic field changes in the atom�s frame of reference, and ȦL describes the rate at which the atom 

is able to respond to changes in the field direction,  this parameter ultimately dictates whether or not 

the atom�s magnetic moment can follow the trap�s varying magnetic field adiabatically. Thus, for 

successful trapping: 

 1
trap

L >>
ω

ω
. (equation 12) 

Method 

To investigate how the critical parameters of DW atom traps depend on nanowire geometry we 

consider three 8.4 ȝm long Ni80Fe20 nanowires with differing widths (w) and thicknesses (t): 

Nanowire A: (w = 200 nm, t = 40 nm), Nanowire B: (w = 400 nm, t = 20 nm), Nanowire C: (w = 800 

nm, t = 10 nm). As all three nanowires have the same cross-sectional area the total monopole moment 

of their DWs will be identical, and hence any difference between the traps they create are solely due 

to the spatial distribution of magnetic poles within the DWs. 

Physically appropriate DW structures were generated by relaxing simple bi-domain magnetization 

configurations in accordance with the Landau-Lifshitz-Gilbert equation using a proprietary finite-

element micromagnetic code [28]. Standard parameters were used to represent the material parameters 

of Ni80Fe20 (saturation magnetization, MS = 860 kA/m, exchange stiffness, A = 13 pJ/m, 

magnetocrystalline anisotropy constant, K1 = 0).  A characteristic mesh size of 5 nm was used in the 

regions of the nanowires containing the DWs, while larger 20 nm meshes were used in uniformly 

magnetized regions. In all three nanowire geometries vortex DW structure [29] was energetically 

favored, although in Nanowire C this was bistable with transverse DW structure, allowing the effect 



of DW magnetization structure on trap parameters to be investigated. Micromagnetically simulated 

DW structures for all three nanowires are shown in Figure 1(b). 

For each nanowire BDW was calculated from the quasistatic Maxwell equations using a finite 

element/boundary element method [30]. Calculations were performed across regular meshes (cell size 

≤ 20 nm) that extended at least ±200 nm from the trap centre in each direction and were also large 

enough to fully contain the �circle of death� for a given value of 
TOPB . The magnetic fields created 

by the nanowires� end domains were subtracted from BDW by considering point-monopole charges of 

magnitude �q/2 placed at the nanowires� ends. 

In our calculations we consider traps formed at ztrap = 500 nm, 1000 nm and 1500 nm, with values of 

TOPB  between 2 and 10 G. ( )rB was calculated by first adding an appropriate value of BDC to BDW 

so as to create a field minimum at the desired height, and then numerically integrating equation 4 

across 50 time-steps to simulate the TOP field-landscape. In each time-step the position of the 

instantaneous field-zero created by BTOP was located, so as to allow Bcircle  to be found. Tcircle was then 

calculated using Equation 7. T∞ was calculated using Equation 5. Trap frequencies were estimated by 

performing quadratic fits to ( )rB  along lines extending ±100 nm from the trap centre and then using 

Equation 9. 

Results and Discussion 

To illustrate the basic variation of trap depth, trap frequency and adiabaticity with ztrap and 
TOPB

 
we 

initially present calculations for atom traps formed using Nanowire B (w = 400 nm, t = 20 nm) 

(Figure 3). 

Figure 3(a) shows the calculated variation of trap depth with
TOPB and ztrap.  It can be seen that for 

ztrap = 500 nm and 1000 nm the trap depth is limited by Tcircle for all values of  
TOPB , and hence 

increases linearly in accordance with Equation 7. That Tcircle is the critical parameter here can be 

understood by considering Figure 3(d), which plots the value of 
DCB required to form a trap as a 

function of ztrap. For ztrap = 500 nm and 1000 nm the required values of 
DCB  are 39 G and 12 G 

respectively, leading to values of 
cross

TOP
B of 49 G and 15 G. As these values are outside of the range 

TOPB  modeled, the trap depth is always limited by Tcircle. In contrast to this, for ztrap = 1500 nm, 

DCB  = 5.6 G, and hence 
cross

TOPB = 7.1 G, leading to a transition from Tcircle  to T∞ within the 

calculated data. Consequently, the trap depth increases linearly to a maximum ~127 ȝK and then 



decreases in accordance with Equation 5. In the calculated data the cross-over between Tcircle and T∞ 

occurs at a slightly higher value of 
TOPB than is predicted by Equation 8 (indicated by dashed red 

line). This is due to the finite discretisation of the regular mesh, which results in a slight error in the 

calculated value of 
circle

B .   

In Figure 4 we illustrate how the position of the �circle of death� is modified by changing the value 

of
TOPB . It is observed that as 

TOPB  increases the circle adopts a larger radius and descends 

towards the DW. This evolution can be understood by considering the monopole-like field pattern 

generated by the DW, along with the condition that for any point on the circle the in-plane component 

of BDW must be equal in magnitude to BTOP, while the z-component must be equal and opposite to 

BDC: Considering points in an x-y plane containing the trap centre, the magnitude of the in-plane  

magnetic field ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ +

22
t,t, rr yx BB  increases with distance from the trap centre. Hence as 

TOPB  increases the circle must adopt a larger radius. However, this increase in the in-plane field is 

associated with a decrease in )(z rB and thus the circle must simultaneously descend towards the DW 

to maintain a z-component equal and opposite to BDC. 

Figure 3(b) plots the variation of Ȧtrap with
TOPB . For all trap heights Ȧtrap decreases as 

TOPB  

increases, approximately halving over the range of TOP fields studied. This trend reflects the manner 

in which the addition of the TOP field �smoothes� the time-averaged field landscape, resulting in 

more gently varying field gradients (Figure 5(a)).  Varying the trap height produces an even stronger 

variation of trap frequency. For example, with 
TOPB = 6 Oe a trap formed at ztrap = 500 nm has a trap 

frequency of 
16 rads1026.1 −× , while under the same conditions a trap at ztrap = 1500nm has a trap 

frequency of only 
14 rads1089.8 −× , over an order of magnitude lower. This variation is the result of 

the rapid decrease in 
( )
2

2

idr

d rB
with height above the DW (Figure 5(b)).   

Figure 3(c) illustrates the variation of the trap�s adiabaticity as 
TOPB  is varied. This variation is 

found to be stronger than that of Ȧtrap, because the decrease of Ȧtrap with 
TOPB  is complemented by a 

simultaneous linear increase in ȦL. In combination these features allow the adiabaticity to be altered 

by several orders of magnitude even with the limited range of values of 
TOPB  we consider here. The 

adiabaticity also decreases dramatically as ztrap increases. However, this is solely due changes in Ȧtrap, 

as ȦL depends only on 
TOPB  (Equation 11).  



We now turn our attention to the effect of nanowire geometry and DW structure on trap parameters. 

Figures 6(a), (d) & (g) compare calculated values of the trap depth for Nanowires A, B and C with 

those from the point monopole model. As in the calculations for Nanowire B discussed earlier, for ztrap 

= 500 nm and 1000 nm the trap depth is limited by Tcircle in the modeled parameter range. Hence, the 

trap depth depends only on 
TOPB and is independent of the nanowire dimensions (the slight 

differences between the data at ztrap = 500 nm are again the result of finite mesh discretisation). At ztrap 

= 1500 nm a transition between Tcircle and T∞ is again seen. Here, distinct geometry dependence is 

observed, with 
cross

TOPB  occurring at lower 
TOPB  for wider nanowires. Figure 7 illustrates the 

reason for this: the finite pole distributions in the micromagnetically simulated nanowires lead to 

reduced magnetic fields at a given height in comparison to the point-monopole model [26]. This 

difference grows as the nanowires� widths increase due to the pole-distributions become more 

extended. Thus, lower values of 
DCB  are required to create the trap and 

cross

TOPB  is consequently 

reduced.
 
In regimes where T∞ dominates the trap depth is also lower for wider nanowires, as the 

reduced value of 
DCB  leads to lower values of ∞B . An importance conclusion here is that for a 

given trap height and DW charge, nanowire geometry ultimately determines the maximum trap depth 

that may be obtained. 

Figures 6(b), (e) & (h) present calculated values of Ȧtrap for all three nanowire geometries. Decreasing 

the width of the nanowire can be seen to increase the trap frequency for given height and TOP field, 

with the point monopole model representing an upper limit of what may be obtained for given DW 

charge. At ztrap = 500 nm a substantial effect is observed, with Nanowire C producing traps with 

frequencies ~300% lower than those created by Nanowire A, while at greater values of ztrap the 

differences between the three geometries are less pronounced. The origin of these effects lies in the 

fact that, in the near-field, more extended pole distributions result in more slowly varying field 

gradients than more concentrated pole distributions. Moving towards the far-field, the effects of an 

extended pole distribution become less relevant, resulting in the convergence of the curves towards 

that of the point-monopole as ztrap increases. The reader may also note an apparent �flattening� of the 

curves at low 
TOPB  when ztrap = 500 nm. This is due to the non-harmonic shape of the trapping 

potential: Under these conditions the field landscape shows notable deviations from quadratic form 

over the fitted data range (±100 nm). 

Figures 6(c), (f) & (i) illustrate how the atom traps� adiabaticity is modified by nanowire geometry. 

As ȦL is independent of nanowire geometry, the observed variation is entirely due to the variation of 

Ȧtrap described in the previous paragraph. Thus, the adiabaticity increases with increasing nanowire 

width, with this dependence becoming less significant at larger trap heights. 



Having discussed the effect of nanowire geometry we now discuss how the internal magnetization 

structure of a DW affects the parameters of an atom trap. As is well known, planar magnetic 

nanowires support two basic types of DWs [29]: the �transverse� form, in which the magnetization of 

the DW lies perpendicular to the nanowires length, and the �vortex� form where the DW 

magnetization rotates around a nanoscopic �core� of out-of-plane magnetization. As indicated earlier 

in the paper, vortex DW structure is energetically favorable in all three of the modeled nanowire 

geometries, however, Nanowire C will also support a meta-stable transverse DW configuration 

(Figure 1(b)). Studying traps in this nanowire therefore allows the effect of DW magnetization 

structure to be isolated from that due to total DW charge and nanowire geometry. The results of 

calculations comparing the characteristic parameters of traps formed by the two DW geometries can 

be found in Figure 8.   

The basic effect of DW structure can be understood by considering that moving from a vortex to a 

transverse DW effectively compresses the DW pole distribution. The result of this is that transverse 

walls produce traps with higher values of 
cross

TOPB , T∞, and Ȧtrap, and lower values of adiabaticity 

than an equivalent vortex wall. A further noticeable effect is that, with transverse DWs, traps are no 

longer formed above the centre of the nanowire as they are for vortex DWs, but are displaced ~200 

nm towards the edge of the nanowire. This reflects the symmetry of the triangular transverse DW 

structure which, as we have shown previously [26,31], results in an offset in the position of the 

effective centre of the DWs charge distribution.   

Conclusions 

In this study the results of micromagnetic simulations have been used to investigate the effect of 

nanowire geometry and DW magnetization structure on the critical parameters of atom traps formed 

using DWs in planar magnetic nanowires. 

Our results indicate that when considering traps in the near field of a DW (i.e. ztrap~w), nanowire 

geometry has a substantial effect on both trap frequency and adiabaticity, and also modifies the 

maximum obtainable trap depth. For given total DW monopole moment, the adiabaticity increases 

with nanowire width, while the trap frequency and maximum depth decrease. These effects can be 

understood by a broadening of the DW charge distributions as nanowire width increases. As the 

height of a trap is increased towards the far-field the effect of nanowire geometry becomes less 

pronounced due to the field from the DW�s charge distribution tending towards the limiting case of 

that from a point-monopole. 

We have also observed differences between traps formed by transverse and vortex walls in a nanowire 

of the same geometry. For given trap height and DW monopole moment a transverse wall produces a 



trap with a higher maximum depth and frequency, and a lower adiabaticity than a trap formed by a 

vortex DW in the same nanowire. Again, these effects become less important as the trap height 

increases. 

While nanowire geometry and DW structure will undoubtedly be useful tools in optimizing trap 

properties perhaps a more significant result of this work is the observation that for certain regimes of 

external parameters the trap depth depends only on the magnitude of the TOP field, and is therefore 

independent of nanowire geometry, DW magnetization structure, total DW monopole moment and 

trap height. The upshot of this is that these parameters may be used together to �tune� a trap�s 

frequency and adiabaticity while maintaining an experimentally appropriate trap depth. Particularly 

exciting is the ability to use the trap height in this way due to the strong dependence of trap frequency 

and adiabaticity upon it. For example, simply by varying nanowire geometry and trap height within 

the limited ranges considered in this paper, both trap frequency and adiabaticity can be tuned by more 

than an order of magnitude, while maintaining a trap depth in excess of 100 ȝK. 

In combination the effects we describe in this paper are likely to be extremely useful in the design and 

optimization of DW atom traps that can be experimentally realized. 

The authors thank the Engineering and Physical Sciences Research Council for financial support 
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 Figure 1: (a) Schematic diagrams of head-to-head (H2H) and tail-to-tail (T2T) domain walls. (b) 

Micromagnetically simulated domain wall structures for nanowires A, B and C. [COLOR ONLINE] 

 

Figure 2: (a) Schematic representation of the experimental geometry required to create a DW atom 

trap. (b) Plots showing calculated magnetic field as a function of height above a DW in a Ni80Fe20 

nanowire. The plots illustrate how the externally applied fields (BDC and BTOP) are combined with BDW 

to create an atom trap with a non-zero field minima. Data is shown for Nanowire B (w = 400 nm, t = 

20 nm) with the trap formed 500 nm above its centre. TOPB = 6 Oe. [COLOR ONLINE]. 



 

Figure 3: Calculated values of  (a) trap depth, (b) trap frequency and (c) adiabaticity as a function of 

TOPB for Nanowire B (w=400 nm, t =20nm). Data is shown for ztrap = 500 nm (squares), 1000 nm 

(circles) and 1500 nm (triangles). In (a) full lines represent Tcircle while dashed lines represent T∞. (d) 

Value of  DCB required to create a trap as a function of ztrap. [COLOR ONLINE]. 

 

 

Figure 4: Evolution of the �circle of death� as TOPB is varied. Data is shown for Nanowire B with 

ztrap = 1500 nm. [COLOR ONLINE]. 



 

 

Figure 5: (a) Variation of B with x position for Nanowire B with ztrap = 1500 nm. Data is shown for 

TOPB = 2 G (squares), 6 G (circles) and 10 G (triangles). (b) Variation of B with x position for 

Nanowire B with TOPB = 6 G. Data is shown for ztrap = 500 nm (squares), 1000 nm (circles) and 1500 

nm (triangles). [COLOR ONLINE].   



 

 

Figure 6: Variation of trap depth, frequency and adiabaticity with nanowire geometry. Data is shown 

for Nanowires A (circles), B (squares) and C (triangles), as well as for the point-monopole model (no 

symbols). (a), (b) & (c) ztrap = 500 nm. (d), (e) and (f) ztrap = 1000 nm. (g), (h) and (i) ztrap = 1500 nm. 

In (a), (d) and (g) full lines represent Tcircle while dashed lines represent T∞. [COLOR ONLINE] 

 

 

Figure 7: Variation of DWB with height above centre of DW. Data is shown for Nanowires A 

(circles), B (squares) and C (triangles), as well as for the point-monopole model (no symbols). 

[COLOR ONLINE] 



 

Figure 8: Comparison between the parameters of traps formed by a vortex DW (squares) and a 

transverse DW (circles) in Nanowire C. (a), (b) & (c) ztrap = 500 nm. (d), (e) and (f) ztrap = 1000 nm. 

(g), (h) and (i) ztrap = 1500 nm. In (a), (d) and (g) full lines represent Tcircle while dashed lines represent 

T∞. [COLOR ONLINE] 

 


