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Abstract—In this paper, we propose a novel paper finger-
printing technique based on analyzing the translucent patterns
revealed when a light source shines through the paper. These
patterns represent the inherent texture of paper, formed by the
random interleaving of wooden particles during the manufac-
turing process. We show these patterns can be easily captured
by a commodity camera and condensed into to a compact 2048-
bit fingerprint code. Prominent works in this area (Nature 2005,
IEEE S&P 2009, CCS 2011) have all focused on fingerprinting
paper based on the paper “surface”. We are motivated by the
observation that capturing the surface alone misses important
distinctive features such as the non-even thickness, the random
distribution of impurities, and different materials in the paper
with varying opacities. Through experiments, we demonstrate
that the embedded paper texture provides a more reliable
source for fingerprinting than features on the surface. Based
on the collected datasets, we achieve 0% false rejection and
0% false acceptance rates. We further report that our extracted
fingerprints contain 807 degrees-of-freedom (DoF), which is much
higher than the 249 DoF with iris codes (that have the same size of
2048 bits). The high amount of DoF for texture-based fingerprints
makes our method extremely scalable for recognition among very
large databases; it also allows secure usage of the extracted
fingerprint in privacy-preserving authentication schemes based
on error correction techniques.

I. INTRODUCTION

Secure paper documents. Designing secure documents that

provide high levels of security against physical forgery is a

long-standing problem. Even in today’s digital age, this prob-

lem remains important as physical paper is still prevalently

used in our daily lives as a means to prove data authenticity, for

example, in receipts, contracts, certificates, and passports. A

recent trend in this area (e.g., in e-passports) is to embed elec-

tronics such as RFID chips within the physical document in

question [1]. However, the security of such solutions depends

on the tamper-resistance of the chip which must securely store

a long-term secret [2]. This tamper-resistance requirement can

significantly increase the cost of production. In view of the

importance of ensuring the authenticity of paper documents,

researchers have been exploring applying digital technologies

to prevent counterfeiting. One promising method is based on

measuring the unique physical properties of paper that are

impossible to clone.

Paper fingerprinting. Manufacturing a paper sheet is a

complex process and each paper sheet is a unique product

from that process. Typically, wooden particles are used as the

base, and multiple substances are subsequently applied to stick

these particles together to stabilize their placement and shape

a thin, usually white, steady surface which we call paper.

In an article published in Nature in 2005, Buchanan et al.

observed that the surface of a paper sheet is imperfect – it

contains random non-evenness as a natural outcome of the

paper manufacturing process [3]. They propose to utilize the

surface imperfections to uniquely identify the paper. Their

method is to use a focused laser beam to scan a pre-designated

region on the paper sheet from four different angles, and

continuously record the intensity of the reflected laser. The

recordings then constitute a unique digital representation of

the paper, called “paper fingerprint”. Therefore, Buchanan et

al.’s method [3] is the basis of a number of follow-up works,

notably [4], [5].

Clarkson et al. (IEEE S&P, 2009) subsequently showed

that a commodity scanner could be used to effectively extract

paper fingerprints based on the same surface imperfections [6].

Their method is to scan the paper surface from four different

angles and then construct a 3-D model. Then the 3-D model

is condensed into a concise feature vector, which forms the

paper fingerprint.

Later, Sharma et al. (CCS, 2011) proposed another approach

named PaperSpeckle, which uses a microscope with a built-in

LED as the light source to extract the paper speckle patterns at

the microscopic level (1–2 microns) [7]. The underlying idea

in PaperSpeckle is based on the concept of speckles: i.e., when

light falls on a paper sheet, the scattered light forms randomly

mixed bright and dark regions, which can then be captured by

a microscope. The captured image can be further processed to

produce a compact binary fingerprint.

Our idea. So far, prominent works in this area have

primarily focused on the imperfections of the paper surface.

In contrast, our work is inspired by the observation that the

wooden particles constituting the building blocks of a paper

sheet scatter over the paper quite irregularly. We hypothesize

that this irregular placement of wooden particles provides a

unique pattern, which can be extracted and used as a paper

fingerprint. We call the unique pattern caused by the random

interleaving of wooden particles the texture of paper.

Unlike previous works that measure the paper surface char-
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(a) Paper Surface (b) Paper Texture

Fig. 1: The surface and texture of the same area of a paper

sheet as captured by a camera based on a) reflective and b)

transmissive light.

acteristics, we propose to fingerprint a paper sheet based on

measuring the paper texture patterns. We capture the texture

by putting a light source on one side of the paper and using a

commodity camera to take a photograph on the other side. This

is intuitively based on the common observation that putting a

paper sheet under light will immediately reveal rich irregular

textural patterns visible even to the naked eye. Figure 1 shows

the difference between photos taken of the paper surface

(based on reflective light) and of the paper texture (based on

transmissive light).

Contributions. The main contributions of this paper are as

follows:

• We revisit paper fingerprinting and propose to use the

textural patterns revealed by passing light through a paper

sheet as a reliable source for extracting a fingerprint, as

opposed to previous measures which are based on paper

surface imperfections.

• We design an efficient paper fingerprinting algorithm

based on error correction and image processing tech-

niques, and carry out experiments to show that our

method can be used to efficiently extract a reliable and

unique fingerprint using a photo taken by an off-the-shelf

camera. Our proposed method is feasible and inexpensive

to deploy in practice.

• We conduct further experiments to demonstrate that our

method is robust against: (a) non-ideal photo capturing

settings such as when the paper is rotated and the light

source is changed, and (b) non-ideal paper handling situ-

ations such as crumpling, soaking, heating and scribbling

on the surface.

II. PAPER TEXTURE

When light falls on an object, it is partly absorbed, partly

reflected, and partly transmitted, and paper is no exception.

Absorption occurs based on the resonance principle: the en-

ergy of the light waves of a specific frequency is absorbed

and transformed into kinetic energy by electrons of the same

frequency. The part that is not absorbed, is either reflected or

transmitted depending on how opaque (or conversely transpar-

ent) the paper is.

Different types of paper behave differently in terms of how

much light they absorb, reflect or transmit. This behaviour

depends, among other factors, on pulp material, density,

thickness and coating substances. Opacity, as defined by the

ISO 2471 standard [8], can be seen as an indicator of how

much light is impeded from transmitting through the paper,

with the opacity of 100% defined for fully opaque papers.

Typical office printing paper, with grammage between 75 to

105 g/m2, has opacity between 86% to 94%. To put this in

perspective, opacity for newsprint paper (typical grammage:

40–49 g/m2) is in the range 90–94% and for tracing paper

(typical grammage: 60–110 g/m2) is in the range 24–40% [9].

These values suggest that a considerable proportion of light

transmits through such paper, which forms the basis of our

proposal to fingerprint paper based on its textural patterns.

Intuitively, the textural patterns created and stabilized

throughout the paper in the process of manufacturing can

provide a promising source for paper fingerprinting. These

patterns are naturally occurring and appear random. Moreover,

they are embedded within the bonded structure of the paper

and hence are relatively well-protected against manual han-

dling of paper. They are generated as a result of the wooden

particles randomly interleaved during the manufacturing pro-

cess. Finally, once in the finished product, the randomly inter-

leaved wooden particles can not be altered without damaging

the paper, hence making any tampering act evident.

To capture the embedded textural patterns of paper and

subsequently extract a fingerprint, we limit ourselves to a

single photo taken by a commodity camera. This makes our

solution more practical and quicker than the previous proposal

[6] that has to take multiple scans (on paper surface) from four

different angles in order to compute a fingerprint. We note

that a single photo is feasible in our case because the paper

texture contains richer features than the paper surface, such

as the thickness of the overlaying wooden particles, randomly

distributed impurities, and different embedded materials with

varying opacities. In the rest of the paper, we conduct experi-

ments to show that we can reliably extract a paper fingerprint

from the textural patterns.

Applications. A vast number of official and legal docu-

ments, certificates, official receipts and invoices are printed on

regular office paper (sometimes with watermarks, holograms

or other security measures), thermal paper, or other types of

paper. A property that the majority of these types of paper have

in common is that they are not completely opaque. This means

that a considerable amount of light passes through them.

Furthermore, embedded irregular textural patterns as a natural

result of the manufacturing process seem to be a universal

property of all these different types of paper. Consequently,

there is considerable potential for exploiting paper fingerprints

extracted from embedded textural patterns in order to validate

the authenticity of such official and legal documents.

III. TEXTURE ANALYSIS

In this section we discuss a high level description of our

proposed method for capturing paper textural patterns and

extracting a reliable and unique paper fingerprint from those

patterns. To be able to capture paper textural patterns, we take



Fig. 2: Step-by-step rotation recognition process in the preparation phase. The last step produces a mask that distinguishes

the pixels containing reliable information suitable for feature extraction (black region) from the pixels containing unreliable

information (white region).

a digital photograph of the paper sheet through which light is

projected. Then, we need to perform a series of preparation

operations such as aligning and resizing of the original image.

Afterwards, in the texture analysis phase, we utilize 2-D Gabor

filter [10] to extract textural information from the captured

image. Subsequently, we propose a simple paper fingerprint

extraction method that generates a binary string, the paper

fingerprint. Once paper fingerprints are in the binary string

format, they can be compared using well-known methods, such

as computing the fractional Hamming distance between any

two paper fingerprints. In the following, we give more details

about the preparation phase, Gabor transform, the fingerprint

generation method, and the fingerprint comparison method

based on fractional Hamming distance. Further implementa-

tion details and settings of our experiments will be discussed

in Section IV.

A. Preparation Phase

The preparation phase consists of operations of identifying

the designated area of the photo which is to be used for

fingerprint extraction and aligning the image in terms of

movement and rotation. To indicate the fingerprinting area, we

print a small rectangular box on the paper sheet. In addition,

we print a filled square on the bottom left of the box, to allow

automatic alignment by our implementation.

As shown in Figure 2, aligning the rotation of the image

involves several steps. First, we start with a photo of the

fingerprinting area. The photo is converted into grey scale. The

printed region (the rectangular box and the filled square) can

be easily identified by applying a grey-scale threshold. This

threshold is computed by the Otsu method [11], which chooses

the threshold in a such way to minimize the interclass variance

of black and white pixels. We have applied the same approach

for both reflection and transmission analyses. We observe

that the borders in both reflection and transmission samples

were recognized correctly using this technique. The result is

a binary image: “0” for black and “1” for white. This simple

thresholding may also produce some “noise” scattered around

the image, but they can be easily removed based on area. To

ensure the borders of the printed rectangle are connected, we

draw a convex hull of the outer pixels to form a connected

shape. This process also identifies artefacts, e.g., caused by

pen scribbling as we will test in the robustness experiments.

The pixel positions of identified artefacts are defined in a mask

function, which we explain below.

Once the printed rectangle is identified, we fill up the region

within the rectangular border with the binary value ‘1’ (white).

We identify the centre of mass of the rectangular object based

on computing the first-order moment [12] and use that as the

new origin of the Cartesian coordinate system. This corrects

any misalignment due to paper movement.

Then, we need to correct any misalignment caused by rota-

tion. This is based on computing second-order moments [12]

in the new Cartesian coordinate system. Let B(x, y) denote

the binary 2D object in Cartesian coordinates representing the

recognized rectangular box area. There are three second-order

moments as follows:

u20 =

∫∫

x2 B(x, y) dx dy

u11 =

∫∫

x y B(x, y) dx dy

u02 =

∫∫

y2 B(x, y) dx dy

The rotation of the binary 2D object B(x, y) can now be

calculated as follows:

θ =
1

2
tan−1

(

2u11

(u20 − u02) +
√

(u02 − u20)2 + 4u2
11

)

(1)

The above formula – based on a method originally proposed by

Teague [12] – calculates the angle between the x axis and the

major axis of an ellipse that has equal second moments to the

recognized rectangular box. It gives us the counter-clockwise

rotation of the object with respect to the horizon. After θ is

calculated, the image can be rotated accordingly.

It is worth noting that in the captured image, the borders

of the rectangles are slightly curved rather than being straight

due to lens artefact. This slight curvature does not affect our

alignment algorithm. We use the raw bitmap image acquired

from the camera instead of the processed jpeg image. This raw

image is stored separately in the camera in the “.rw2” format

and contains the raw information captured by the camera

sensor without any processing.

After rotation is corrected, the image is delimited to the

lowest and highest x and y values of the coordinates of the

pixels inside the recognized rectangular box. This image is

denoted by I(x, y). Meanwhile, the mask for the image is

calculated as M(x, y). This mask is a binary vector with the

same dimensions as I(x, y) with the value ‘0’ indicating the

corresponding pixel in I(x, y) to be masked out from the



Hamming distance computation. In general, two categories of

pixels are chosen to be masked out in our procedure. The

first is the pixels with the intensity greater than the threshold

computed by the Otsu method [11] and not considered as

“scattered noise” in the border recognition phase. These in-

clude the printed rectangle, the filled square inside the box and

any artefacts such as random pen scribbling. The second is the

pixels outside the recognized box including all the edges in the

picture. See the last diagram in Fig. 2 for an illustration. These

pixels are considered to contain unreliable information. They

are identified as ‘0’ in a binary mask vector (similar to the

identification of eyelids and eyelashes in iris recognition [13])

and will be excluded in the subsequent Hamming distance

comparison process.

B. Gabor Filter

Gabor filters are mainly used for edge detection in im-

age processing. Besides, they have been found to perform

efficiently in texture discrimination. Gabor filters are able to

extract both coherent and incoherent characteristics of textural

patterns [14]. Coherent properties are the patterns which

remain unchanged between snapshots of the same sample

while incoherent ones refer to the patterns which change

between snapshots of different samples. The two dimensional

Gabor wavelets are popular in biometric recognition problems

such as iris recognition [13], fingerprint recognition [15] and

face recognition [16]. A Gabor filter’s impulse response is

basically that of a Gaussian filter modulated by a sinusoidal

wave. Consequently, Gabor filters capture features in both the

frequency and spatial domains. Generally speaking, a Gabor

filter would consider the frequency of a pattern (“what”)

as well as the two-dimensional (2D) position of the pattern

(“where”) [14]. Let exp be the natural exponential function.

The 2D Gabor wavelet is calculated as follows using Cartesian

coordinates:

G(x, y) =
f2

πηγ
· exp

(

η2x′2 + γ2y′2

2σ2

)

· exp (2πifx′) (2)

for x′ = x cos(θ) + y sin(θ) and y′ = −x sin(θ) + y cos(θ)

where f is the frequency of the sinusoidal wave, η and γ are

constant factors that together determine the spatial ellipticity

of the Gabor wavelet, θ represents the orientation of the

ellipticity, and σ is the standard deviation of the Gaussian

envelope.

Depending on the frequency of the sinusoidal wave and

the orientation of their ellipticity, Gabor filters are capable of

discriminating different textural characteristics. Usually, Gabor

filters with a range of different frequencies, known as scales,

and a range of different orientations are applied to find out

the best combination of scale and orientation for a specific

texture analysis problem. For a fixed maximum frequency

fmax and a maximum of U scales, each scale index u defines

the frequency f used in Equation 2 as follows:

∀u ∈ {1, 2, . . . , U} : f =
fmax√
2
u−1

(3)

For a maximum of V orientations, we consider V angles

equally distributed from 0 to π. Each orientation index v
defines the orientation θ used in Equation 2 as follows:

∀v ∈ {1, 2, . . . , V } : θ =
v − 1

V
π (4)

We apply a Gabor filter to grey-scale images. Let I(x, y)
represent the grey-scale image using Cartesian coordinates.

The result of the application of Gabor filter G(x, y) is simply

the 2D convolution of I and G as follows:

C(x, y) = I(x, y) ∗G(x, y) =

∫∫

I(x, y) G(x− η, y − ξ) dη dξ

The result C(x, y) is a complex number for each x and y.

C(x, y) can be alternatively viewed as a matrix with the

discrete values of x and y mapped to the columns and rows.

Throughout the paper, we use functions defined over Cartesian

coordinates and matrices interchangeably.

C. Fingerprint Generation

Our fingerprint generation method takes the output of a

Gabor filter and produces a binary string. Let the element

located in row j and column k of the matrix C(x, y) be

mjk = a + bi. We define a 2-bit Gray code based on which

quarter of the complex plane the element mjk = a+bi falls in

(see Figure 3). For example, when a and b are both positive,

the encoded value will be 11. Thus, every element in the matrix

is replaced by two bits. The result is a binary string which we

call the paper fingerprint.

D. Fractional Hamming Distance

After paper fingerprints are generated, fractional Hamming

distance between any two fingerprints can be used to compare

them. Hamming distance is simply the number of positions

in which the bits disagree between two fingerprints. This is a

classical bit error rate (BER) metric in communication. Frac-

tional Hamming distance is the normalized version, resulting a

value between 0 and 1. Usually masking is used to discard the

effect of irrelevant bits in a fingerprint. For each fingerprint, a

mask is defined as a binary string of the same length in which

bits corresponding irrelevant positions are set to 0 and bits

corresponding effective positions are set to 1. The masks are

calculated in the preparation phase as discussed above. Given

two fingerprints f1 and f2, and their corresponding masks

m1 and m2, the fractional Hamming distance is calculated

as follows:

HD(f1, f2,m1,m2) =
‖(f1 ⊕ f2) ∩m1 ∩m2‖

‖m1 ∩m2‖
(5)

where ⊕ denotes the bitwise exclusive-OR (XOR) operation

and ∩ denotes the bitwise AND operation. A relatively small

fractional Hamming distance indicates that the two fingerprints

are likely to belong to the same paper sheet, while a relatively

large fractional Hamming distance (around 0.5) indicates that

the two fingerprints are likely to belong to different paper

sheets. In the rest of the paper, we simply use Hamming

distance (or HD for short) to refer to fractional Hamming

distance.



Im

Re

code = 11code = 01

code = 00 code = 10

Fig. 3: Gray code for a complex value mij = a + bi in the

complex plain.

IV. EVALUATION

In order to evaluate our suggested method for paper finger-

printing, we collected several datasets in different situations.

In this section, we first explain the parameter settings and

experiment configurations under which we carried out our

evaluations. Then, we provide the details of the evaluation

framework that we use to assess the results of our experiments.

In particular, we consider metrics used for evaluating the

effectiveness of biometric systems as well as those used for

evaluating the effectiveness of physical unclonable functions

(PUFs), since paper fingerprints can be seen as both. Sub-

sequently, we give results that justify the choices we had to

make in terms of how we collect our datasets and settings we

use for Gabor filter. Finally, we give the details of our main

dataset collection and provide the results of our experiments,

including evaluation of the proposed method against biometric

and PUF metrics.

A. Parameter Settings & Experiment Configurations

In order to obtain consistent fingerprints, we require that a

relatively small but fixed part of a sheet of paper is used as a

source of fingerprint extraction. We chose to print a rectangular

box (37mm×57mm) on the sheet to indicate this area. In

addition, we printed a small filled square (5mm×5mm) at the

bottom left of the box (see Figure 10). Using this small square,

in our preparation phase our method can check that the rotation

has been carried out correctly (distinguishing cases when the

paper is placed upside-down or flipped).

The original photos in our experiments are all 3456×4608

pixels. After the preparation phase, we get a corrected and

delimited image of variable size, ranging between around

2300×3300 pixels to 2350×3350 pixels. This image is then

resized to a 640×640 pixel image I which is then given as

input to Gabor filter. The rectangular size conversion is for

the convenience of applying Gabor wavelets in the next stage

to produce 2048 bits in the output (the same size as an iris

code). We use a Gabor impulse response of size 100×100

and the output of Gabor filter in our experiments, C, is a

complex matrix of size 640×640. This matrix is downsampled

to one of size 32×32, before being given as input to the

fingerprint generation algorithm. This downsampling process

is done by simply picking the elements in every 20th row and

20th column. Fingerprint generation replaces each complex

value with two bits. Hence, the final paper fingerprint is a

string of the size 2×32×32=2048 bits.

We chose to downsample the output of the Gabor filter for

two reasons. First, it makes the data storage more compact.

With 2048 bits (256 bytes), we are able to store the fingerprint

in a QR code as part of an authentication protocol (we will

explain the protocol in more detail in Section VI). Second,

adjacent pixels in the image are usually highly correlated.

Hence, downsampling serves to break the correlation between

bits. Through experiments, we found this simple downsam-

pling technique was effective to produce reliable and unique

fingerprints.

All images have been captured by a Panasonic DMC-FZ72

camera with a resolution of 16.1 Mega-pixels. We chose this

camera for two main reasons: the ability to capture a photo in

macro mode from a short distance (minimum 1 cm focus) and

the ability to mount a macro flash ring over the lens. However,

these characteristics are not unique to this specific camera and

many other cameras available in the market provide the same

characteristics. We mounted an off-the-shelf common macro

flash ring on the camera lens, to maintain a constant distance

between the lens and the paper surface where the texture is

photographed. The camera and its accessories are shown in

Figure 4(a). In our experiments, we do not use the flash of the

macro flash ring; the light source is an ordinary office overhead

projector as shown in Figure 4(b). The light that the overhead

projector provides is intense and adjustable. Furthermore, it

has a flat surface with constant distance from the light source.

This allows us to put the paper on the surface and then the

macro ring resting on top of it before the camera takes a photo

of the paper texture. The use of the macro ring also serves to

shield the effects of other ambient light sources (e.g., daylight,

office lighting). In Section V-C, we will explain the effect of

the light source by using an alternative source: a commodity

light box (tracing pad) as shown in Figure 4(c).

Our evaluations were performed on a PC with an Intel

Core i7-2600S CPU @ 2.80 GHz with 8 GB of memory. The

operating system was 64-bit Windows 7 Enterprise and we

used Matlab R2015a (64-bit) to develop our algorithms.

B. Evaluation Framework

Our work is closely related to the fields of biometrics

and Physical Unclonable Functions (PUFs). Biometrics is the

science of authenticating humans by measuring their unique

characteristics and have a long history of research. A paper

fingerprint works similar to biometrics, except that it measures

unique characteristics of a physical object instead of a human

being. Hence, common metrics that measure the error rate

performance of a biometric system apply to our work too.

On the other hand, paper fingerprints are related to Physical

Unclonable Functions, which is a relatively new field starting

from Pappu et al.’s seminal paper published in Science in

2002 [17]. Typically PUFs require a challenge and response

dynamic, but according to the definition by Maes in [18], paper

can be regarded as a “non-intrinsic” PUF, i.e., a PUF that

does not contain the circuitry to produce the response on its



(a) Camera and macro flash
ring.

(b) Overhead projector as light
source.

(c) Light box (tracing pad) as
light source.

Fig. 4: The equipment used in our experiments.

own. Hence, the same evaluation methods in PUF are also

applicable to paper fingerprints.

Because of the close relation to these two fields and their

respective evaluation frameworks, we evaluate our method

based on metrics used in both fields for a comprehensive

analysis. We note that previous works either use biometric

or PUF metrics, however using both allows us to perform

a meaningful comparison with related biometrics and PUF

systems. It would be interesting to study the relationships

between these metrics and define a unified framework that

can be applied to evaluate both biometric and PUF systems.

We leave this to future work.

In the following we give a brief description of these metrics.

We discuss Hamming distance distributions, decidability, and

recognition rates including false rejection and false acceptance

rates in the former category of metrics. In the latter cate-

gory, we consider uniformity and randomness in the space

dimension, reliability and steadiness in the time dimension,

and uniqueness and bit aliasing in the device dimension.

1) Biometric Metrics: A biometric authentication problem

is a specific case of a statistical decision problem in which one

decides if two given biometric measurements belong to the

same source or not. In order to provide necessary information

about the effectiveness of such a biometric, the parameters

of the so-called biometric decision landscape need to be

specified [19]. If Hamming distance is used for comparison,

as it is in our case, the distributions of Hamming distance for

two groups of comparisons need to be determined: for com-

parisons between paper fingerprints originating from the same

paper sheet, and for comparisons between paper fingerprints

originating from different paper sheets. These are called same-

group and different-group distributions, respectively.

For an effective biometric, the same-group and different-

group distributions should be well-separated. This makes the

decision problem solvable. Let µ1 and µ2 denote the means,

and σ1 and σ2 the standard deviations of the two distributions.

Daugman defines the decidability metric d′ as follows [20]:

d′ =
|µ1 − µ2|
√

σ1
2+σ2

2

2

(6)

where |·| denotes absolute value. Decidability as defined above

is indicative of how well-separated the two distributions are:

the further and the more concentrated the distributions are,

the higher will the decidability be. To give an idea about

typical values, the decidability of iris recognition, a well-

established and effective biometric method, is d′ ≈ 14 in an

ideal measurement environment and d′ ≈ 7 in a non-ideal

environment [20].

After determining the same-group and different-group dis-

tributions, one decides a threshold value situated between the

two distributions. Subsequently, the decision on whether two

reported biometrics belong to the same origin or not is then

made by computing the Hamming distance between the two

biometric samples and comparing it to the threshold. For an

effective biometric, measurements from the same origin have

relatively low Hamming distance and hence fall below the

threshold, whereas measurements from different origins have

relatively high Hamming distance and fall above the threshold.

If the distributions are completely separated, the decision is

correct all the time. However in practice usually there is

some overlap between the two distributions. The proportion

of biometrics from different origins falsely accepted as being

from the same origin is known as the false acceptance rate

(FAR). The proportion of biometrics from the same origin

falsely rejected as being from different origins is known as

the false rejection rate (FRR). For an effective biometric FAR

and FRR should be low – ideally zero.

A widely used measure of effectiveness of a biometric is de-

grees of freedom (DoF). DoF is a measure of the combinatorial

complexity of the biometric test, or in other words the number

of bits in a biometric measurement that are independent [20].

Consider a biometric that provides degrees of freedom N ,

that is, N independent and unpredictable bits. A comparison

between two such biometrics from different origins can be

modelled as the probability that a threshold number of N
independently chosen bits agree. Hence, the different-group

distribution for such a biometric would follow the binomial

distribution with mean µ = p and variance σ2 = Np(1 − p),
where p is the probability of single bit agreement. Hence,

the degrees of freedom for a biometric with a different-group

distribution that follows a binomial distribution with mean µ
and variance σ2 can be calculated as follows:

N =
µ(1− µ)

σ2
(7)



2) PUF Metrics. Paper fingerprinting can be seen as an

optical physical unclonable function (PUF) [17], as pointed out

in the literature [18], [21]. However, previous works on paper

fingerprinting did not evaluate their results in this context.

We believe that evaluating our results against established PUF

metrics provides further information about the effectiveness

of our method and helps put our results in perspective within

PUF literature.

We follow the unified framework put forward by Maiti et

al. [22]. This framework provides metrics to evaluate a PUF

in three dimensions: space, time, and device. In our case,

PUFs are the paper fingerprints, and devices are the different

paper sheets. Each of these dimensions quantifies a specific

quality of a fingerprint: the space dimension analyses the

overall variations of fingerprints, the time dimension indicates

same-group consistency, and the device dimension discusses

the different-group diversity of fingerprints.

Before describing these dimensions, let us define the sym-

bols we use in this framework. Here we consider effective

fingerprints, denoted by r. The effective fingerprint is the result

of applying the appropriate mask over the original fingerprint

f . We use the following parameters: L is the number of

bits in each fingerprint (2048 in our setting). T refers to the

number of samples taken from each paper sheet in a dataset

(e.g., in the our benchmark dataset T = 10). N is the total

number of paper sheets involved in a dataset (e.g., in the our

benchmark dataset N = 100). We use the following indices

accordingly: n denotes the paper sheet number within different

sheets, t represents the sample number within the samples

from the same paper sheet, and l shows l-th bit in the effective

fingerprint.

1) Space Dimension: This dimension is concerned with

bit variations with respect to the locations of the bits in

fingerprints. Metrics in this dimension evaluate the overall

inter-sheet behaviour of fingerprints.

• Uniformity: This metric shows how uniform 0s and 1s

are in a fingerprint. The ideal value for this metric is 0.5.

Uniformity of the fingerprint from the t-th sample and

n-th sheet is calculated as follows:

Uniformity(n, t) =
1

L

L
∑

l=1

rn,t,l (8)

• Randomness: This metric indicates the average random-

ness of the bits in the fingerprints generated from several

acquisitions from a sheet. The ideal value for this metric

is 1. Randomness of the fingerprint bits generated from

the n-th sheet is calculated as follows:

Randomness(n) = −log2 max(pn, 1− pn), (9)

where pn =
1

TL

T
∑

t=1

L
∑

l=1

rn,t,l

2) Time Dimension: This dimension is concerned with

fingerprint variations within multiple samples. Metrics in this

dimension evaluate the overall intra-sheet persistence of fin-

gerprints within multiple samples.

• Reliability: This metric shows how consistently finger-

prints are reproduced by the same sheet. The ideal

value for this metric is 1. Reliability of the fingerprints

generated from the n-th sheet is calculated as follows:

Reliability(n) = 1− 2

T (T − 1)L

T−1
∑

t1=1

T
∑

t2=t1+1

L
∑

l=1

(rn,t1,l⊕rn,t2,l)

(10)

• Steadiness: This metric indicates the bias of individual

fingerprint bits on average for a sheet. The ideal value for

this metric is 1. Steadiness of the fingerprints generated

from the n-th sheet is calculated as follows:

Steadiness(n) = 1 +
1

L

L
∑

l=1

log2 max(pn,l, 1− pn,l)

(11)

where pn,l =
1

T

T
∑

t=1

rn,t,l

3) Device Dimension: This dimension is concerned with

fingerprint variations between multiple sheets. Metrics in this

dimension evaluate the overall inter-sheet distinguishability of

fingerprints.

• Uniqueness: This metric represents how distinguishable a

sheet is within a group of sheets. The ideal value for this

metric is 0.5. Uniqueness of the fingerprints generated

from the n-th sheet is calculated as follows:

Uniqueness(n) =
1

T 2L(N − 1)
·

T
∑

t=1

N
∑

n′
=1

n′ 6=n

T
∑

t′=1

L
∑

l=1

(rn,t,l⊕rn′,t′,l)

(12)

• Bit-Aliasing: This metric indicates how likely different

sheets are to produce identical fingerprint bits. The ideal

value for this metric is 0.5. Bit-aliasing of the l-th bit of

the fingerprints generated from a dataset is calculated as

follows:

Bit-Aliasing(l) =
1

NT

N
∑

n=1

T
∑

t=1

rn,t,l (13)

C. Reflection vs. Transmission

As discussed before, the main motivation of our work is to

capture paper textural patterns and efficiently extract unique

paper fingerprints from such patterns using an off-the-shelf

camera. By contract, previous works [3], [6], [7] extract paper

fingerprints from the paper surface. Our hypothesis is that

textural patterns revealed by the transmissive light contain

richer features than the paper surface shown by the reflective

light. To verify this hypothesis, we set up an experiment to

investigate the difference between the two patterns.



(a) Transmission

(b) Reflection

Fig. 5: Capturing a photo, in case of (a) transmission, and (b)

reflection, using the same digital camera and light source.

We set up the paper photographing in two settings: one with

the light source on the same side of the paper and the other

with the light source on the opposite side of the paper (see

Figure 5). In the former, we put an opaque object behind the

paper, so only the paper surface is photographed based on the

reflective light. We selected 10 common A4 (210×297 mm)

paper sheets with grammage 80 g/m2. We took 10 photos of

each sheet in each of the two settings. We used a common

overhead projector as our light source. We tried to reduce

the effect of any ambient light by setting our data collection

environment in a dark room. This data collection resulted in

two datasets: a 100-sample dataset (10 sheets with 10 samples

for each sheet) for surface measurements, and a 100-sample

dataset (10 sheets with 10 sample for each sheet) for textural

measurements.

After the data collection, we performed our fingerprint

extraction algorithm (as discussed in Section III) for both

datasets. Figure 6 shows the Hamming distance distributions

for the two cases. Each diagram depicts four distributions: for

each case i.e., surface and texture, there is one curve, concen-

trated around lower values of Hamming distance, showing the

distribution of Hamming distance between pairs of fingerprints

of the same paper sheet, and a second curve, concentrated

around a Hamming distance value of about 0.5, showing the

distribution of Hamming distance between pairs of fingerprints

of different paper sheets.

Ideally, for effective fingerprint recognition, we want the

“same-group” and “different-group” distributions to be as

separate as possible, since then we can easily decide on a

threshold and consider any two fingerprints with a Hamming

distance below that threshold to belong to the same paper

sheet, and consider any two fingerprints with a Hamming

distance above that threshold to belong to different paper

sheets.
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Fig. 6: Hamming distance distributions for surface and texture.

As can be seen in Figure 6, the two distributions, i.e.,

“same-group” and “different-group”, are well-separated in the

case of texture, but less so in the case of surface. In fact,

in the case of texture, the minimum Hamming distance for

different comparisons is 0.46 and the maximum Hamming

distance for similar comparisons is 0.27, which shows that

there is no overlap between the two distributions. However,

in the case of surface, the minimum Hamming distance for

different comparisons is 0.44 and the maximum Hamming

distance for similar comparisons is 0.48, which shows that

there is some overlap between the two distributions, and hence

false negative or false positive decisions are inevitable in this

case. Indeed, decidability for the case of texture is around

20, but for the case of surface it is around 6. Furthermore,

the number of degrees of freedom provided by the texture

is slightly higher than that provided by the surface. These

results support our hypothesis that the textural measurements

through transmissive light contain more distinctive features

than surface measurements based on reflective light, and hence

can be used as a more reliable source for paper fingerprinting.

We should stress that the hypothesis is tested using a specific

image capturing condition in which only one snapshot is taken.

One should not directly compare the results with Clarkson et

al.’s 3D method [6], which is carried out in a different test

condition and involves taking four scans from four different

angles on the paper surface. However, we believe a method

that is based on taking a single snapshot is easier and quicker

than those that require multiple measurements.

D. Determining Gabor Scale & Orientation

As discussed, Gabor filter can be configured with different

scales and orientations. To find out the appropriate combi-

nation of scales and orientation for our method, we set up

an initial experiment. We collected a dataset including two

sub-datasets: the first one includes 20 samples from one paper

sheet; the second one includes one sample from each of 20 pa-

per sheets. These two sub-datasets constitute our same-group

and different-group data, respectively. We applied Gabor filter

for 8 orientations, indexed from 1 to 8, representing angles

0, π
8

, π
4

, 3π
8

, π
2

, 5π
8

, 3π
4

, and 7π
8

. Considering fmax = 0.25,



we also considered multiple scales, indexed by integer values

starting from scale 1. We used fixed values of η = γ =
√
2

and σ = 1.

Ideally, we would want the different-group distribution to

be centred around 0.5 or a mean very close to 0.5. Our

experiments show that for scales greater than 7, the mean

of the different-group distribution falls below 0.45, which

indicates undesirable bias on the binomial distributions (i.e.,

tossing a coin is no longer random in the a Bernoulli trial [13]).

Therefore, in the following we limit the scope of our investi-

gation to scales from 1 to 7.

Our calculations show that as the scale increases, the

decidability of the distributions increases, but at the same

time the number of the degrees of freedom the different-

group distribution provides decreases. This is because the

scale relates to the spatial frequency components of the Gabor

filer – the smaller the scale is, the more detailed the feature

extraction is. When the scale is one, the finest detail of the

paper texture is extracted, which leads to high degrees of

freedom in the generated fingerprint. However, at this scale,

the image processing is extremely sensitive to noise, which

reduces the separation between the same-group and different-

group histograms of Hamming distances. Increasing the scale

results in a zooming-out effect. More correlations between bits

are introduced, which reduces the degrees of freedom. But on

the other hand, the feature extraction is more tolerant of noise.

As a result, the same-paper and different-paper characteristics

become more distinctive, which leads to a higher decidability.

The results for decidability and degrees of freedom for

orientations 1 to 8 and scales 1 to 7 are shown in Figures 7(a)

and 7(b), respectively. Both figures also include a spline

interpolation of average values of different orientation results

within each scale to highlight the dominant trends. Therefore,

there is an evident trade-off in choosing the scale and ori-

entation. Too low a scale would not provide an acceptable

decidability, while too high a scale would not provide a

reasonable degree of freedom. Through experiments, we find

that the combination of scale 5 and orientation 7 provides a

good trade-off between decidability and degrees of freedom.

As we will explain later, this combination provides nearly

perfect recognition rates. In the rest of the paper, we report

all our findings based on this specific configuration of Gabor

filter.

E. The Benchmark Dataset

Our main dataset on which we report our evaluations is a

set of 1000 samples collected by taking 10 photos of each

of 100 different paper sheets to provide a good diversity.

We use typical office paper sheets of size A4 (210mm ×
297mm) with grammage of 80 g/m2. All the sheets were

from the same pack with the same brand. In all of the photos,

camera settings including aperture and exposure time were

kept constant. We tried to keep the paper sheets visually

aligned for the different samples, and conducted separate

experiments to evaluate the robustness of our algorithm against

rotations (which we discuss in Section V). We refer to the main

dataset collected here under relatively stable conditions as the

benchmark dataset.

F. Experiment Results

In the following, we present the results of our experiments

reporting the metrics introduced in Section IV-B. We also

present the timing measurements for our method and provide

a short discussion on its practicality. We provide comparison

with existing work whenever the relevant metrics are reported

in the literature.

Biometric metrics. We calculated the Hamming distance

for all comparisons, consisting of same-group comparisons and

different-group comparisons. There are a total of
(

1000
2

)

=
499, 500 comparisons, of which 100 ·

(

10
2

)

= 4, 500 are same-

group comparisons and 1000×990

2
= 495, 000 are different-

group comparisons. In Figure 8 we show the distributions for

the same-group and different-group Hamming distance values.

Clearly, the two distributions are well-separated, which shows

the effectiveness of our paper fingerprinting method. Indeed,

the maximum same-group Hamming distance is 0.24, whereas

the minimum different-group Hamming distance is 0.42, which

shows that there is no overlap between the two distributions.

Hence, any threshold between the above values would give us

FAR and FRR of zero. As an example, we can choose the

threshold to be 0.4, but this is adjustable. Detailed error rate

performance will be reported in Section VI-B.

Decidability for the dataset is d′ ≈ 21, which compares

favourably to d′ ≈ 14 for iris recognition in the ideal

condition [13]. The number of degrees of freedom is calculated

based on Equation 7 as N = 807, which means the entropy of

the extracted fingerprints is 807 bits out of a total of 2048 bits.

As compared to the 249 degrees of freedom for iris (which

has the same size of 2048 bits), the fingerprint in our case

is more unique and contains less redundancy. Figure 9 shows

the histogram of same-group Hamming distance values on the

left and the distribution of different-group Hamming distance

values on the right. The diagram on the right also includes a

binomial distribution curve with degrees of freedom N = 807,

mean µ = 0.495, and standard deviation σ = 0.018. Evidently,

the different-group distribution closely follows the binomial

distribution.

PUF evaluations results. The PUF metrics results on the

benchmark dataset are shown in Table II under the column

labelled “Benchmark Dataset”. It can be seen that in all

metrics our dataset performed close to ideal values. For

comparison, we also included in Table II the PUF metrics for

two typical PUFs: Arbiter PUF, and Ring Oscillator PUF [22].

This shows that our method provides fingerprints with good

uniformity, randomness, reliability, steadiness, uniqueness, and

bit-aliasing.

Timing Results & Usability. Our paper fingerprinting

method takes 1.30 seconds on average to prepare the photo,

analyse the texture, and generate the fingerprint on a PC. This

is reasonably fast. This is in contrast with the method in [6],

which requires four scans in different directions and then

constructing a 3D surface model. Although the authors of [6]
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Fig. 8: Hamming distance distributions in the benchmark

dataset.

do not report timing measurements for their fingerprinting

method, 3D modeling is generally considered a computation-

ally expensive task [23].

The whole process of paper fingerprinting in our method is

automatized and only requires a user to place the sheet of paper

on the flat surface of the overhead projector and click a button

to take a photo by a fixed camera. We note that this is only

a proof-of-concept prototype to demonstrate the feasibility of

extracting the fingerprint based on the textural patterns. One

may improve the prototype in a practical application by tighter

integration of various equipment components. For example,

at a border control, when the official swipes a page in the

passenger’s passport through a slot, the slot may have the

embedded light source on one side and a camera on the other

side. When the page is in the slot, a unique fingerprint can

be extracted. The fingerprinting area and orientation will be

relatively fixed as it is determined by the dimensions of the

slot. By comparing the extracted fingerprint with a reference

sample (e.g., stored in the back-end system), the computer

program can quickly determine if the passport page is genuine.

In Section VI, we will explain more on how to utilizing the

unique paper fingerprint in authentication protocols.

V. ROBUSTNESS EVALUATIONS

In this section we evaluate our method’s robustness in

non-ideal circumstances. First, we consider the robustness of

our method against misalignment, i.e., in cases where the

rectangular box is not aligned to the photo frame. Then, we

consider the robustness of our method against paper being

roughly handled in the following cases: the paper sheet is

crumpled, some scribbling is done in the rectangular box,

the sheet is soaked in water and dried afterwards, and the

sheet is ironed after soaking and partially burnt. Finally, we

consider the effect of using an alternative light source. In the

following, we give the details of each experiment and provide

the biometric and PUF metrics in each of the cases.

A. Impact of Non-Ideal Data Collection

Photo Rotation. The orientation of the photo is the angle

between the rectangular box and the photo frame. A rotated

photo is shown in Figure 10(b). The maximum rotation we

can have such that the box is still fully captured within the

boundary of the photo frame is around 12◦. We selected 10

paper sheets and collected 5 samples in each angle within

{−12◦,−11◦, . . . , 0◦, . . . , ,+11◦,+12◦}. This gives us 125

samples per sheet, 1250 samples in total.

Figure 11 shows the Hamming distance distributions. As

expected, the same-group and different-group distributions get

slightly closer to each other in comparison with the benchmark

dataset. However, decidability, although reduced, is still a

healthy d′ ≈ 8. This shows that our image processing method

is somewhat sensitive to the image rotation. We believe there is

still room to improve the robustness against rotation, however

with the current method and based on a threshold of 0.4, the

FAR is still 0%, and the FRR is less than 1%. These values

can be found in Table I.

The PUF metrics are presented in Table II. The experiment

dataset still has good uniformity, randomness, and bit-aliasing,

but there is a slight drop in reliability, steadiness, and unique-

ness compared to the benchmark dataset.

The experiment shows that our method is robust against

non-ideal data collection in terms of rotation. In comparison,
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Fig. 9: Histograms of Hamming distances in the benchmark dataset.

TABLE I: False recognition rates of all datasets considering a fractional HD threshold of 0.4

Rate Ideal Benchmark Rotated Crumpled Scribbled Soaked Heated Mixed
Value Dataset Light

FAR 0% 0% 0% 0% 0% 0% 0% 0%
FRR 0% 0% 0.32% 3.2% 0% 0% 0% 0%

TABLE II: PUF metrics for all datasets and two typical PUFs

PUF Ideal Arbiter PUF (APUF) Ring Oscillator PUF Benchmark

Metrics Value [22] [22] Dataset

Average Uniformity 0.5 0.556 0.505 0.466
Average Randomness 1.0 0.846 0.968 0.907
Average Reliability 1.0 0.997 0.991 0.945
Average Steadiness 1.0 0.984 0.985 0.938
Average Uniqueness 0.5 0.072 0.472 0.465
Average Bit Aliasing 0.5 0.195 0.505 0.466

TABLE III: Impact of Robustness Experiments on PUF metrics

PUF Ideal Benchmark Rotated Crumpled Scribbled Soaked Heated Mixed

Metrics Value Dataset Light

Average Uniformity 0.5 0.466 0.466 0.463 0.454 0.460 0.460 0.466

Average Randomness 1.0 0.907 0.906 0.896 0.873 0.877 0.890 0.907

Average Reliability 1.0 0.945 0.877 0.852 0.856 0.750 0.882 0.905

Average Steadiness 1.0 0.938 0.839 0.528 0.870 0.554 0.554 0.874

Average Uniqueness 0.5 0.465 0.465 0.470 0.468 0.463 0.461 0.465

Average Bit Aliasing 0.5 0.466 0.466 0.463 0.454 0.460 0.460 0.466

(a) Benchmark (b) Rotated (c) Crumpled (d) Scribbled

Fig. 10: The captured photo under near-ideal and non-ideal situations.



Clarkson et al. do not report robustness against rotation and

in fact require “precise alignment of each surface point across

all scans” [6].

B. Impact of Non-Ideal Paper Handling

In this section we investigate the robustness of our method

against rough handling of paper sheet including crumpling,

scribbling, soaking, and heating. For each of the experiments

in this section, a set of 10 paper sheets are selected. For

each paper sheet, 5 samples were taken before and 5 samples

after the non-ideal handling of the paper sheet, adding up

to a total of 100 samples per experiment. The same-group

and different-group distributions under the test conditions

of crumpling, scribbling, soaking and heating are shown in

Figure 11. For readability, we opt to show fitted curves for

the distributions. These curves are non-parametric fits with a

threshold bandwidth of 0.02 (i.e., the distributions are merely

smoothed).

Crumpling. In this experiment, we crumpled our paper

sheets to the extent that the borders of the rectangular box

were visibly distorted. We did not try to smooth out the sheet

surface after crumpling. An example of a photo taken from a

crumpled paper sheet can be seen in Figure 10(c).

The resulting Hamming distance distributions are shown in

Figure 11. Decidability is d′ ≈ 4.6. Based on the threshold of

0.4, the FAR is still 0%, and the FRR is 3.2%. These values

can be found in Table I.

The PUF metrics are presented in Table III. The experiment

dataset still has good uniformity, randomness, and bit-aliasing,

but there is a slight drop in reliability and uniqueness and a

bigger drop in steadiness compared to the benchmark dataset.

Scribbling. In this experiment, we drew random patterns

with a black pen over all samples such that each pattern covers

around 5% of the box area. An example of such scribbling can

be seen in Figure 10(d). Our preprocessing phase successfully

identifies the scribbled area in the mask in all samples.

The resulting Hamming distance distributions are shown in

Figure 11. The maximum same-group Hamming distance is

0.25 and the minimum different-group Hamming distance is

0.45. The distributions are well-separated. Decidability is d′ ≈
9.7. Based on the threshold of 0.4, the FAR is still 0%, and

the FRR is also 0%. These values can be found in Table I.

The PUF metrics are presented in Table III. The experiment

dataset still has good uniformity, randomness, and bit-aliasing,

but there is a slight drop in reliability, steadiness, and unique-

ness compared to the benchmark dataset.

Soaking. In this experiment, we submerged the paper sheets

in tap water for around 20 seconds. Then, we let them dry

naturally and collected the after-soaking samples from the

dried sheets.

The resulting Hamming distance distributions are shown in

Figure 11. The maximum same-group Hamming distance is

0.36 and the minimum different-group Hamming distance is

0.44. The distributions are well-separated. Decidability is d′ ≈
6.8. Based on the threshold of 0.4, the FAR is still 0%, and

the FRR is also 0%. These values can be found in Table I.

The PUF metrics are presented in Table III. The experiment

dataset still has good uniformity, randomness, and bit-aliasing,

but there is a slight drop in reliability and uniqueness and a

bigger drop in steadiness compared to the benchmark dataset.

Heating. In this experiment, we ironed all the papers from

the soaking experiment for at least 20 seconds, to the extent

that in some cases there was a clearly visible colour change

(to light brown) and the paper was partly burnt.

The resulting Hamming distance distributions are shown in

Figure 11. The maximum same-group Hamming distance is

0.30 and the minimum different-group Hamming distance is

0.44. The distributions are well-separated. Decidability is d′ ≈
8.6. Based on the threshold of 0.4, the FAR is still 0%, and

the FRR is also 0%. These values can be found in Table I.

The PUF metrics are presented in Table III. The experiment

dataset still has good uniformity, randomness, and bit-aliasing,

but there is a slight drop in reliability and uniqueness and a

bigger drop in steadiness compared to the benchmark dataset.

Summary. Taking all the above results into consideration,

we can see that our method shows the strongest robustness

against scribbling. Both the biometric and PUF measures

support this observation. The Hamming distance distributions

are well-separated and all PUF metrics remain close to ideal

values. Fingerprinting is also fairly robust against rotation,

soaking, and heating. There is no or negligible false rejection

rates and all PUF metrics possibly except for steadiness remain

close to ideal values. Crumpling seems to pose the strongest

challenge to robustness. Although false rejection rate is 3.2%

and steadiness is not ideal, the method is still able to provide

0% false acceptance rate and healthy PUF metrics otherwise.

Focusing on biometric metrics, authentication rates remain

perfect or nearly perfect under all robustness tests. This means

our method provides a promising candidate for paper-based

document authentication in practice which is able to cope with

non-ideal sample collection and rough handling.

Focusing on PUF metrics, space and device dimension met-

rics stay close to ideal values under all tests, which indicates

that the quality of fingerprint bits are still good and the

sheets remain clearly distinguishable from one another. Time

dimension metrics remain close to ideal values for rotation and

scribbling, but steadiness and in some cases reliability drops as

a result of crumpling, soaking, or heating. This is expected as

crumpling, soaking, and heating physically change the paper

sheets.

C. Impact of a Different Light Source

The light source should be bright enough to reveal the

texture patterns in a paper sheet. In the proof-of-concept

experiments, we used an overhead projector, however, the

equipment is relatively bulky and expensive. Questions remain

if there are cheaper ways to obtain the light source and if the

results are robust against using a different light source. To

investigate this, we purchased a commodity light box (tracing

pad) from Amazon for £49.99 (see Figure 4(c)). Then, we used

the same paper sheets as in the benchmark dataset–excluding

10 paper sheets that were used in other robustness tests–to
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(a) Fitted distributions under rotation.
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Fig. 11: The Hamming distance distributions for robustness experiments.

collect a new set of samples using the new light source. We

followed the same data collection procedure as before.

Due to the difference in the light intensity, the camera

setting needs to be adjusted. In particular, we altered the

exposure time to 1/500 seconds and F-stop to f/5. These values

were automatically recommended by the camera, so we simply

accepted them. The exposure time is the duration that the

shutter takes to capture a photo and F-Stop is the radius of the

lens diaphragm; both of them are inspired by the way human

eyes react to a light source. These modifications in the camera

setting were necessary because of the change in the intensity

of the light source. The final dataset included 900 captured

images, 10 samples from each paper sheet.

Figure 12(a) shows the Hamming distance distributions

using the light box. The same-group and different-group

distributions are well-separated from each other. Applying the

biometric metrics, our analysis shows the decidability d′ ≈ 24
and the number of the degrees of freedom DoF ≈ 846, both

slightly higher than those obtained with the overhead projector.

Based on the threshold of 0.4, the FAR and FRR are still 0%.

These values can be found in Table I.

The PUF metrics are presented in Table III. The new

experiment results show that all PUF metrics are comparable

to those obtained earlier in the benchmark dataset.

Figure 12(b) shows the Hamming distance distribution by

combining the light box and overhead projector datasets. The

number of the degrees of freedom is roughly unchanged at

DoF ≈ 836. However, the same-group data become noisier

because of mixing two different light sources. The decidability

drops to 10. Despite of the mix of different light sources, the

same-group and different-group histograms are still clearly

separated. The maximum Hamming distance for the same-

group samples is 0.31 while the minimum Hamming distance

of the different-group is 0.42.

The experiment shows that our method is robust against

different light sources, as long as the camera settings are set

correctly.

VI. AUTHENTICATION PROTOCOLS

In this section, we explain authentication protocols based

on the extracted paper fingerprint, and discuss their practical

performance.

A. Trust assumptions

Our fingerprinting technique may be applied in a range of

applications, e.g., to prevent counterfeiting of paper currency,

passports, certificates, contracts and official receipts. The se-

cure use of the fingerprint is based on two assumptions. Both

assumptions are generally required in biometrics and physical

unclonable functions (PUF) applications.

The first assumption is physical “unclonability”. We assume

it is infeasible to physically clone a paper sheet with the

same paper texture. The paper texture is formed from ran-

domly interleaved wooden particles, as a naturally occurring

outcome of the paper manufacturing process. This process

can not be precisely controlled. Repeating exactly the same

process to produce the same paper texture is considered to be

prohibitively expensive, if not impossible [24].

The second assumption is about a trustworthy measuring

process. Take the human fingerprint authentication as an

example. If an attacker is able to deceive the scanner by

presenting a gummy finger, the security guarantee based on the

“unclonability” assumption will be lost. In any biometric or

PUF application, it is important to ensure that the measurement

is performed on a real object and a fresh measurement is

acquired. In practice, this is often realized through the human

supervision in the process or by using specialized equipment

(e.g., iris scanners with embedded liveness test). In the case

of paper documents, visual inspection can be applied to check

that they are made of paper and the paper fiber texture has

not been tampered with. An attacker may try to interfere with

the texture measurement by printing patterns on the paper

surface. Using today’s commodity printers, it seems unlikely

that an attacker is able to print patterns that are precise at the

pixel level under the microscopic view of a high-resolution

camera (since the print head cannot be precisely controlled

and each printed dot tends to be in a scattered pattern due to
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Fig. 12: Distributions of HDs for the light box experiment.

imperfection of the printing process; see [6]). However, when

the measurement is not guaranteed to be coming from real

paper texture, the acquisition process is no longer trustworthy

– an attacker can at least deny the authentication by printing

random patterns with strong contrast on the paper. This threat

can be addressed by checking that the intended area for

authentication is free from overprinting.

B. Comparison based on Hamming distance

A straightforward application of authenticating a paper fin-

gerprint is based on comparing the Hamming distance between

two fingerprints. It consists of two phases. In the first phase, a

paper fingerprint, along with a mask, is extracted from the

textural patterns as the template and stored in a database.

In the second phase, given a provided paper sheet, the same

fingerprinting algorithm is followed to output a new fingerprint

and a mask. Depending on the applications, there are two types

of authentication modes: verification or recognition.

Verification works on a one-to-one comparison. This as-

sumes the reference to the stored template is known (as it

is often provided by the authenticating subject). Hence, once

the template is retrieved, it is a straightforward comparison

between two fingerprints based on their Hamming distance as

explained in Equation 5. This comparison determines if the

presented paper sheet is the same as the one registered earlier.

By contrast, recognition works on a one-to-many compari-

son. In this case, the reference to the pre-stored template is un-

known. Hence, the program searches throughout the database,

comparing the extracted fingerprint exhaustively with each

of the stored templates in order identify a match where the

Hamming distance is sufficiently small. This is the same as

how iris recognition works.

In terms of accuracy, the recognition mode is far more

demanding than the verification mode, because the false ac-

cept rate accumulates with the size of the database. As an

illustration, let P1 be the false acceptance rate for one-to-one

matching in the verification mode. Assume P1 is very small.

Let Pn be the false acceptance rate in the recognition mode

for a database of n records.

Pn = 1− (1− P1)
n

≈ n · P1

The above equation shows that the accumulative false accep-

tance rate in the one-to-many mode increases roughly linearly

with the size of the database [13]. Hence, for the one-to-many

matching to work accurately, the false acceptance rate for the

one-to-one comparison must be extremely small.

For the paper fingerprints extracted in our proposal, they

have sufficient entropy to support precise recognition even for

an extremely large database. Based on the binomial distribu-

tions with 807 degrees of freedom, the false acceptance rates

for comparing two paper fingerprints are listed in Table IV.

If we opt to maintain Pn < 10−6 for the recognition mode

as stated in [13], our algorithm can easily support searching a

database of 3 quintillions (3×1018) fingerprints at a threshold

of 0.32. By comparison, for the same accuracy (< 10−6) and

the same threshold (0.32), iris recognition can only support

a database of only 26 iris codes. (As stated in [13], for a

database of a million iris codes, the threshold needs to be

adjusted downwards to below 0.27 to keep the false accept rate

under 10−6). Because of the much higher degrees of freedom

of paper fingerprints, they can be used for the recognition

application at a much larger scale than the iris biometric.

C. Paper fingerprint encryption

One limitation with the previous verification/recognition

method is that the template is stored in plaintext in the

database. When the plaintext template is revealed, it may

cause degradation of security. This is especially the case with

biometrics, since biometric data is considered private to each

individual. Paper fingerprints are essentially “biometrics” of

paper. One established technique in biometrics is through

biometric encryption. Similarly, we can apply the similar

technique to realize fingerprint encryption. We will present



TABLE IV: False Acceptance Rate (FAR) for comparing two

fingerprints

HD Threshold False acceptance rate

0.30 7.1× 10
−31

0.31 5.3× 10
−28

0.32 2.7× 10
−25

0.33 1.0× 10
−22

0.34 2.5× 10
−20

0.35 4.5× 10
−18

0.36 5.8× 10
−16

0.37 5.2× 10
−14

0.38 3.3× 10
−12

0.39 1.5× 10
−10

0.40 5.2× 10
−9

Fig. 13: Generated QR Code in the authentication protocol.

This QR code contains the encrypted fingerprint, H(k) and a

digital signature for both items.

one concrete construction and show that because paper finger-

prints have much higher entropy than even the most accurate

biometric in use (iris), the corresponding encryption scheme

is able to provide much higher security assurance as well.

Our construction is based on Hao et al.’s scheme [25]. This

work is inspired by Juels et al. [26] and has been successfully

implemented in iris recognition. It comprises two phases. In

phase one, the program extracts a paper fingerprint from the

paper texture as a reference fa. It then generates a random

key k (140 bits), and expands the key to a pseudo fingerprint

fp = ErrorCC(k) (a 2048-bit codeword) where ErrorCC
is an error-correction encoding scheme based on Hadamard-

Reed-Solomon. Our analysis shows there is a combination

of block and random errors in our fingerprints; therefore, we

selected a concatenated approach. The choice of 140 bits k is

a balance between security (minimum 128 bit security for the

secret key) and performance, as well as considering the special

parametric requirements for a concatenated code scheme to

work at a desired level of error correction. Subsequently, the

scheme computes an encrypted fingerprint r = fa ⊕ fp. In

addition, the program computes h = H(k) where H is a

secure one-way hash function. Finally, the program stores r
and h in the database. Alternatively, r and h can be stored in

a 2-D barcode printed on paper. The advantage of doing so is

to allow authentication in the off-line mode. In this case, an

additional digital signature s should be included to prove the

authenticity of data in the barcode. At this stage, the original

template fa and the random key k can be safely deleted.

The registration process is summarized in Algorithm 1. In

Figure 13, we show a QR code generated from the registration

phase in our prototype implementation.

The second phase is authentication. In this phase, data from

the 2-D barcode is first read and the digital signature verified.

A paper fingerprint fs is extracted from the provided paper

sheet. The program then computes:

fs ⊕ r = fs ⊕ (fa ⊕ ErrorCC(k))

= (fs ⊕ fa)⊕ ErrorCC(k)

= e⊕ ErrorCC(k)

In the above equation, e can be regarded as “noise” added

to the codeword ErrorCC(k). As we explained earlier, the

Hamming distances between same-paper fingerprints typically

range from 0 to 0.25. In the definition of the Hadamard-

Reed-Solomon code, we follow the same coding parameters

as in [25]. The resultant error correction code is capable of

correcting up to 27% error bits in a 2048-bit codeword. Hence,

by running the Hadamard-Reed-Solomon decoding scheme,

the error vector e can be effectively removed, and the original

k can be recovered error-free. The correctness of the decoding

process can be verified by comparing the obtained k against

the retrieved H(k). This authentication process is summarized

in Algorithm 2.

ALGORITHM 1: Registration

Generate Random key k ;
Generate Reference Paper Fingerprint fa;
Expand key k to Pseudo Fingerprint fp ;
Calculate r = fa ⊕ fp ;
Calculate h = H(k) ;
Calculate Digital Signature s = Sig(r, h) ;
Store (r, h, s) in a 2-D barcode ;

ALGORITHM 2: Verification

Read r, h = H(k) and s = Sig(r, h) ;
if Signature Verification Success then

Generate Paper Fingerprint fs ;
Calculate f ′ = fs ⊕ r ;
Acquire k′ by decoding f ′ ;
Calculate H(k′) ;
if H(k′)==H(k) then

Success ;
else

Failure ;
else

Failure ;

The key feature of the above “fingerprint encryption”

scheme is that it preserves the secrecy of the fingerprint tem-

plate since it forms the basis for authentication. In this way, no

fingerprint template is stored in the plain form. As an example

for comparison, without using this encryption scheme, the

barcode would contain the plain fingerprint template. Once

in the line of sight to an attacker, the barcode can be trivially

read say by using a video camera, hence the template will be

stolen. With the encryption scheme applied, the attacker would

need physical access to the paper in order to take a close-up

snapshot of the fiber textures with a bright light source shining



underneath the paper. This makes the attack significantly more

difficult to carry out in practice without the user noticing it.

Hence, the application of privacy preserving protocol for

authentication avoids storing the texture structure in the plain

text form. The goal here is to protect the paper texture from

an attacker who does not have physical access to the paper

sheet itself. An adversary who has access to the barcode

printed on the paper can read all data including an encrypted

fingerprint r = fa ⊕ ErrorCC(k). One potential problem

as highlighted in [25] is that if the fingerprint fa contains

significant correlations between bits, r may leak information

about the fingerprint. The authors of [25] use the iris code as

an example to illustrate that due to a high level of redundancy

in iris codes, the encrypted iris code only has a lower-bound

security of 44 bits. However, 44 bits security is not sufficient

to satisfy high security requirements. As a result, the encrypted

iris code (also called the secure sketch in the PUF literature)

should not be published as public data; instead, it should be

stored in a personal token as suggested in [25].

The above limitation with the iris codes does not apply in

our case. Although the paper fingerprint defined in our work

has the same size as an iris code (2048 bits), it has much higher

degrees of freedom (807 as compared to 249). Following the

same sphere-packing bound as defined in [25], we estimate

the lower-bound security for the encrypted fingerprints as

follows. Here, the lower-bound security refers to the minimum

efforts required for a successful brute-force attack, under the

assumption that the attacker has perfect knowledge of the

correlations within the document paper sheet’s fingerprint,

hence the uncertainty (or entropy) about the fingerprint is

807 bits instead 2048 bits. The error correction capability

for the Hadamard-Reed-Solomon code allows correcting up

to 27% error bits. So in principle the attacker only needs to

guess a fingerprint that is within the Hamming distance of

807×0.27 ≈ 218 bits to the correct fingerprint. Following the

estimation method in [25], based on the sphere-packing bound

[27], the minimum guess effort with z = 807 and w = 218 is

calculated with the following equation:

G ≥ 2z

∑w

i=0

(

z
i

) = 2133 (14)

The above bound states that an attacker with full knowledge

about fingerprint correlations and the error correction process

would need at least 2133 attempts in order to uncover the

original fingerprint used in the registration and the random

key k. This 133-bit security is much higher than the 44-

bit security reported in [25], and is sufficient for almost

all practical applications. This is possible because the paper

textural patterns are far more distinctive than iris textural

patterns. In iris, there exist substantial correlations along the

radial structures [13]. The same phenomenon does not exist in

paper texture, which explains the higher degrees of freedom

in our case. This high level of security makes it possible to

simply store the (r, h, s) values on a barcode instead of in a

secure database. Alternatively, they may be stored in an RFID
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Fig. 14: Histogram of Hamming distances between raw

fingerprints without masks.

chip, and retrieved wirelessly during the verification phrase

(e.g., in an e-passport application).

We evaluate the performance of this authentication scheme

based on the benchmark database and are able to report

perfect error rates: 0% FRR and 0% FAR. Note that this

performance evaluation is slightly different from the direct

comparison between two fingerprints based on their Ham-

ming distance. The authentication is successful, only if the

Hadamard-Reed-Solomon code is able to correct the errors

(introduced by the XOR between two fingerprints) added to the

error correction codeword, and hence recover the same random

k (verified again H(k)). The authentication protocol can

only accommodate raw fingerprints, without masks (see [25]).

Figure 14 shows the histogram of Hamming distance between

raw fingerprints without masks. The same-paper and different-

paper distributions are well-separated. The error correct code

we implemented corrects errors up to 27%. This is sufficient to

correct errors for all same-paper fingerprints, yet not sufficient

for different-paper fingerprints. This explains the 0% FRR and

0% FAR that we obtain (see Figure 14).

VII. RELATED WORK

In the introduction (Section I), we highlight three prominent

works in the field (Nature 2005, IEEE S&P 2009, CCS 2011),

which have inspired our work. In this section, we conduct a

more comprehensive review of the related work.

Special paper. Some researchers proposed to fingerprint

paper by embedding special materials. Bauder [28] was the

first to propose the idea of a certificate of authenticity (COA),

which is a collection of fibers randomly positioned in an object

and permanently fixed by using transparent gluing material.

Once an end-point of a fiber is exposed to light, the other end

is illuminated, and as a whole this creates unique illuminated

patterns, which can be captured by a light detector. The main

intended application is to use COA for banknotes to ensure

authenticity. Kirovski [29] followed up Bauder’s work and

proposed to combine the captured illuminated patterns with

arbitrary text, signed with the private key of the banknote

issuer. The signature is then encoded as a barcode and printed



on the banknote. Chen et al. [30] proposed an improved

scanner to achieve automated verification of fiber-based COAs.

In a similar work, Bulens et al. [31] proposed to embed

different material–ultra-violet fibers–into the paper mixture,

and use a UV scanner to obtain a unique fingerprint. The

authors report that the derived fingerprints have 72-bit entropy.

Unmodified Paper and using laser. One limitation with

all the works mentioned above is that they require modifying

the paper manufacturing process. Other researchers investigate

fingerprinting techniques that can work with ordinary paper

without altering the manufacturing process at all. One promi-

nent work along this line of research is due to Buchanan et

al. [3] published in Nature 2005. The researchers proposed to

use a focused laser beam to scan across a sheet of standard

white paper and continuously record the reflected intensity

from four different angles by using four photodetectors. The

laser reflection is random, and is determined by the non-

uniform paper surface. Hence, the recorded reflection inten-

sities constitute a unique fingerprint. Beijnum et al. followed

up this research idea in [4]. They formulated a criterion for

recognition that limits the false acceptance rate (FAR) to 0.1%.

Samul et al. [5] presented a similar idea of shooting a beam

of laser onto the surface of the paper. But instead of using

photodetectors, they proposed to use a CCD camera to capture

the microscopic patterns of speckles.

Unmodified paper and using light. Laser-based finger-

printing methods have the limitation that they require special

laser equipment. A more cost-effective solution is to use a

commonly available light source. Metois et al. [32] proposed

custom-built equipment called the “imager”, which consists

of a consumer-grade video module and lens, housed along

with an embedded lighting apparatus. The imager provides a

grayscale snapshot of the naturally occurring inhomogeneities

of the paper surface. The snapshot is then processed into a vec-

tor of real numbers. The authentication of paper fingerprints

is based on computing the correlation coefficient between

vectors. The equal error rate (EER) is reported to be about

9%.

Clarkson et al. [6] proposed a similar method to fingerprint

a paper document by using a commodity scanner instead of

a specially built “imager”. Their work was motivated by the

observation that when viewed up close, the surface of a sheet

of paper is a tangled mat of wood fibers with a rich three-

dimensional texture that is random and hard to reproduce.

Utilizing the embedded light emission, the researchers use a

commodity scanner to scan a paper sheet in four different

orientations. Then a 3-D model is constructed based on these

four scans. Furthermore, the 3-D model is compressed into a

feature vector through computing Voronoi distributions in the

scanned region. The comparison between two feature vectors

is based on computing the correlation coefficient.

Pham et al. [33] adopted the same approach as Clarkson et

al. [6] by using an EPSON 10000XL scanner at 600 dpi to

collect 10 scans of the paper surface. In particular, they look

at the case when text has been printed over the authentication

zone, and propose two methods of pixel inpainting to remove

printed text (or marks) from the authentication zone in order

to allow ordinary correlation to be performed. Different from

the proposed method of Clarkson et al. [6] that compresses the

scanned images into a compact feature vector and compares

feature vectors based on the correlation coefficient, Pham et al.

proposed to use alpha-masked imaging matching to compare

regions of the two paper surface images. Improvements are

demonstrated using the collected data sets in their experiments.

Sharma et al. [7] proposed a different surface-based fin-

gerprinting method. Unlike prior paper fingerprinting tech-

niques [6], [33] that extract fingerprints based on the fiber

structure of paper, their method uses a USB microscope to

capture the “surface speckle pattern”, a random bright and dark

region formation at the microscopic level when light falls on

the paper surface. The captured patterns are then processed

into a vector of digits, which form the unique fingerprint.

Fingerprints are compared based on the Euclidean distance

between the two vectors.

Beekhof et al. [34] proposed a fingerprinting method based

on measuring random micro-structures of the paper surface.

The random micro-structural patterns are captured by using a

mobile phone camera with macro lens mounted. The captured

image is compressed into a binary feature vector by first

hashing the image values into a list of codewords and then

running the decoding process through a reference list decoding

(RLD) technique. Two feature vectors are compared based on

the Hamming distance.

Smith et al. [35] proposed another method to capture light

reflections from paper surface. Their method involves printing

an 8mm box on paper, and then taking a snapshot of it. The

alignment can then be done automatically by software based

on the printed box, but no details are given in the paper. The

authors apply a “texture hash function” to generate the fin-

gerprints. Fingerprints are authenticated based on computing

correlations of the texture hash strings.

Haist and Tiziani [36] proposed a method to fingerprint

German banknotes by using a CCD digital camera to take

a snapshot of a banknote based on transmissive light. Then,

the snapshot is saved as a JPEG image (2.86 KB), which,

along with a digital signature, is printed on the banknote as a

string of 3250 ASCII characters on an area of 5 cm2. However,

no prototype implementation is reported. The verification is

performed by applying the Fourier transform to obtain a

feature vector and computing the correlation between the two

vectors. Their idea is the closest to ours in terms of using

transmissive light. However, our work is substantially different

from theirs in several important aspects. First, their work

involves testing only three German Deutsche Mark banknotes

while the test data sets used in our work are far more extensive.

Second, they do not perform image pre-processing. As a result,

the positioning and orientation are done manually rather than

automatically by a software algorithm as in our case. Third,

they do not carry out image encoding. Consequently, they need

to store a JPEG image (2.86 KB), while we only need to store a

compact fingerprint (256 byte). Fourth, they do not implement

their idea in a prototype system. Hence the feasibility remains



uncertain. Most importantly, the Haist-Tiziani paper does not

report any error rate performance, or any entropy analysis, and

it does not perform extensive robustness tests as we have done.

Renesse [37] proposed a 3-dimensional-structure authenti-

cation system (3DAS) to authenticate a standard PVC ID-

card that has a 3×3 mm2 3DAS-structure in a transparent

window. The 3DAS-structure contains spunlaid fibers that are

thermally bonded at their cross points. In their experiment

setup, two infrared emitting diodes (IREDs) are used as

lighting sources to shine on the 3DAS area from two different

angles. This creates two shadow images that are then captured

by a two-dimensional CCD-array. By alternatively switching

both IREDs the required parallel images are produced. Finally,

a 20-byte fingerprint is obtained by calculating the centres

of gravity of the captured images. However, Renesse’s paper

does not report error rate performance or perform any entropy

analysis. It does not report robustness tests either.

Summary. We have presented related paper-fingerprinting

techniques proposed in the literature, which have different

requirements on paper material, use different types of illumi-

nating sources and scanning equipment, apply different signal

processing techniques and obtain fingerprints of different types

and features. Our work advances the state-of-the-art in this

field by presenting the first practical solution that works with

ordinary paper, uses an ordinary lighting source combined with

an off-the-shelf camera, takes only 1.3 seconds to produce a

compact fingerprint (256 bytes) from one snapshot, achieves

an ideal 0% FFR, 0% FAR as well as very high entropy

(807 bits) in fingerprints, and is demonstrably robust against

rotation, crumpling, scribbling, soaking and heating. The near

perfect result is attributed to the idea of capturing the paper

textural patterns through transmissive light. As detailed in

Section IV-B, using transmissive light reveals richer textu-

ral patterns than reflective light and produces more reliable

features. This explains our superior result as compared to the

earlier surface-based paper fingerprinting methods [3], [6], [7].

VIII. CONCLUSION AND FUTURE WORK

In this research, we propose to fingerprint a paper sheet

based on its texture patterns instead of features on the surface

as done by previous work. We show the former contain more

distinctive features than the latter with higher decidability in

the histogram of Hamming distance distributions. The exper-

iments are set up to use a commodity camera to photograph

the texture patterns with a light source shining on the other

side of the paper. The rich texture pattens are processed using

Gabor wavelets to generate a compact 2048-bit fingerprint

code. Based on the collected database, we report zero error

rates, and the method is shown to work well with different

light sources, and is resistant against various distortions such

as crumpling, scribbling, soaking and heating. The extracted

fingerprints contain 807 degrees-of-freedom, which is suffi-

ciently high for many practical applications. As an example,

some applications (like e-passport) rely on a tamper-resistant

RFID chip embedded in the paper document for proving the

authenticity of the document (through a challenge-response

protocol based on a long-term secret stored in the chip).

Our method provides an alternative solution that leverages the

natural physical properties of the paper document instead of

the tamper resistance of an extra embedded chip.

In this paper, we have focused testing our method on office

paper sheets. In future, we plan to extend our study to other

types of paper, such as thermal paper, labels and passport

pages as long as the light can transmit through. However,

based on the thickness of the paper and the difference in the

texture materials, we believe it is likely that some changes in

the intensity of the light, camera settings, Gabor filter scale

and orientation will need to be made. These questions will be

addressed in the future work.
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