UNIVERSITY OF LEEDS

This is a repository copy of A branched magma feeder system during the 1669 eruption of *Mt. Etna: evidence from a time-integrated study of zoned olivine phenocryst populations*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/116175/

Version: Accepted Version

Article:

Kahl, M, Viccaro, M, Ubide, T et al. (2 more authors) (2017) A branched magma feeder system during the 1669 eruption of Mt. Etna: evidence from a time-integrated study of zoned olivine phenocryst populations. Journal of Petrology, 58 (3). pp. 443-472. ISSN 0022-3530

https://doi.org/10.1093/petrology/egx022

(c) 2017, The Author. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com. This is a pre-copyedited, author-produced PDF of an article accepted for publication in the Journal of Petrology following peer review. The version of record, 'Kahl, M, Viccaro, M, Ubide, T et al (2017) A branched magma feeder system during the 1669 eruption of Mt. Etna: evidence from a time-integrated study of zoned olivine phenocryst populations. Journal of Petrology, 58 (3). pp. 443-472,' is available online at: https://doi.org/10.1093/petrology/egx022

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

A branched magma feeder system during the 1669 eruption of Mt. Etna: evidence from a time-integrated study of zoned olivine phenocryst populations Maren Kahl^{1, 2, 3*}, Marco Viccaro^{4, 5}, Teresa Ubide^{6, 7}, Daniel J. Morgan³, & Donald B. Dingwell² ¹ Institute of Earth Sciences, University of Iceland, Sturlugata 7, IS-101 Reykjavík, Iceland ² Department of Earth & Environmental Sciences, LMU Munich, Theresienstrasse 41, 80333 München, Germany ³ School of Earth & Environment, University of Leeds, LS2 9JT Leeds, United Kingdom ⁴ Università di Catania, Dipartimento di Scienze Biologiche Geologiche e Ambientali - Sezione di Scienze della Terra, Corso Italia 57, I-95129, Catania, Italy ⁵ Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Piazza Roma 2, I-95125 Catania, Italy ⁶ Department of Geology, Trinity College Dublin, Dublin 2, Ireland ⁷ School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia *Corresponding author. Present address: Institute of Earth Sciences, University of Iceland, Sturlugata 7, IS-101 Revkjavík, Iceland. Telephone: +354 525 4481. E-mail: marenk@hi.is ABSTRACT The 1669 eruption of Mt Etna was one of the most voluminous and devastating of its flank eruptions in historical times. Despite a large body of relevant research, knowledge of the timing and duration of magma transfer and magma recharge through the internal plumbing system preceding and during the eruption is still limited. To address that lack of knowledge, we apply a three-way integrated method, linking Systems Analysis of crystals, a time-integrated study of

22 zoned olivine populations, and a forward-modelling approach using thermodynamic calculations.

Analysis of 202 olivine crystals erupted during the initial (pre-March 20, i.e. *SET1*) and the final

24 (post-March 20; i.e. SET2 and MtRs) stages of the eruption reveals the existence of three different

Magmatic Environments (MEs) in which the majority of the olivine cores $[M_1 (=Fo_{75-78})]$ and rims [i.e. $M_5 (=Fo_{51-59})$ and $M_3 (=Fo_{65-69})$] formed.

Application of the *rhyolite-MELTS* software enabled us to constrain the key intensive variables associated with these MEs. We find that temperature, water content and oxidation state vary between these MEs. Application of diffusion modelling to the zoned olivine crystals enabled us to reconstruct the timing and chronology of melt and crystal transfer prior to and during the 1669 flank eruption. We find, that following the formation of the olivine cores $[M_1 (=Fo_{75.78})]$, the reservoir M₁ was intruded by batches of more evolved, degassed and possibly aphyric M₅-type magma, commencing 1.5 years prior to eruptive activity. This is the origin of the SET1 olivine rims (i.e. Fo_{51-59}). In the months prior to eruption, timescale data show that recharge activity along the newly established pathway M_1 - M_5 increased notably. Starting in November 1668, only a few weeks after the first intrusive episode into the M_1 reservoir, a second pulse of magma injections (M₃-type magma) occurred and a new pathway M_1 -M₃ opened; this is how the SET2 olivine rims (i.e. Fo₆₅₋₆₉) formed. For several weeks a bifurcated transport system with two dominant magma pathways developed along M_1 - M_5 and M_1 - M_3 dyke injections. Accompanied by vigorous seismicity, in the immediate days prior to eruption the local magma transfer dynamics changed and the M₁-M₅ recharge activity slowed down, as shown by a relative lack of crystals recording shorter timescales. M_1 - M_3 recharge, however, remained high and persisted following the eruption onset on March 11, during which the SET1 lavas were drained. We propose that the change of the local magma transfer dynamics might be linked to changes in the local stress field brought on during eruption. This may potentially have been due to repeated dyke injections into Etna's shallow plumbing system disrupting the early M_1 - M_5 pathway and at the same time stabilizing the M_1 - M_3 route as a dominant feeder. This transfer of system feeding

48	would reproduce the observed syn-eruptive recharge and mixing in the weeks following eruption
49	onset, culminating in the eruption of the later SET2 lavas.
50	KEYWORDS:
51	Olivine zoning; Plumbing system; Mt. Etna; Timescales; Magma mixing
52	INTRODUCTION
53	Geological setting
54	Mount Etna is a 3340-m-high (asl), composite stratovolcano located on the eastern coast of Sicily
55	(Fig. 1) and covering a basal area of \sim 1250 km ² . It is located at the intersection of three tectonic
56	domains, bounded by the transform Malta escarpment to the east, the Hyblean Plateau to the
57	south and the subduction-related Aeolian arc to the north. To the west, subduction is blocked by
58	compressive continental collision between the European and the African plate. Numerous
59	models, including the southward migration of the Ionian slab (e.g. Schiano et al., 2001) and the
60	opening of a slab window (Gvirtzman & Nur, 1999; Doglioni et al., 2001) have been proposed to
61	explain the anomalous location of the volcano close to the suture zone of the African and
62	European plates and its high magmatic flux. Geologically, the volcano rests on the southern edge
63	of the over-thrust units of the Apennine-Maghrebian chain to the south (Fig. 1), and the
64	undeformed remnants of the African margin to the southeast (e.g. Branca et al., 2011). Volcanism
65	is constrained to have started in the Etna region about ~500 ka ago (Gillot et al., 1994; Branca et
66	<i>al.</i> , 2011).

Like other basaltic stratovolcanoes, Etna is characterized by summit and flank eruptions. Summiteruptions are usually constrained to one of six central craters (Voragine, Bocca Nuova 1, Bocca

60

1 2		
3 4	70	Nuova 2, Northeast Crater, Southeast Crater and New Southeast Crater) and the sub-terminal area
5 6 7	71	(e.g. Corsaro et al., 2009; Allard et al., 2006; Branca and Del Carlo, 2004). Flank eruptions
7 8 9	72	usually affect the intermediate and lower flanks of the volcano and can produce lava flow fields
10 11	73	of considerable extent (e.g. the 1991-93 flank eruption produced a compound lava flow field of
12 13 14	74	240±29×10 ⁶ m ³ , Calvari et al., 1994; Stevens et al., 1997). Two different types of flank eruptions
14 15 16	75	have been defined: 1. Central-lateral (Rittmann, 1965) or Central Conduit-Fed (CCF; Corsaro et
17 18	76	al., 2009) and 2. Eccentric (Rittmann, 1965), peripheral (Acocella and Neri, 2003) or Deep Dyke-
19 20 21	77	Fed (DDF; Corsaro et al., 2009) eruptions. Central-lateral flank eruptions originate by fracturing
21 22 23	78	and lateral draining of the central conduits with the formation of eruptive vents at high altitudes.
24 25	79	The eruption products resemble closely those erupted from the summit craters in being highly
26 27 28	80	porphyritic (~30-40 % crystals) and plagioclase-rich due to significant water degassing in the
29 30	81	central conduit system (e.g. Métrich et al., 2004). Eccentric or deep dyke-fed (DDF) flank
31 32	82	eruptions occur rarely [1763 (Corsaro et al., 2009), 1974 (Corsaro et al., 2009), 2001 (Lanzafame
33 34 35	83	et al., 2003; Behncke and Neri, 2003; Métrich et al., 2004; Corsaro et al., 2007; Ferlito et al.,
36 37	84	2012) and 2002-03 (Andronico et al., 2005; Spilliaert et al., 2006)]. Eccentric eruptions are
38 39 40	85	highly explosive with high tephra/lava ratios (e.g. Andronico et al., 2005), and have low to
40 41 42	86	medium phenocryst contents (<20% Andronico et al., 2005), with dominantly mafic mineral
43 44	87	phases (Armienti et al., 1988; Corsaro et al., 2009; Ferlito et al., 2012). As these eruption
45 46 47	88	products differ from those of summit and central conduit-fed (CCF) flank eruptions, previous
48 49	89	studies concluded that eccentric eruptions must have been driven by rapid ascent of deeply rooted
50 51	90	intrusions - below the volcanic pile - that bypassed the shallow, central conduit system and
52 53 54	91	therefore are undegassed (e.g. Corsaro et al., 2009; Ferlito et al., 2012). Hence, this type of flank
55 56	92	eruptions is also referred to as Deep Dyke-Fed (DDF; Corsaro et al., 2009), as opposed to the
57 58 59	93	more common central-lateral or Central Conduit-Fed (CCF; Corsaro et al., 2009) flank eruptions.

The 1669 eruption: Characteristics and historical context

In this paper, we focus on the 1669 eruption, which is a central-lateral or Central Conduit-Fed flank eruption. The 1669 eruption was ranked as one of the most destructive and voluminous (607±105×10⁶m³, Branca et al., 2013) flank eruptions of Mt. Etna in historical times (e.g. Corsaro et al., 1996; Branca et al., 2013). Between 1607 and 1669, 8 flank eruptions occurred on different sectors of the volcano; a brief summary of the duration, location of eruption vents and erupted volume is provided in Table 1. Preceded by a period of summit eruptions between 1654-1656 (http://www.ct.ingv.it/en/11-notizie/news/561-etna-eruptions-pre1900.html) and more than two weeks of increasing seismic activity (e.g. Corsaro et al., 1996 and references therein), the 1669 eruption commenced in the early morning of March 11 through a system of NNW-SSE trending eruptive fissures that opened between 950 and 700 m a.s.l. (indicated as 1 in Fig. 1; Branca et al., 2013). This first segment of the eruptive fracture system was characterized by weak and short-lived explosive activity. A second segment (2) opened shortly afterwards between 850 and 825 m a.s.l. and built a spatter rampart (Fig. 1). That same day (March 11) a third segment (3) opened between 850 and 775 m a.s.l. This became the main vent - Mt. Rossi - of the eruption (Fig. 1) and initially produced extended, explosive activity with ash fall followed by lava emission. The fourth segment (4) formed between 750 and 700 m a.s.l. close to the cone of Mt. Mompilieri (Fig. 1; Branca et al., 2013); it was characterized by mild explosive activity and a minor lava flow. On March 12 a fifth segment (5) formed at the eastern base of Mt. Mompilieri between 700 and 640 m a.s.l. (Branca et al., 2013). The eruptive activity continued for 122 days and destroyed several towns and settlements along the S-flank of Etna volcano until it ceased on July 11, 1669. Activity at the summit craters remained quiet during the flank eruption until March 25, when a violent explosive event occurred followed by the partial collapse of the summit cone (Corsaro et al., 1996; Nicotra and Viccaro, 2012). A detailed report of the sequence of events and the evolution of the lava flow field during the 4 months of eruptive activity can be found inBranca *et al.* (2013).

In comparison to some of the historic and recent flank eruptions (e.g. 1991-1993), the 1669 eruption was relatively short-lived, with only four months of eruptive activity. During this brief interval of persistent eruptive activity, a compound lava flow field covered a total area of ~40 $\times 10^6$ m², with a total length of 17 km (Branca *et al.*, 2013). The relatively low altitude (800-850) m a.s.l.) of the erupting vents and high effusion rates ($58\pm10 \text{ m}^3/\text{s}$, Branca et al., 2013) enabled the lava flows to run over long distances. As a result, settlements located on the lower southern flank of the volcano, including the western districts of Catania were destroyed (e.g. Branca et al., 2013). The 1669 flank eruption marks a major transition in terms of eruption intensity and petrography amongst the historic lavas (Corsaro et al., 1996; Condomines et al., 1995; Hughes et al., 1990; Clocchiatti et al., 1988; Guest and Duncan, 1981; Tanguy, 1980). Pre-1669 eruptions (1600-1669) were long-lasting, porphyritic and plagioclase-rich with high mean effusion rates (1.19 m³/s; e.g. Hughes et al., 1990; Branca et al., 2013; Nicotra and Viccaro, 2012). In contrast, the post-1669 eruptions (1670-1755) were more sporadic and short-lived and had low output rates (0.02 m³/s; Branca et al., 2013). Post-1669 eruption products also contain predominantly mafic phase assemblages (Corsaro et al., 1996).

135 It is possible that the steady increase in effusion rates during the first half of the 17th century 136 culminated in the devastating March-July 1669 flank eruption. It has been argued that lateral 137 draining of the central conduit system during the eruption caused not only the partial collapse of 138 the summit cone (e.g. Corsaro *et al.*, 1996) but also had long lasting consequences for the 139 evolution of Etna's shallow plumbing system (e.g. Condomines *et al.*, 1995). The impact of 140 Etna's modified shallow plumbing configuration could be observed in the century following the

141 1669 eruption, with the 1670-1755 period displaying significantly lowered output rates (0.02 142 m^3/s ; Branca *et al.*, 2013) and sparse flank activity (only 3 flank eruptions). It was only 143 afterwards, in the period 1755 to 1970, that the mean effusion rate increased steadily up to 0.51 144 m^3/s (e.g. Branca *et al.*, 2013 and references therein).

Detailed geochemical and petrological studies of products of the 1669 eruption (Corsaro et al., 1996) revealed that the erupted lavas are porphyritic hawaiites containing variable amounts of phenocrysts (porphyritic index; PI = 37-52 vol% phenocrysts) and mafic mineral phases (mafic mineral phenocrysts/total phenocrysts; $CI_{Phx} = 10-53 \text{ vol}\%$). Corsaro *et al.* (1996) found that the lavas erupted during the initial stages of the 1669 eruption (i.e. between March 11 and 20) differ considerably in their petrography (i.e. average PI=33 and CI_{Phx}=36 vol%) from lavas erupted after March 20 (average PI=44 and CI_{Phx}=18 vol%). Petrographic differences are also reflected in the major and trace element bulk geochemistry (Barbieri et al., 1993; Corsaro et al., 1996). Consequently, Corsaro *et al.* (1996) classified the 1669 lavas into two groups: SET1 and SET2.

SET1 products were emplaced during the initial phase of the eruption, from March 11 to March 20, 1669. These samples have been described as being more 'basic' and 'magnesian', with similarities to later 18th and 20th century eruption products. *SET1* bulk rock compositions from Corsaro *et al.* (1996) are characterized by higher MgO (mean 6.65 ± 0.38 wt%) contents and higher compatible (i.e. Cr, Ni, Co, Sc) and incompatible (e.g. Th, La) trace element concentrations than the later erupted SET2 lavas (Corsaro et al., 1996). The SET2 samples were emplaced after March 20, 1669 and are described by Corsaro et al. (1996) as plagioclase-phyric and more evolved in composition (e.g. mean MgO 5.07 ± 0.19 wt%) than the SET1 eruption products. SET2 lavas strongly resemble the plagioclase-phyric rocks of the early 17th century (Corsaro et al., 1996).

Both sets of eruption products (SET1 and SET2) were interpreted by Corsaro et al. (1996) as the result of fractional crystallization of two, compositionally-distinct primary magmas under distinct storage conditions, which fractionated different volumetric proportions of phenocrysts. Segregation was explained by the authors utilizing a 'laminar plume model', where mafic, gas-rich and therefore buoyant SET1 magma rises through a pre-existing reservoir filled with SET2 melt, without significantly (physically or chemically) interacting with it; this enables uprising SET1 magma to retain its chemical and petrological signature, as mixing with SET2 melt is inhibited.

The possibility of fresh magma inputs being able to bypass resident, more viscous magma is not new; such a model was invoked by Landi et al. (2006) to explain the segregation of volatile-poor degassed magmas and volatile-rich 'golden pumices' during the April 5, 2003 paroxysm of Stromboli volcano. In this case, bubble-driven ascent of deep volatile-rich magma through shallower resident magma enabled rapid ascent to the vent, with subsequent mixing only after the paroxysm. Despite a possibly shared characteristic of magma injections not mixing in the first instance, the Stromboli and Etna systems are quite different. A worrying implication of bypass behaviour is that intrusion and eruption can occur nearly simultaneously, and do not require a significant residence time of mafic magma in an evolved reservoir. This has considerable implications for the assessment of hazards posed by future 1669-type events, as it implies that similar, voluminous, low-elevation eruptions could commence with little warning. In fact, contemporary records indicate that signals of volcanic unrest in the form of vigorous seismic events, with epicenters located close to the town of Nicolosi on the southern flank of the volcano, preceded the 1669 eruption by approximately two weeks (e.g. Mulas et al., 2016 and references therein); seismic activity increased on March 08, 1669, culminating in the eruption onset on March 11, 1669 (Mulas et al., 2016 and references therein; Tanguy and Patanè, 1996). The

purpose of this paper is to obtain new insights into the plumbing system feeding the 1669 flankeruption and test viability (and hence hazard implications) of quick melt bypass.

190 Etna's modern (1991-2008) plumbing system: Insights from a crystal chemistry 191 perspective

In previous studies, Kahl et al. (2011, 2013 & 2015) developed a novel petrological methodology linking a Systems Analysis approach to compositionally-zoned olivine populations with a time-integrated study (i.e. diffusion modelling in olivine). This approach was successfully applied to samples from recent summit and flank (i.e. 1991-2008) eruptions at Etna volcano to reconstruct the residence and migration history of magma through Etna's modern plumbing system (Kahl et al., 2015). The present study uses and builds upon existing techniques and results developed by Kahl et al. (2011, 2013 & 2015). Therefore, in this section, we review some of the main methods and concepts and briefly summarize what we know so far about Etna's modern plumbing system from a combined crystal chemistry and kinetic modelling approach.

Studying the compositional and zoning record of 180 olivine crystals that were erupted between 1991 and 2008 at Mt. Etna, Kahl et al. (2011, 2013 and 2015) recognized that zoning profiles of Fe-Mg and selected trace elements (e.g. Ni, Mn, Ca) in olivine contain core and/or rim compositional plateaux with diffuse boundaries separating them. The occurrence of such compositional plateaux was interpreted as sequential growth of olivine under a constant set of intensive thermodynamic variables (pressure, temperature, composition, fugacities of volatile species) defining a certain Magmatic Environment (ME). This is opposed to progressive changes, such as cooling or differentiation that would result in continuous variations of composition rather than plateaux separated by sudden jumps or diffuse boundaries (Kahl et al., 2015). A Magmatic Environment (ME) may represent a physically distinct entity (e.g. a sill, dyke), or a virtual entity

1	
2	
3	
4	
4 E	
5 6	
6	
7	
8	
9	
7 8 9 10	
11	
12	
12	
13	
14	
15	
16	
17	
18	
19	
12 13 14 15 16 17 18 19 20 21 22 23 24 25	
21	
22	
23	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
34 35 36	
37	
38	
39	
40	
41	
42	
43	
43 44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58 59	
59	
~~	

211 (e.g. a set of P, T, X, fO₂, fH₂O conditions within a zoned larger magma reservoir). Kahl et al. 212 (2011, 2013 and 2015) used the terms "magmatic reservoir" and "magmatic environment" to 213 distinguish the physical entity from the virtual entity defined by a set of intensive variables; the 214 two may be the same (e.g. in an unzoned magma reservoir of small enough size) but do not have 215 to be. Kahl et al. (2011) assumed that the compositional variation from core to rim in a crystal 216 represents a chemical stratigraphy and that the compositional record can be used to identify and 217 effectively track different MEs crystals passed through on the way to eruption. Consequently, the 218 change in zoning pattern from one plateau to another is equivalent to the transfer of the crystal 219 from one ME to another. This can be accomplished either by the crystal physically moving (with 220 some melt) from one environment to another, or by the environment itself changing around the 221 crystal (e.g. by cooling or degassing). To be able to track effectively the sequence of magmatic 222 events preserved in the chemical stratigraphy of populations of zoned olivine crystals, Kahl *et al.* 223 (2011) developed the tool of Systems Analysis. This allows to decipher the record of different 224 pathways (sequences of changes in MEs) stored in the crystal cargo of a given rock by using 225 connectivity diagrams to organize the compositional information. The frequency of connections 226 found in the connectivity diagrams (diagrams where successive compositional plateaux are 227 connected by directed line segments; the direction pointing from core toward rim) are taken to 228 provide a measure of the relative frequency with which pathways between different environments 229 were used. For example, Kahl et al. (2011) discovered that a single thin section of a lava flow 230 from the 1991-93 SE flank eruption of Etna, contained olivine phenocrysts with three different 231 types of zoning patterns (normal, reverse and complex) and compositions ranging from Fo_{83} to 232 Fo₇₀. Compositional plateaux in the olivine crystals were consistent with four MEs that, when 233 considered with the relevant diffusive modifications, could be used to describe the total diversity 234 of compositional variation in the olivine phenocrysts that were erupted between December 1991

and March 1992 (Kahl et al., 2011). The width of the diffusion zone between two compositional plateaux and the shape of the concentration profiles record the duration and residence time a crystal spent within a given ME. Hence, Kahl et al. (2011) developed the tool of sequential kinetic modelling that allows working backward - from the rim to the core - the durations a crystal spent in different MEs prior to eruption. Finally, Kahl et al. (2015) developed a forward modelling approach using thermodynamic calculations with the MELTS software (Ghiorso and Sack, 1995; Asimow and Ghiorso, 1998) to identify the key intensive variables associated with the different Magmatic Environments identified. In this approach the observed populations of mineral compositions (e.g. Fo_{79-83}) defining a certain ME (e.g. M_0), rather than single compositions, are associated with thermodynamic parameters (P, T, water content, oxygen fugacity and bulk composition of melt) to identify the most plausible set corresponding to each ME.

Application of this combined and novel methodology that links the crystal chemistry with a time-integrated study and forward thermodynamic modelling enabled Kahl et al. (2011, 2013 and 2015) to investigate the temporal evolution of Etna's modern plumbing system across multiple eruptive episodes of different styles, and at different locations. Considering the comprehensive compositional and zoning record preserved in 180 olivine crystals that erupted between 1991 and 2008, five MEs were identified: M₀ (Fo₇₉₋₈₃), M₁ (Fo₇₅₋₇₈), M₂ (Fo₇₀₋₇₂), M₃ (Fo₆₅₋₆₉) and mm₁ (Fo₇₃₋₇₅). Kahl et al. (2015) found that the same MEs as those deduced by Kahl et al. (2011, 2013) to describe the observed variability of olivine compositions erupted during the 1991-93 flank and the 2006 summit eruptions, could be used to describe the compositional variations recorded in all 1991-2008 olivine crystals. The combined Systems Analysis record of all eruption products revealed that although the MEs remained the same during 17 years, the interconnectivity between them and hence the dominant magma pathways changed with time. Main changes were
found either between large eruptions (1991-93 and 2001) or between eruptive episodes.

For example, Kahl et al. (2013) studied the compositional and zoning record of olivines that were erupted during two different events (July 20 and October 28) of the 2006 summit eruptions at Mt. Etna. The authors discovered that olivines of the July 20 and the October 28, 2006 eruptions were not only characterized by different zoning patterns but also by different core and rim plateau compositions. The July 20 olivines were reversely zoned with low forsterite core (= Fo_{70-72}) plateaux and higher forsterite rims (=Fo₇₃₋₇₅). 3 months later, during the October 28 event, olivines showed dominantly normal zoning with high forsterite core plateaux (=Fo₇₉₋₈₂) and decreasing forsterite contents at the rims (= $Fo_{70,72}$). Based on the different core and rim plateau compositions and the different zoning types (normal vs. reverse) three different MEs $[M_0 (=Fo_{79})]$ M_2 (=Fo₇₀₋₇₂) and mm₁ (=Fo₇₃₋₇₅)] with diverging connectivity patterns were observed. Olivines erupted in July showed a dominant population of crystals connecting the environments M₂-mm₁, whereas olivines erupted in October tracked a different history between M₀-M₂. Kahl et al. (2013) argued that these different connectivity patterns revealed by the Systems Analysis of the 2006 olivine zoning and compositional record may be attributed to a small but significant change in the magma transport regime in the course of the 2006 eruption. They also concluded that such a change - that occurred only within months - may be explained best by a short-term change of the plumbing system sometime between July and October 2006. This agreed well with the observation that the July and October 2006 events occurred from different eruption centres.

By means of the Systems Analysis approach, Kahl *et al.* (2015) found that three dominant magma transfer routes connecting the environments M_0 - M_1 , M_2 -mm₁ and M_1 - M_2 have been active during the entire period (1991-2008). These MEs therefore represent robust and long-term

features of Mt. Etna's plumbing system that may have facilitated the transfer of magma to the surface for nearly two decades. In parallel, they also identified some sparsely frequented routes connected to more evolved MEs such as M_3 (Fo₆₅₋₆₉). Migration routes connected to this environment could be identified only in some eruption products and were therefore inferred to represent temporary pathways of magma transfer that were activated only occasionally or were traversed too quickly to be recorded in all olivine zoning profiles. The significance of such highly evolved but rarely tapped environments and their role in Etna's historic plumbing system will be evaluated further in this study. An important observation of Kahl et al. (2011, 2013 and 2015) is the discovery of pre- and/or syn-eruptive pulses of mafic magma recharge into different MEs of the plumbing system, indicated by olivine populations with forsterite M_0 (Fo₇₉₋₈₂) core and/or rim compositions.

The application of sequential kinetic modelling revealed that the transfer of magma along the three most dominant routes in Etna's modern plumbing system M_0-M_1 , M_2-mm_1 and M_1-M_2 occurred over heterogeneous timescales ranging from days to 2 years. Although some of the passageways have been sporadically active in the months and sometimes years before an eruption, the magma migration activity increased in the weeks and days prior to an eruptive event. For example, recharge of the environments M₁ and M₂ began years before an eruption, but became more frequent in the last few days prior to its onset (Kahl et al., 2015). On the other hand, other environments such as mm₁ were found to represent transient features of Etna's modern plumbing system and formed within the last 40 days before eruptive activity commenced (Kahl et al., 2015).

302 Kahl *et al.* (2015) conclude that temperature, water content and possibly oxidation state are the 303 main distinguishing features of the different magmatic environments. They found that: M_0 (Fo₇₉₋

₈₃), the most primitive olivine population may have grown with some clinopyroxene at high water contents (3.5-5.2wt %) and fO₂ conditions buffered at QFM or NNO at pressures ranging between 1.5 and 3.0kbar (or even higher). Temperatures of >1110°C are required. The intermediate olivine population M_1 (Fo₇₅₋₇₈) could have formed over a broad spectrum of conditions, but all require lower water contents (0.1-1.4 wt %) at similar temperatures. The most evolved, Fe-rich olivines of M₂ and M₃ (Fo₇₀₋₇₂ and Fo₆₅₋₆₉) are the products of extremely dehydrated magmas (0.2–1.1wt % H₂O for M₂; <0.5wt % H₂O for M₃), and probably somewhat more reducing (QFM) conditions that were most probably obtained at even shallower depths and at somewhat lower temperatures (~1080°C).

The findings of multi-level magma transfer between different MEs within Etna's modern plumbing system derived by Kahl et al. (2011, 2013 and 2015) agrees with evidence from geophysical (e.g. Aloisi et al., 2002; Lundgren et al., 2003; Murru et al., 1999; Bonaccorso et al., 2011; Patanè et al., 2003, 2006 and 2013; Viccaro et al., 2016a) and thermobarometric (e.g. Armienti et al., 2013; Giacomoni et al., 2014 and 2016) studies. Thermobarometry calculations indicate that clinopyroxene starts crystallising at depth >20km (e.g. Armienti et al., 2013; Giacomoni et al., 2016) and continues until eruption. The deep to intermediate crystallisation range of clinopyroxene coincides with the detection of deep VT seismicity in the intermediate and lower crust (10-30km, Patanè et al., 2013) interpreted as periodic ascent of magma batches from the mantle (Patanè et al., 2013). Plagioclase was found to start crystallising at shallower depths in the upper crust (>12km depths), with the majority nucleating around 5-6km and continue (like clinopyroxene) to crystallise until eruption (Viccaro et al., 2010 and 2016b; Giacomoni et al., 2014 and 2016). These crystallisation levels coincide with the detection of low-velocity zones using seismic tomography (e.g. Murru *et al.*, 1999). The crystallization of both, plagioclase and clinopyroxene seems to be continuous in a polybaric vertical feeding system, in

2		
3 4	328	which at least two different magma crystallisation levels have been identified (Armienti et al.,
5 6 7 8	329	2013; Giacomoni <i>et al.</i> , 2014 and 2016).
9 10	330	This study
11 12	331	Here we apply the combined methodology developed by Kahl et al. (2011, 2013 and 2015) to the
13 14	332	1669 eruption products, and investigate olivine zoning using novel imaging of crystallographic
15 16 17	333	orientation and trace element distribution. Our aim is to (i) test the existence and duration of pre-
18 19	334	and syn-eruptive mixing of SET1 and SET2 magmas, (ii) obtain the residence times of SET1 and
20 21	335	SET2 magmas within the plumbing system prior to eruption and (iii) reconstruct the pre- and syn-
22 23 24 25	336	eruptive history of magmatic events leading to the 1669 flank eruption.
25 26 27	337	We first present a brief chronology of the eruption sequence, followed by descriptions of the
28 29 30	338	relevant aspects of petrography and mineral chemistry, the types of zoning found in olivine and
30 31 32	339	their major, minor and trace element compositional characteristics. We use these data to construct
33 34	340	connectivity diagrams and carry out Systems Analysis, in order to determine the nature of magma
35 36 37	341	transfer throughout the plumbing system. Then we undertake a forward-modelling approach of
38 39	342	thermodynamic calculations using the <i>rhyolite-MELTS</i> software (Gualda et al., 2012; Ghiorso &
40 41	343	Gualda, 2015) to constrain the physical conditions of the identified Magmatic Environments
42 43 44	344	(MEs). Subsequently, we perform diffusion modelling to determine the timing and duration of
45 46	345	magma mixing and magma migration between the different MEs. Finally, we synthesize our
47 48 40	346	findings and results to develop a conceptual model of the late stage magmatic history before and
49 50 51	347	during the 1669 eruption.

A total of 10 lava samples and 1 bomb sample were studied, representing different episodes of the 1669 flank eruption. The locations of all samples studied are highlighted in Figure 1 and the sampling locations and GPS coordinates are listed in Table 2. We collected 5 lava samples from a flow unit that was emplaced on March 19, 1669. These samples erupted before March 29 and therefore belong to the SETI lavas as defined by Corsaro et al. (1996) (Fig. 1). Another 5 samples were collected from a lava flow that reached the outskirts of Catania (Fig. 1). This flow was emplaced after March 29 (possibly on April 4, 1669) and therefore falls into the SET2 lavas of Corsaro *et al.* (1996). The bomb sample was collected at the top of the Mt. Rossi (MtRs) scoria cone (Fig. 1). An exact eruption date for this sample is not available, but given its location at the top of the cone that fed most of the eruption, we infer that it erupted towards the end of the volcanic activity and therefore belongs also to the SET2 category (erupted after March 20, 1669; Corsaro *et al.*, 1996).

361 ANALYTICAL METHODS

362 X-ray fluorescence (XRF)

Whole rock compositions were determined by WD-XRF analysis (*MagiX PRO XRF, Philips*) at the Department for Earth & Environmental Sciences (DEES) at LMU. Major and minor elements were analyzed using glass beads prepared by fusion of 1 g sample and 9 g *SPECTROMELT A12* (66 % di-lithium tetraborate, 34 % lithium metaborate) in a *Panalytical Eagon 2* furnace fusion system at 1150°C. Analytical precision was checked against a basalt standard and reproducibility was found to be better than 0.15%.

369 Electron microprobe (EMP)

370 Olivine

Backscattered electron (BSE) images and detailed, quantitative concentration profiles (spacing ~4-5µm) of major and minor elements (Si, Fe, Mg, Mn, Ca, Ni and Cr) along different directions in a total of 202 olivine crystals were obtained using a Cameca SX-100 electron microprobe (EMP) at the Ludwig-Maximilians Universitaet (LMU) Muenchen, Run conditions were: 15kV accelerating voltage, 20-30nA beam current and a focused electron beam $(1\mu m)$ for the analysis of olivine. Peak and background counting times of 10s were used for each element. Well-characterized synthetic oxides and minerals were used as analytical standards including (Si, Mg) olivine, (Ca) wollastonite, (Fe) almandine and andradite, (Mn) MnTiO₃, (Cr) Cr₂O₃ and (Ni) NiO.

Clinopyroxene

Major and minor element concentrations (Si, Fe, Mg, Mn, Ca, Ni, Na, Al, Ti, Cr and K) of 62 olivine–clinopyroxene pairs and single clinopyroxene crystals (spacing 3–6 μ m) were obtained using a Cameca SX-100 electron microprobe (EMP) at the Ludwig-Maximilians Universitaet (LMU) Muenchen. A total of 829 single spot analyses were made at 15kV and 30nA, using a focused beam (1 μ m). The counting times at peak and background for each element were set to 10–20s.

Fe–*Ti oxides*

388 74 single-point analyses across the contact zone between adjacent olivine and Ti-magnetite were
389 made (Si, Fe, Mg, Mn, Ca, Ni, Na, Al, Ti, Cr and K) using a Cameca SX-100 at the Ludwig390 Maximilians Universitaet (LMU) Muenchen. Run conditions were the same as for olivine.

Analytical quality was ensured by analysing the reference materials as unknowns and by mineral
stoichiometry calculations (Deer *et al.* 2013).

59 393 Electron backscatter diffraction (EBSD)

394 Crystallographic orientations of olivine crystals were determined using electron backscatter 395 diffraction (EBSD, Prior *et al.*, 1999; Costa & Chakraborty, 2004) on the FEI Quanta 650 396 FEGSEM at the University of Leeds Electron Microscopy and Spectroscopy Centre (LEMAS). 397 Constraint of crystallographic directions in olivine with respect to the micro-analytical traverses 398 is essential for accurate diffusion modelling, as the diffusivity of different elements (e.g. Fe-Mg 399 or Ni) in olivine is strongly anisotropic, with diffusion along the c-axis six times faster than along 400 the a- and b-axes (e.g. Dohmen *et al.*, 2007a; Clark & Long, 1971).

To minimize uncertainty in the determination of the orientation data, orientation maps (Fig. 2c, d) consisting of hundreds of EBSD point determinations were conducted for each grain. Using the HKL CHANNEL5 EBSD post-processing software, orientation-maps are generated over an entire crystal, extracting hundreds to thousands of individual orientation measurements. This comprehensive approach is enabled by rapid acquisition, and improves on earlier methods in which only a few points per olivine grain were measured. Due to the improved coverage and resolution, features such as internal lattice misorientations, sub-grain boundaries, twins and pseudo-symmetries can be easily identified. EBSD mapping of this type is novel and has not been routinely used by the diffusion community so far. Operating conditions are available as Supplementary Data (SD) Electronic Appendix 1 (supplementary data are available for downloading at http://www.petrology.oxford journals.org).

412 Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) 413 mapping

The elemental distribution of 7 olivine crystals was determined by LA-ICP-MS mapping at the Geochemistry Laboratories of Trinity College Dublin, according to the method developed in

416 Ubide *et al.* (2015). The analyses were made on typical 30 μm-thick polished sections of rocks
417 from *SET1*, *SET2* and the *MtRs* samples.

LA-ICP-MS mapping experiments were carried out using a Photon Machines G2 193 nm excimer Ar-F laser system with a Helex 2-volume ablation cell, coupled to a quadrupole Thermo iCapQc mass spectrometer. The carrier gas was a mixture of He and Ar (and minor N₂ introduced via an in-house developed variable volume smoothing device). The laser was operated with a fluence of 2.5 J/cm². The mapping area was built by overlapping individual ablation lines to form a rectangular grid. The laser spot size was determined by the size of olivine crystals and set at 10 μm. Ablation lines were built using a square laser mask, 15 μm/s scanning speed, 10 Hz repetition rate and 1 µm overlap between lines, following Ubide et al. (2015). A baseline measurement of 30 to 40 s was allowed between ablation lines. Given the typical bright colour of olivine grains in thin section, it was found that pre-ablation of the crystals using large, quick rasters (e.g., 85 um circle laser beam, 160 um/s scan speed, 20 Hz repetition rate, 1 um overlap between lines) improved the ablation of olivine in the subsequent mapping experiment, producing sharper element maps. The analytes were ²⁵Mg, ²⁷Al, ²⁹Si, ³¹P, ⁴³Ca, ⁴⁵Sc, ⁴⁹Ti, ⁵¹V, ⁵²Cr, ⁵⁵Mn, ⁵⁷Fe and ⁶⁰Ni. Seven to ten analytes were measured in each individual mapping experiment, with a total dwell cycle of 100 to 110 ms.

433 NIST612 glass reference material (Jochum *et al.*, 2011) was used at the beginning of each 434 analytical session to tune the instrument. NIST610 glass reference material (Jochum *et al.*, 2011) 435 was used as calibration standard for all mapping experiments. Data reduction and production of 436 element distribution maps was undertaken with Iolite v2.5 free software (Paton *et al.*, 2011) using 437 the 'Trace Elements Image' data reduction scheme (Ubide *et al.*, 2015). Following Chew *et al.*

(2016), maps were initially built in 'Semi quantitative' mode and the scales were subsequently
normalized to the Si content measured independently (38.5 wt.% SiO₂ from olivine EMP data).

PETROLOGY

The 1669 eruption products are strongly porphyritic. The rocks contain the typical Etnean phenocryst assemblage of plagioclase (~12-15 vol.%), clinopyroxene (~8-11 vol.%), olivine (~3– 5 vol.%), and accessory Fe–Ti oxides (~<3 vol.%) embedded in a fine-grained, hypo-crystalline groundmass. The groundmass consists of micro-laths of plagioclase, Fe–Ti oxides, clinopyroxene and variable amounts of interstitial glass. The abundances and relative proportions of phenocrysts (porphyritic index PI) can vary significantly (PI ranging between 37 and 52%) between individual eruption products (cf. Corsaro *et al.*, 1996).

Plagioclase (An₅₆₋₈₅) forms mostly euhedral phenocrysts of variable size (0.2 - 4 mm).
Plagioclase phenocrysts contain multiple sequences of oscillatory zoning as well as strong
dissolution (sieve) textures (see also Corsaro *et al.*, 1996).

451 Clinopyroxene (Wo_{46–48}, En_{36–41}, Fs_{13–16} and Mg#73-93; see SD Electronic Appendix 2) forms 452 euhedral to subhedral phenocrysts with sizes ranging between 0.8 and 4.8 mm. Pronounced sector 453 and oscillatory zoning and inclusions of Fe–Ti oxides are common; rare inclusions of plagioclase 454 and olivine are also found.

455 Olivine (Fo₅₁₋₈₃; see SD Electronic Appendix 3) is mostly subhedral or anhedral with slight
456 dissolution features (e.g. rounded edges) and core–rim zonation. The size of olivine phenocrysts
457 ranges between 0.2 and 1.5 mm.

458 Opaque Fe–Ti oxides (Uvsp₃₃₋₆₀, Spn₁₃₋₂₆, Mt₃₅₋₅₃; see SD Electronic Appendix 4) form euhedral
459 to anhedral phenocrysts or occur as inclusions in clinopyroxene and olivine crystals and in melt
460 embayments.

Whole rock compositions of SET1 and SET2 lava and the MtRs bomb sample (Table 3) are plotted in a TAS diagram in Fig. 3a. For comparison, bulk rock data of SET1 and SET2 samples analysed by Corsaro et al. (1996) and Mulas et al. (2016) were added. The 1669 volcanic products are hawaiitic in composition. We observe that there is a compositional offset between our samples and some of the samples analysed by Corsaro *et al.* (1996). Mulas *et al.* (2016) have also reported a similar offset. Our SET1 and SET2 samples are relatively similar in composition to SET1 samples from Corsaro et al. (1996) and to the pyroclast samples studied by Mulas et al. (2016). By contrast, SET2 lavas from Corsaro et al. (1996) have higher SiO₂, Al₂O₃ and total alkalis (Fig. 3a, 3b, 3c) and lower TiO₂ and FeO contents (Fig. 3d-e). Our SET1 and SET2 samples have similar MgO contents (Fig. 3h-1) to the SET2 samples of Corsaro et al. (1996). According to the petrological descriptions in Corsaro et al. (1996), their SET2 samples contain abundant plagioclase phenocrysts and as a result, a generally lower phenocryst colour index $(CI_{phx} = mafic mineral phenocrysts/total phenocrysts, vol.%; CI_{phx}=18)$ than their SET1 samples (CI_{phx}=36; see their Fig. 2). Such plagioclase-rich rocks are common at Mt. Etna and, when characterized by megacrystic plagioclase, are locally known as cicirara (see also Nicotra & Viccaro, 2012). Given that recent studies on porphyritic mafic systems have highlighted that accumulation of early mineral phases plays a major role on whole rock compositional variations (e.g. Sakyi et al., 2012; Larrea et al., 2013; Ubide et al., 2012, 2014), such variations need to be evaluated in terms of differential accumulation of phenocryst phases.

480 To investigate this possibility, we present selected variation diagrams of bulk rock data together 481 with representative phenocryst compositions as Supplementary Data (SD) in Electronic Appendix 482 5, following the approach of Ubide *et al.* (2014). The anomalous composition of *SET2* samples 483 from Corsaro *et al.* (1996) (i.e., higher concentrations in SiO₂, Al₂O₃ and total alkalis and lower 484 concentrations in FeO and TiO₂ than the other bulk rock samples; Fig. 3) would agree with

> preferential accumulation of plagioclase phenocrysts over olivine/clinopyroxene phenocrysts. In addition, we find that our samples have higher contents of CaO (mean 10.51 wt% SET1 and 10.36 wt% SET2) and lower concentrations of MgO (mean 5.15 wt% SET1 and 5.02 wt% SET2) than the SET1 samples (Fig. 3f, g) studied by Corsaro et al. (1996). This could be related to preferential accumulation of clinopyroxene over olivine in our samples. Therefore, we interpret that the small geochemical variations observed between bulk samples could be related to preferential accumulation of varied phenocryst phases. In other words, SET1 and SET2 lavas are likely composed of similar melts accumulating slightly varied phenocryst cargoes (SD Electronic Appendix 6).

494 OLIVINE ZONING & COMPOSITIONAL RECORD

Olivine zoning patterns

We studied a total of 202 olivine crystals (n=117 SET1; n=68 SET2; n=17 MtRs) across the 11 samples studied. 198 (98%) of the studied olivine crystals were characterized by systematic normal (decreasing forsterite contents towards the rims) and to a minor extent (2%, i.e. 4 crystals) also *reverse* (increasing forsterite contents towards the rims) zoning patterns. These are classified by zoning type into the same classification scheme employed by Kahl et al. (2015), who studied a total of 180 olivine crystals from recent (1991-2008) eruption products of Etna. The 1991-2008 olivines were characterized by multiple zoning patterns ranging from *normal* to *reverse*, or more *complex* zoning, with reversely zoned cores and normally zoned rims. Based on this large range of zoning patterns, Kahl et al. (2015) established 8 different zoning types (Type I - Type VIII). Extending that classification scheme to the 1669 olivines, we observe that the zoning patterns preserved in the 1669 olivines consist predominantly of simple *single-step* normal or reverse zonations. This finding contrasts with the diversity of olivine zoning patterns

Manuscript submitted to Journal of Petrology

1 2		
3 4	508	identified in the recent 1991-2008 eruption products. From the 8 zoning types (Type I - Type
5 6	509	VIII) described in Kahl et al. (2015), 6 could be recognized in the 1669 olivines. Of those, Types
7 8 9	510	IV and VII (Fig. 4) are the most abundant (186 crystals out of 202):
10 11 12	511	• <i>Type IV</i> represents normally-zoned crystals with intermediate core compositions of Fo75-
13 14	512	78 followed by low forsterite rims (~Fo ₅₅ for SET1; ~ Fo ₇₀ for SET2 and MtRs; Fig. 4a).
15 16 17	513	This zoning type is by far the most abundant observed in the 1669 samples. It is identified
18 19	514	in 71% (i.e. 144 crystals) of the studied olivines and can be found in all samples.
20 21 22	515	• <i>Type VII</i> describes normally zoned crystals (21%, i.e. 42 crystals) with cores at Fo73-75
23 24 25	516	and variable rim compositions (~Fo ₅₅ SET1 and ~Fo ₇₀ SET2; Fig. 4b). Together with type
26 27	517	IV this zoning type occurs frequently in the SET1 and SET2 olivines. In the MtRs bomb
28 29 30	518	sample, <i>type VII</i> could not be identified.
31 32 33	519	Besides these two dominant groups, minor zoning types (16 out of 202 crystals) have been
34 35 36	520	identified (see SD Electronic Appendix 7):
37 38	521	• <i>Type I</i> : Reversely zoned crystals with low forsterite (Fo ₇₀₋₇₂) cores and rim compositions
39 40 41	522	at Fo ₇₅ .
42 43 44	523	• <i>Type II:</i> Normally zoned olivines with high forsterite cores (Fo ₇₉₋₈₃) and rims of variable
45 46 47	524	composition (Fo ₇₀₋₇₁ for <i>SET2</i>).
48 49 50	525	• <i>Type VI:</i> Crystals consisting of weak reverse zoning with intermediate core compositions
51 52	526	(Fo ₇₃₋₇₅) followed by subtle increase of the forsterite content towards the rims (~Fo ₇₅) and
53 54	527	reverse zoning with decreasing forsterite values at the outermost rims (Fo72). The
55 56 57	528	occurrence of this zoning type is limited to the Monte Rossi bomb sample.
58 59 60		
00		http://www.petrology.oupjournals.org/

• *Type VIII:* Normally zoned crystals with low forsterite core composition at Fo₇₀₋₇₂ and rim compositions as low as Fo₅₅. This type is limited to *SET1* eruption products.

531 Olivine compositional record

Besides variable zonation sense and pattern, the 1669 olivine crystals differ in terms of their specific core and rim compositions; the observed olivine compositions vary over a considerable range from Fo_{51} up to Fo_{83} . In Fig. 5a, b frequency histograms illustrate the distribution of core and rim compositions of the 202 olivine crystals studied. All olivine data are provided in SD Electronic Appendix 8.

The observed core compositions display a narrow compositional spectrum ranging from Fo71 to Fo83 with a dominant peak at Fo_{75} (Fig. 5a). The rim compositions, however, show a much broader compositional range from Fo₅₁ up to Fo₇₈ (Fig. 5b). Overlap between the SET1 and SET2-MtRs does occur but is minor, affecting ~6 % of the crystals (i.e. 13 crystals), which have definably different compositional modes. We observe different modes in the rim compositional record of the SET1, SET2 and MtRs olivines. SET1 olivine rims display compositions ranging between Fo_{51} and Fo_{65} , whereas the SET2 and MtRs rims vary between Fo_{64} and Fo_{77} , with a peak at Fo_{69} (Fig. 5b). This will be discussed in more detail in the following section.

In Figures 5c-h minor element (MnO and CaO) plots of olivine core and rim compositions are shown. The olivine cores and rims show a negative correlation between forsterite and MnO content (Fig. 5c, d). The MnO contents of the olivine cores range between ~0.3 wt% for Fo₈₀₋₈₃ and 0.7 wt% for Fo₇₁. The rims have MnO contents ranging from 0.4 wt% for Fo₇₅ (*SET2* and *MtRs* samples) up to ~1.35 wt% for Fo₅₁ (*SET1* samples).

2	
~	
3	
-	
л	
4	
F	
5	
~	
6	
_	
7	
•	
8	
~	
\sim	
J	
1	Λ
•	0
1	1
I	1
4	2
L	2
4	2
	3
1	4
	-
1	5
	-
1	6
	•
1	7
ţ.	·
1	8
1	0
1	q
1	5
2	Λ
~	U
	1
2	1
~	2
2	2
~	2
2	3
~	
2	4
_	-
2	5
-	•
2	6
-	0
2	7
~	'
S	0
4	0
	0
2	9
~	^
J	U
კ ი	4
ა 3	1
3 3	1
3 3 3	1 2
3 3 3	1 2
3 3 3 3	0 1 2 3
3 3 3 3	0 1 2 3
3 3 3 3 3	0 1 2 3 4
3 3 3 3 3	0 1 2 3 4
3 3 3 3 3 3	0 1 2 3 4 5
3 3 3 3 3 3	0 1 2 3 4 5
3 3 3 3 3 3 3	0 1 2 3 4 5 6
3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6
3333333333	0 1 2 3 4 5 6 7
3 3 3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6 7
3333333333	0 1 2 3 4 5 6 7 8
3 3 3 3 3 3 3 3 3 3 3 3	0 1 2 3 4 5 6 7 8
3333333333	0123456780
333333333333	0 1 2 3 4 5 6 7 8 9
3 3 3 3 3 3 3 3 3 3 3 3 3 3	0123456789012345678901234567890
4	0
4	0
4	0
4 4	0 1
4 4 4	0 1 2
4 4 4	0 1 2
4 4 4	0 1 2
4 4 4 4	0 1 2 3
4 4 4 4	0 1 2 3 4
4 4 4 4	0 1 2 3 4
4 4 4 4	0 1 2 3 4
4 4 4 4 4	0 1 2 3 4 5
4 4 4 4 4	0 1 2 3 4 5
4 4 4 4 4 4	0 1 2 3 4 5 6
4 4 4 4 4 4	0 1 2 3 4 5 6
4 4 4 4 4 4 4	0 1 2 3 4 5 6 7
4 4 4 4 4 4 4	0 1 2 3 4 5 6 7
4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8
4 4 4 4 4 4 4 4	0 1 2 3 4 5 6 7 8
444444444444444444444444444444444444444	0 1 2 3 4 5 6 7 8 9
444444444444444444444444444444444444444	0 1 2 3 4 5 6 7 8 9
44444444445	0 1 2 3 4 5 6 7 8 9 0
44444444445	0 1 2 3 4 5 6 7 8 9 0
44444444455	0 1 2 3 4 5 6 7 8 9 0 1
44444444455	0 1 2 3 4 5 6 7 8 9 0 1
444444444555	0 1 2 3 4 5 6 7 8 9 0 1 2
444444444555	0 1 2 3 4 5 6 7 8 9 0 1 2
444444444555	0 1 2 3 4 5 6 7 8 9 0 1 2
44444444455555	0 1 2 3 4 5 6 7 8 9 0 1 2 3
44444444455555	0 1 2 3 4 5 6 7 8 9 0 1 2 3
444444444555555	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
444444444555555	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4
444444444455555555	0123456789012345
444444444455555555	0123456789012345
444444444455555555555555555555555555555	01234567890123456
444444444455555555555555555555555555555	01234567890123456
444444444455555555555555555555555555555	012345678901234567
444444444455555555555555555555555555555	012345678901234567
444444444455555555555555555555555555555	012345678901234567
444444444455555555555555555555555555555	01234567890123456

60

550 The CaO contents of the olivine cores and rims are less variable, and range between 0.2 and 0.4 wt% for the cores (Fig. 5e) and between 0.3 and ~0.6 wt% (Fig. 5f) for the rims. Combining the 551 552 CaO and MnO data, we find that the SET1 and SET2-MtRs olivines not only differ in their 553 forsterite contents but also in their minor element chemistry (Fig. 5g, h), defining distinct fields. 554 SET1 olivine rims are characterized by higher MnO and CaO contents than SET2 and MtRs rims. 555 We take this as evidence that the olivine rims of SET1 and SET2 formed within compositionally 556 different Magmatic Environments (MEs) that controlled both the major and minor element 557 chemistries. By contrast, SET1 and SET2 olivine cores formed within the same ME.

558 Comparison with olivine compositions from recent (1991-2008) eruptions of Mt. 559 Etna

560 For comparison, we have added in Figure 5 a-f the compositional range of the 5 different MEs 561 identified in populations of zoned olivines erupted between 1991 and 2008 from Etna volcano 562 (Kahl *et al.*, 2015).

563 We find that the core compositional record of the 1669 olivines plots within the range of known olivine compositions (i.e. Fo₆₅₋₈₃) from recent and historical Etna eruptions (e.g. Clocchiatti & 564 565 Métrich, 1984; Tanguy & Clocchiatti 1984; Chester et al., 1985; Métrich & Clocchiatti, 1989; 566 Corsaro et al., 1996; Spilliaert et al., 2006; Corsaro et al., 2009; Kahl et al., 2015). The most 567 dominant core population - that can be tracked throughout all 1669 eruption products - is Fo₇₅₋₇₈ 568 (144 crystals) followed by minor populations at Fo₇₃₋₇₅ (45 crystals), Fo₇₀₋₇₂ (10 crystals) and 569 Fo₇₉₋₈₃ (3 crystals). We observe that the two prominent olivine core populations in the 1669 570 products fall within the compositional range of the known Magmatic Environments (MEs) M_1 571 (=F075-78) and mm1 (=F073-75; Fig. 5).

572 Regarding rim compositions, we observe two clearly distinct groups in the 1669 olivine dataset:

SET2 and MtRs: The rim compositional record of the SET2 and MtRs olivines displays two dominant populations at Fo₆₅₋₆₉ (49 crystals) and Fo₇₀₋₇₂ (30 crystals) and fall within the range of known Magmatic Environments M_3 (=Fo₆₅₋₆₉) and M_2 (=Fo₇₀₋₇₂) described in Kahl et al. (2015). Minor populations can be observed at Fo₇₃₋₇₅ (4 crystals) and Fo₇₅₋₇₈ (2 crystals) and resemble the MEs defined by the olivine cores [i.e. M_1 (=Fo₇₅₋₇₈) and mm₁ $(=Fo_{73-75})].$

SET1: The SET1 olivine rim compositions define a new compositional trend undetected in the recent eruption products. SET1 rim compositions can be roughly subdivided into two populations, one at Fo_{60-65} (17 crystals) and a second, bimodal population between Fo_{51} and Fo_{59} (99 crystals) with subtle peaks at Fo_{54} and Fo_{57} , respectively (Fig. 5b). From the minor element plots we can observe that both populations clearly differ from others by higher MnO and CaO contents (Fig. 5d, f). We infer therefore that SET1 olivine rims formed in a Magmatic Environment distinct from those seen in recent products, which we define here as M₅.

Olivine trace element mapping

6

LA-ICP-MS element maps were obtained for selected olivine crystals Ol-5 (Type IV), Ol-12 (Type IV) and Ol-21 (Type IV) from sample 1-6 (SET1 lavas), Ol-1 (Type IV) and Ol-4 (Type IV) from sample 2-4 (SET2 lavas), and Ol-4 (Type IV) and Ol-6 (Type VI) from the MtRs bomb. Representative maps for minor and trace elements are presented in Fig. 6.

Olivine crystals show homogeneous cores and normally-zoned rims. Concentrations in Mg and Ni decrease from the core to the rim of the crystals, and concentrations in Fe, Mn and Ca increase accordingly. Such compositional change is observed in all analysed crystals, supporting EMP results. In addition, LA-ICP-MS maps show that core-rim zoning is sharper in SET1 olivines,

which show thicker, better developed rims than *SET2-MtRs* olivines (Fig. 6). Concentrations in
V, Cr, Al, P, Sc and Ti are largely homogeneous across all olivine crystals and no zoning has
been detected for these elements.

In summary, the detailed investigation of major, minor and trace element zoning profiles in 202 olivines reveals the existence of distinct compositional zonation (typically normal zonation) throughout all eruption products studied (SET1, SET2 and MtRs). This observation contrasts with the finding of Corsaro et al. (1996), in which the lack of compositional zoning in olivine phenocrysts (cores: F_{073-77} ; rims: F_{073-74}) was reported suggesting a sub-solidus homogenization, due to diffusive relaxation. An interesting observation arising from this study that has not been reported so far is the compositional variability and difference between the SET1 and SET2-MtRs olivine rims indicating that the olivine crystals (and their melts) experienced distinct and different late-stage magmatic histories following the formation of the cores. Although the SET1 and SET2 samples investigated in this study are rather similar in whole rock composition, we find that in-situ compositional information locked in the chemical stratigraphy of zoned olivine crystals reveals significant differences between the SET1 and SET2-MtRs samples.

11

UNRAVELLING THE ZONING RECORD

As outlined in Kahl *et al.* (2011 & 2015) a characteristic that all identified olivine populations have in common, is the existence of so-called compositional plateaux: zones or regions within a crystal characterized by constant forsterite values (Fig. 4; SD Electronic Appendix 7). The occurrence of these plateaux was attributed to the stepwise growth of the crystals within different MEs, which in turn may be characterized by a different set of thermodynamic parameters (e.g. temperature, pressure, oxygen fugacity, water content and melt composition). In order to produce extended plateaux of constant forsterite contents the ambient parameters must have been kept

constant during growth, otherwise continuous variations in the compositional profiles (as
observed during cooling or fractionation) rather than plateaux with sudden jumps, would be
expected (Kahl *et al.*, 2015).

We make use of the method outlined in Kahl et al. (2011) to illustrate the comprehensive zoning record preserved in the studied olivine crystals in Systems Analysis diagrams (Fig. 7). To improve the visibility of these diagrams we discarded connection lines that are recorded by fewer than 2 crystals from the individual Systems Analysis plots (Fig. 7). A total of 6 crystals (1 from SET1; 2 from SET2 and 3 from MtRs) were affected by these reductions. We found 8 crystals that are homogeneous (Fo₇₅₋₇₈) without compositional zoning and are therefore also not displayed in the Systems Analysis plots. This explains why the number of connection lines (and therefore crystals) shown in Figure 7 (i.e. 188) is less than the total number of crystals (i.e. 202) analysed.

We could identify 6 different MEs that account for the compositional diversity observed in the 1669 olivines. Of these, two are so called '*core environments*' because the majority of the olivine cores have formed in them, i.e. M_1 (=Fo₇₅₋₇₈) and mm_1 (=Fo₇₃₋₇₅). The other four are '*rim environments*' in which the *SET1* and *SET2-MtRs* olivine rims crystallized, i.e. M_2 (=Fo₇₀₋₇₂), M_3 (=Fo₆₅₋₆₉), M_4 (=Fo₆₀₋₆₅) and M_5 (=Fo₅₀₋₅₉). Of these, M_3 and M_5 are dominant.

The thickness of the connections lines shown in Fig. 7a-c is directly linked to the number of crystals tracking a certain connectivity path (i.e. connection between two MEs). The majority of the MEs such as M_1 (=Fo₇₅₋₇₈), M_2 (=Fo₇₀₋₇₂) and mm_1 (=Fo₇₃₋₇₅) were already identified in the 1991-2008 olivines where it was found that these MEs are well-connected in the 'modern' plumbing system of Etna (Kahl *et al.*, 2015). On the other hand, more evolved environments such as M_3 (=Fo₆₅₋₆₉) were only occasionally identified in the 1991-2008 samples. In fact, the only recent samples possessing a dominant population of olivines recording a highly-evolved

environment M₃ (=Fo₆₅₋₆₉) were those related to paroxysms (e.g. April 11, May 7 and September 9) of the 2007 summit activity. Given the scarcity of examples, the M_3 environment was previously believed to represent a transient, rarely sampled feature of the plumbing system (Kahl et al., 2015). The 1669 products, by contrast, present abundant evidence (i.e. rim compositions of olivines; Fig. 5) that MEs containing highly-evolved magmas such as M_3 (=Fo₆₅₋₆₉), M_4 (=Fo₆₀₋₆₅) and M_5 (=Fo₅₀₋₅₉) could have played a major role in historical eruptions at Mt. Etna and are likely to represent long-term features of Etna's historic plumbing system. Highly-evolved environments environment such as M_4 (=Fo₆₀₋₆₅) and M_5 (=Fo₅₀₋₅₉) have not been shown to be involved in modern activity (Viccaro et al., 2015; M. Pompilio pers. com.), implying that significant changes have occurred over historical time.

In the following paragraphs, we describe the connection history observed through the SystemsAnalysis of the 1669 eruption products and we discuss how connectivities change over time.

1669 SET1. In the *SET1* olivines we observe mainly two dominant connection patterns (Fig. 7a), interlinking the '*core environments*' M_1 (=Fo₇₅₋₇₈) and mm_1 (=Fo₇₃₋₇₅) with the highly evolved '*rim environment*' M_5 (=Fo₅₁₋₅₉). Besides the main connection routes M_1 - M_5 (65 crystals) and mm_1 - M_5 (23 crystals), there are minor routes connecting the environments M_1 - M_4 (14 connections) and M_2 - M_5 (7 connections).

1669 SET2. The *SET2* olivines also display two dominant populations (Fig. 7b) tracking the 660 connections M_1 - M_3 (33 crystals) and M_1 - M_2 (17 crystals). Few crystals record the histories mm₁-661 M_2 (8 crystals) and mm₁- M_3 (6 crystals).

1669 MtRs. In this sample we find olivines that record fewer connections. We observe one 663 population (8 crystals) that tracks the connection M_1 - M_3 (Fig. 7c). Minor connections are related 664 to the environments mm₁- M_2 (2 crystals) and M_1 -mm₁ (2 crystals). The connection patterns in the

MtRs olivines show a close resemblance to those found in the *SET2* olivines (Fig. 7c), suggesting 666 that the crystals contained in the *MtRs* and the *SET2* magmas experienced the same late-stage 667 magmatic history.

In summary, from the combined Systems Analysis record of the 1669 samples, we find that the vast majority (96%) of the olivine cores record a common early stage magmatic history related to crystal growth or residence in the Magmatic Environments M_1 (=Fo₇₅₋₇₈; i.e. 139 crystals) and mm_1 (=₇₃₋₇₅; i.e. 42 crystals). The identification of four different '*rim environments*' [i.e. M₅ (=Fo₅₀₋₅₉; 98 crystals), M₄ (= Fo₆₀₋₆₅; 14 crystals), M₃ (=Fo₆₅₋₆₉; 47 crystals) and M₂ (=Fo₇₀₋₇₂; 27 crystals)] suggests diverging late stage magmatic histories in *SET1* vs. *SET2-MtRs* samples, following the formation of the olivine cores in the dominant environment M₁.

675 CHEMICAL & PHYSICAL CHARACTERISTICS OF MAGMA STORAGE

We applied thermodynamic calculations using the *rhyolite-MELTS* software (Gualda *et al.*, 2012;
Ghiorso & Gualda, 2015) to characterize the MEs in which the cores and the different rims of the *SET1* and *SET2-MtRs* olivines formed.

Following the modelling procedure outlined in Kahl *et al.* (2015), we started with the identification of appropriate starting compositions (glass or whole rock) from which the most primitive olivine composition observed [i.e. M_1 (=Fo₇₅₋₇₈)] could have crystallized. The bulk composition of magma provides the largest source for variability. Therefore, we checked carefully the given range of bulk compositions (Table 3) for the *SET1*, *SET2* and *MtRs* samples. We find that each of these compositions could be in equilibrium with the most primitive olivine population (Fo₇₅₋₇₈) identified in the 1669 Etna eruption products. In addition to major element chemistry, water contents and the prevalent oxygen fugacity conditions (fO₂) can have a significant impact on crystallization paths (e.g. Kahl *et al.*, 2015). Micro-analytical studies of olivine hosted melt inclusions (MIs) in the 1669 eruption products reveal variable, but low, total water contents (1.0 - 0.3 wt.%, e.g. Clocchiatti & Métrich, 1984; Métrich & Rutherford, 1998). The oxidation state of Etna lavas has been constrained by the type of Fe-Ti oxides present (e.g. Métrich & Clocchiatti, 1996; Kahl et al., 2011), as well as through experimental studies (e.g. Pompilio & Rutherford, 2002), to lie in the vicinity of the Ni–NiO reaction (NNO) oxygen fugacity buffer.

The forward modelling strategy using the *rhyolite-MELTS* software (Gualda *et al.*, 2012; Ghiorso & Gualda, 2015) was defined as follows. We started with the melt compositions provided in Table 3 simulating fractional crystallization, following the demonstration by Kahl et al. (2015), that equilibrium crystallization cannot explain observed compositional diversity in modern Etna samples. Fractional crystallization was modelled along different fO₂ paths (QFM or NNO) for different initial water contents (1.5 wt% to dry). Finally, the P-T space was scanned along isobaric lines (3.0-0.5kbar) at a temperature range starting from liquidus down to 1050°C, in agreement with the lowest temperatures obtained by geothermometry ($1070 \pm 20^{\circ}$ C; $1081 \pm 17^{\circ}$ C, Kahl et al., 2015) applying the geothermometer of Loucks (1996), at intervals of 5°C. The sets of conditions at which olivines corresponding to the different MEs could have formed are shown in figure 8 and the results of the MELTS simulations are summarized in SD Electronic Appendix 9. The applied conditions were considered plausible for a given ME only when the full compositional range of olivine corresponding to that ME (e.g. Fo_{75-78} for M₁) could be obtained.

At melt water contents ranging from dry to 1.1 wt.%, olivine compositions corresponding to the Magmatic Environment M_1 can be obtained at QFM or NNO, temperatures between 1060-

1170°C and pressures \leq 1kbar (Fig. 8a-d). M₁ olivines typically coexist with clinopyroxene, plagioclase and Fe-Ti oxides with compositions that lie within the observed range of natural compositions (An₅₆₋₈₅, Corsaro et al., 1996; Mg#₇₃₋₉₃ and Mt₃₅₋₅₂, this study). At QFM, the obtained clinopyroxene compositions (i.e. $Mg\#_{81-83}$) match the mafic end of the observed natural compositions whereas the modelled plagioclase compositions (i.e. $An_{66,75}$) fall within the intermediate range of observed natural compositions. The simulated Fe-Ti oxide compositions (i.e. Mt₃₅₋₃₈) match the lower end of natural compositions. At NNO, the results are similar, with the distinction that the obtained Fe-Ti oxide compositions (i.e. Mt₅₀₋₅₇) fall outside the compositional range of observed Fe-Ti oxides.

These observations are in agreement with the results presented in Kahl et al. (2015). These authors found that M₁ olivines form at OFM or NNO, temperatures $\geq 1110^{\circ}$ C and melt water contents between 0.1 and 1.4 wt.% coexisting with clinopyroxene (Mg $\#_{80-85}$), plagioclase (An₅₀₋ ₈₃) and Fe-Ti oxide (Mt₄₅₋₅₈), using a bulk rock composition of the 2002-2003 S-flank eruption of Mt. Etna (MgO content 8.17wt%) as the starting composition. M₁-type olivines coexisting with An-rich (An₈₀₋₈₃) plagioclase at QFM or NNO and low melt water contents could only be reproduced at low pressures between 0.25 and 0.75kbar. The only distinction to the results obtained in the present study is that M_1 olivines and Fe-Ti oxides could only coexist at oxygen fugacity conditions buffered at NNO (Kahl et al., 2015).

Evolved olivine compositions corresponding to M_3 (=Fo₆₅₋₆₉) can be reproduced primarily under QFM conditions and lower temperatures (below 1140°C). M_3 olivines form at melt water contents ranging from dry up to 1.3wt% at all pressures considered (0.5- 3.0kbar) (Fig. 8a, c) together with clinopyroxene (Mg#_{74.5-78.4}), plagioclase (An₅₃₋₆₄) and Fe-Ti oxide (Mt₄₃₋₅₂). At NNO, M_3 olivines form at high pressures (i.e. 2.0-3.0kbar; Fig. 8b) and dry conditions only,

together with clinopyroxene (Mg# $_{74-79}$). Kahl *et al.* (2015) were able to reproduce M₃ olivines at QFM, low melt water contents (0.2-0.4 wt. %), temperatures below 1100°C and all pressures considered (0.5-3.0kbar) together with clinopyroxene, plagioclase and Fe-Ti oxides with the observed compositions.

The most evolved olivine compositions M_5 (=Fo₅₁₋₅₉) identified in the 1669 samples form at QFM only, under dry conditions, temperatures below 1100°C and pressures between 1.0 to 3.0kbar (Fig. 8a). At these conditions only clinopyroxene (Mg#74) forms with the observed compositions. Olivines of this composition could not be reproduced in the study of Kahl *et al.* (2015).

From our MELTS simulations we find that plagioclase is the liquidus phase of 1669 magmas at all pressures and water contents considered. We observe that An-rich plagioclase compositions (i.e. An_{80-85}) are not in equilibrium with any of the observed olivine populations and can form at pressures from 0.5 to 3.0kbar, melt water contents of 1.5 and 2.5 wt% (the latter for An₈₅) and temperatures between 1090-1144°C, irrespective of the oxygen fugacity conditions. The bulk of the more evolved plagioclase compositions (i.e. $An_{53,75}$), however, form in equilibrium with the observed olivine populations (An₅₃₋₆₄ with M₃; An₆₆₋₇₅ with M₁) but at lower melt water contents (dry to 1.3 wt.%). The most evolved olivine population M_5 does not coexist with plagioclase compositions in the observed range. We believe that the lower water contents, at which the bulk of the evolved plagioclase crystals form in equilibrium with the majority of the observed olivine and evolved clinopyroxene compositions, could be related to shallower depths reached by SET1 and SET2 magmas (P <800bars; e.g. Métrich & Rutherford, 1998). In summary, the observed differences in the MEs the olivines and their melts passed through are mainly related to changes in the melt water content, oxygen fugacity and temperature.

755 TIME-INTEGRATED APPROACH - DIFFUSION MODELLING

Following the approach outlined in Kahl et al. (2011 & 2013) we have modelled the diffusive relaxation of compositional zoning profiles in 150 olivines from SET1 and SET2 samples. The criteria for the choice of concentration profiles for modelling and tests for robustness have been reported in full detail in, e.g. Kahl et al. (2011 & 2013) and Costa et al. (2008). We note that the compositional zoning profiles preserved in olivines from the Monte Rossi (MtRs) bomb sample were not robust enough (i.e. weak zoning) for diffusion modelling and these crystals were therefore discarded. The application of diffusion modelling to the identified olivine populations allows us to (i) assess the timing and duration over which the crystals (plus their associated melts) have been transferred between the different MEs identified and (ii) reconstruct the residence times of the SET1 and SET2 magmas within different sections of the plumbing system prior to eruption.

767 Modelling approach

For our modelling approach, we made use of the following 1-D expression of the diffusion
 equation (i.e. Fick's 2nd law)

$$\frac{\partial C_i(x,t)}{\partial t} = \frac{\partial}{\partial t} \left(D_i \frac{\partial C_i(x,t)}{\partial x} \right) \tag{1}$$

where C_i is the concentration of element i, *x* denotes the distance, D_i is the diffusion coefficient of element *i*, and *t* is time. The evolution of the concentration with time (t) at different spatial coordinates (x), C_i (x, t), is obtained numerically using a one-dimensional finite difference scheme. An example diffusion *Mathematica* code is provided as Supplementary Data (Electronic Appendix 9) of Kahl *et al.* (2015) but can be obtained from the authors. In this study, we focused predominantly on Fe-Mg zoning in olivine, using Fe-Mg diffusion coefficients obtained by

 Dohmen *et al.* (2007a, b). Minor (Mn, Ca, Ni) and trace element (Al, P, Ti, Cr) profiles were
obtained and carefully checked using EMP analysis and high-resolution LA-ICP-MS mapping
(Ubide *et al.*, 2015; Fig. 6), but did not yield characteristic zoning patterns that could be used for
diffusion modelling.

As diffusion of most elements in olivine is strongly orientation-dependent with respect to the crystal lattice, we have taken into account the effects of diffusion anisotropy. For this purpose, the orientation and the angular relation of the crystallographic a-, b- and c-axis in the analysed olivine crystals was determined using electron backscatter diffraction techniques EBSD (see Analytical methods for more details).

786 Input parameters - temperature & oxygen fugacity (fO₂)

Magmatic temperatures were determined using the Fe–Mg exchange geothermometer between coexisting clinopyroxene and olivine rims (Loucks, 1996) and were $1070 \pm 20^{\circ}$ C. The oxygen fugacity (fO₂) conditions were set to QFM, given that at this temperature range, thermodynamic calculations using *rhyolite-MELTS* (Gualda *et al.*, 2012; Ghiorso & Gualda, 2015) indicate that M₃- and M₅-type olivine cannot be formed at NNO (Kahl *et al.*, 2015).

Examples of calculated diffusion models that fit the concentration profiles are shown in Figure 9.
Propagation of errors and uncertainties of the obtained timescales were performed following the
procedure described in Kahl *et al.* (2015). A frequency distribution of all calculated timescales is
shown in Figure 10a.

Timescale results

Applying the procedures outlined above we obtained 150 time estimates (*SET1*=109; *SET2*=41)
from modelling the diffusive relaxation of Fe-Mg zoning profiles in 150 olivine crystals (Fig.

10a). A summary with all modelled timescales and the sequence of MEs as recorded in the chemical stratigraphy of the crystals is provided in Table 4. The observed distribution of timescales is fairly large ranging from a minimum of a few days up to a maximum of 1.5 years, with the majority (76%) to the obtained time estimates being shorter than 3 months (Fig. 10a). The observed array of timescales is in good agreement with results from recent Etna eruptions (e.g. Kahl et al., 2011, 2013 & 2015) and other basaltic volcanoes (e.g. Albert et al., 2015; Viccaro et al., 2016c; Rae et al., 2016; Hartley et al., 2016). Corresponding timescales of SET1 (red circles) and SET2 (green squares) olivines are shown in Figure 10b. The horizontal bars represent the associated 1σ errors related to uncertainties from geothermometry (see Kahl *et al.*, 2015 for details on error propagation procedures).

809 1669 SET1. Time estimates related to the initial stages of the eruption (i.e. March 11 – 20, 1669)
810 range from 16 days up to 1.5 years with the majority (61%) being shorter than 3 months (Fig.
811 10b).

812 1669 SET2. Time estimates related to the second half (i.e. post-March 29, 1669) of the eruptive
813 activity are shifted towards slightly shorter timescales (10 days up to ~5 months) with the
814 majority (71%) being shorter than 2 months (Fig. 10b).

4 815 **Timing of magma transfer**

Kahl *et al.* (2011, 2013 & 2015) demonstrated that the application of Systems Analysis to populations of zoned olivine crystals can be used to uniquely link the compositional information preserved in the chemical stratigraphy of olivines with the transport dynamics of their associated melts. Extending this approach to the 1669 olivines enables us to decipher diverging magmatic histories in the *SET1* and *SET2-MtRs* olivines related to different magma transfer pathways connecting the '*core*' and the '*rim*' MEs. To get an idea of the timing and duration of magma Page 37 of 86

transfer between these environments we have plotted the frequency of intrusive events as functions of the different migration routes identified in the Systems Analysis in Figure 11. The intrusion times have been re-calculated by successively subtracting the modelled olivine timescales from the assumed eruption dates of the *SET1* (i.e. March 19, 1669) and *SET2* (i.e. April 04, 1669) samples.

We observe that magma migration activity along the most prominent connection route M_1 - M_5 (65) crystals; Fig. 7a), as recorded in the SET1 olivines, occurs over a range of timescales from 16 days up to 1.5 years (Fig. 10b). The communication between the environments M₁ and M₅ started 1.5 years (October 1667) prior to eruption onset on March 11, 1669. Starting in October and becoming more frequent since November 1668, intrusion activity along this route re-kindled and continued until shortly before the onset of eruptive activity (Fig. 11). Magma transfer along other, minor routes such as mm₁-M₅ (26 crystals; Fig. 7a), M₁-M₄ (14 crystals; Fig. 7a) and M₂-M₅ (7 crystals; Fig. 7a) occurred over shorter timescales (22 days up to 8 months; Fig. 10b) starting between mid-October and early-November 1668, and becoming more frequent towards the eruption onset (Fig. 11). We also find that the magma migration activity along M_1 -M₅ decreased in the short term (i.e. days) before the onset of the eruption, as indicated by a decreasing number of crystals recording this event (Fig. 11).

The *SET2* olivines record a different late stage magmatic history, with the pathway M_1 - M_3 (33 crystals; Fig. 7b) as the main transport route. Communication between the environments M_1 and M_3 commenced between mid- to late-November 1668 and was soon followed by mixing activities along other, minor routes such as M_1 - M_2 (17 crystals; Fig. 7b), mm_1- M_2 (8 crystals; Fig. 7b) and mm_1 - M_3 (6 crystals; Fig. 7b). Timescales related to these minor connection routes are shorter (13 days up to 3 months; Fig. 10b) and mixing occurred from mid-December 1668 (Fig. 11). Taking

the number of crystals as evidence of intensity, we observe that the intrusive and mixing activity along all routes *increased* in the short-term (i.e. February 1669) both prior to and following the eruption onset (Fig. 11).

Occasionally, we also find rare olivine crystals (n=2) that record entrainment of 'older' olivine cores of more mafic composition, i.e. M₀ (=Fo₇₉₋₈₂, see Kahl *et al.*, 2015 for more details) from the surrounding crystal mush. These olivines are overgrown by more evolved rims of composition M_5 (=Fo₅₁₋₅₉) or M_2 (=Fo₇₀₋₇₂) and the corresponding timescales suggest that the crystals were entrained in their respective host melts sometime between late-December 1668 and mid-January 1669. This coincides with the observed trend of increasing magma migration and/or mixing activity and the development of a branched shallow magma transport system commencing in November 1668 and continuing until the eruption onset (Fig. 11), with two dominant but diverging magma pathways (M_1 - M_5 and M_1 - M_3) as recorded by the SET1 and SET2-MtRs olivines.

858 PUTTING OBSERVATIONS INTO A MODEL: THE CHRONOLOGY OF 859 MAGMATIC EVENTS

Combination of the information obtained from the Systems Analysis of the olivine zoning record and temporal information from modelling the diffusive relaxation of such zoning allows reconstruction of the sequence of magmatic events in the internal plumbing system of Etna volcano before and during the 1669 eruption. By considering the chemical stratigraphy preserved in 188 olivine crystals we can infer that olivine crystals resided in or interacted with six different Magmatic Environments (MEs) prior to eruption (Fig. 7).

We observe that the vast majority (74%) of the olivine cores are connected to the dominant Magmatic Environment M_1 (=Fo₇₅₋₇₈) whose existence can be tracked throughout all studied eruption products (i.e. SET1, SET2-MtRs). The occurrence of large olivine cores with compositional plateaux predominantly at $F_{0.75,78}$ suggests, that the crystals have resided in M_1 for a significant period of time before moving on to other MEs. Furthermore, we find that these core compositional plateaux form groups or clusters in variation diagrams (Fig. 5e, g). Taking the extent of the observed compositional plateaux as evidence we infer that the instantaneous ambient conditions within M_1 were held constant during the crystallisation of olivine cores. Such constant conditions can exist for example within a large reservoir (e.g. sill or dyke) without large-scale convection. We suggest that a reservoir M_1 existed at shallow levels (P \leq 1kbar) within Etna's plumbing system containing a partially degassed melt (up to 1.1 wt %; ~5.1 wt% MgO) in equilibrium with olivine (Fo₇₅₋₇₈), clinopyroxene (Mg $\#_{81-83}$), plagioclase (An₆₆₋₇₅) and Fe-Ti oxide (Mt₃₅₋₅₂ depending on the fO₂: QFM or NNO buffer) at temperatures \leq 1170°C. The depth range $(\leq 1 \text{ kbar}; \leq 3 \text{ km})$ at which M₁ olivine cores can be formed correlates with the top part of a main magma storage volume (Fig. 12a) that was identified between ~2km bsl down to 8-9km bsl (e.g. Patanè et al., 2013; Bonaccorso et al., 2011). This body lies along the western border of the high Vp velocity body (HVB) (Aloisi et al., 2002; Patanè et al., 2003, 2006) and is interpreted as the consensus main pathway for magma transport and magma accumulation at Mt. Etna (e.g. Patanè *et al.*, 2013).

The 1669 (*SET1* and *SET2-MtRs*) olivine rims are more diverse in composition, ranging from Fo₅₁ to Fo₇₈, and form distinct trends in variation diagrams (Fig. 5d, f) indicating that the conditions under which the olivine rims formed were more variable. Our MELTS modelling results suggest that the *SET1* (M_5 =Fo₅₁₋₅₉) and *SET2* (M_3 =Fo₆₅₋₆₉) rim populations can be obtained over a much broader pressure range (0.5-3.0kbar) and variable water conditions (dry up to 1.3wt%). Taking these observations as evidence, we think that the *SET1* and *SET2-MtRs* olivine rims could reflect crystallization under polybaric conditions within two different environments M₅ and M₃, which are characterized by variable temperatures, water contents and oxygen fugacity conditions. Polybaric crystallisation of SET1 and SET2-MtRs olivine rims agrees with findings from textural, compositional and thermobarometric studies of Etna plagioclase and clinopyroxene (Giacomoni et al., 2014 & 2016; Armienti et al., 2013). These studies suggest that clinopyroxene and plagioclase crystallization - although starting at different depths (Fig. 12b) -occurs continuously under polybaric conditions through a vertically-extended feeding system containing different magma crystallization levels (Giacomoni et al., 2014 & 2016; Armienti et al., 2013). The stability field of plagioclase and clinopyroxene further indicates a large variability of the water content within Etna's plumbing system (Giacomoni et al., 2014 & 2016). This observation agrees with the variable water contents under which the different olivine rim and core populations identified in this and previous studies (Kahl et al., 2015) could be obtained via thermodynamic modelling.

Combining the above observations with the temporal record, obtained from diffusion modelling of 150 olivine crystals, we can derive the following schematic scenario of magmatic events in the plumbing system of Mt. Etna that could have lead to the 1669 flank eruption:

We believe that after the formation of the olivine cores under relatively constant conditions, possibly within a larger reservoir M₁ located at relatively shallow levels (P \leq 1kbar; \leq 3km) within Etna's plumbing system, the reservoir was intruded by a batch of more evolved, degassed and possibly aphyric M_5 -type magma (Fig. 12c). From the comprehensive timescale record (n=109) of the SET1 olivines, we observe that intrusions into M₁ occurred as early as 1.5 years (October 1667) prior to the eruption onset. From October 1668, these injections became more frequent, and the SET1 olivine rims began crystallizing. Due to the fact, that M_5 olivines only form rims, and never occur as cores in the SET1 samples, plus considering the broad pressure

Page 41 of 86

915 range under which they can be formed, we suggest that the M_5 environment could represent a 916 feeder dyke or conduit. *SET1* olivine rims grow in this conduit as it transects the M_1 reservoir and 917 propagates further to the surface (Fig. 12c). This scenario would agree with the lack of M_5 -type 918 olivine cores and would also explain why the rims can be obtained over a broader pressure 919 interval.

The steady replenishment of M₁ that initiated in October 1668 and continued until shortly before the eruption onset has probably fluidized and eroded the surrounding magma mush, resulting in the formation of a local "mixing bowl" (Bergantz et al., 2015; Schleicher et al., 2016) within the reservoir M₁. The formation of such a mixing bowl is evidenced by the core and rim compositions of a minor subset of olivines from the SET1 samples, which refer to the MEs M₄ (=Fo60-65), M_2 (=Fo70-72) and mm_1 (=Fo73-75). The existence of such a local mixing bowl is further underpinned by the corresponding timescale determinations (Fig. 11). We observe, for example, that a major intrusive event (i.e. M_1 - M_5) is followed by a delay of only a few days or weeks by a mixing (e.g. M_1 - M_4) or entrainment (e.g. M_2 - M_5 and mm_1 - M_5), event involving a subset of crystal cores or rims that formed in these minor magmatic environments (Fig. 11). In this sense, we think that these minor ME connections identified in Systems analysis of the SET1 olivines (Fig. 7a), refer to local mixing trajectories reflecting fluidization and/or mixing within the M_1 reservoir as time proceeds. Starting in November 1668, only a few weeks after the first intrusive episode into the M_1 reservoir, a second pulse of magma injections (M_3 -type magma) is observed. However, this time the intrusive event is recorded by the SET2 olivines, and marks the onset of simultaneous magma injections, along two different pathways (M₁-M₅ and M₁-M₃), into the mutual reservoir M_1 (Fig. 12d). The intrusion frequency of M_3 -type magma into M_1 increased notably from December 1668, and is again followed by mixing activities along minor connection routes (Fig. 11). As mentioned before, the steady injections of M₃ have probably caused the formation of another, localised "mixing bowl" within M₁, in which the surrounding magma mush will be fluidized and eroded. This again is evidenced by a minor subset of core and rim populations recognized in the SET2 (and MtRs) olivines [i.e. mm₁(=Fo₇₃₋₇₅), M₂(=Fo₇₀₋₇₂)] and a short delay in the corresponding timescale record (Fig. 11). Similar to the M₅-type olivine rims observed in the SET1 samples, we find that the M_3 -type rims can form under variable conditions (i.e. temperature $\leq 1140^\circ$, dry-1.3wt% water contents, pressure 0.5-3.0kbar). We assume therefore that the environment M_3 could represent a second feeder dyke in which the M_3 -type olivine rims started to crystallize [possibly together with clinopyroxene (Mg $\#_{74-79}$), plagioclase (An₅₃₋₆₄) and Fe-Ti oxide (Mt_{43-52})] when the dyke hit the major reservoir M_1 , where the previously formed olivine cores have been picked up (Fig. 12d). The simultaneous recharge of the reservoir M_1 , along the two different routes M_1 - M_5 and M_1 -

M₃, increased steadily from November 1668 (evidenced by the large number of crystals tracking these events) and remained high in the weeks and days prior to the eruption onset on March 11, 1669 (Fig. 11). We observe, however, that in the immediate days before the eruption, the number of crystals recording the recharge of M_5 into M_1 decreased (Fig. 11). We speculate that the steady replenishment of M_1 , in the months and weeks prior to the eruption, could have enhanced the build-up of overpressure inside the reservoir. This may have resulted in the opening of a new fracture system that gave rise to the development of a branched shallow feeder system with two dominant, but diverging, magma pathways $(M_1-M_5 \text{ and } M_1-M_3)$ facilitating the sequential transfer of magma into the main conduit system (Fig. 12d, e). We note that seismicity increased ca. 2 weeks (e.g. Mulas et al., 2016 and references therein; Tanguy and Patanè, 1996) before the eruption onset, and we suggest that this could be related to SET1 magma intruding the main conduit system. Then, in the early hours of March 11, a dry fracture system opened on the south flank of Etna, between Mt. Frumento (2800m a.s.l.) and Piano San Leo (1200 m a.s.l.), enabling

 lateral draining of the *SET1* magma and starting the eruption (Mulas et al., 2016 and referencestherein) (Fig. 12e).

Following the eruption of the *SET1* samples, the injection frequency of M_3 into M_1 remained high and persisted throughout the eruption onset as recorded by the *SET2* olivines (Fig. 11). It appears that shortly after the eruption onset, the local magma transfer dynamics changed resulting in the disruption of the dominant pathway M_1 - M_5 , as indicated by a decreasing number of *SET1* olivines tracking this history. Instead, the pathway M_1 - M_3 became a dominant feeder that promoted syn-eruptive recharge and mixing in the weeks following the eruption onset (Fig. 12e), resulting in the eruption of the *SET2* (and MtRs) magma.

We can only speculate about the causes for the change in transfer dynamics. One possible explanation could be a pressure-induced change of the local stress field caused by the system inflating with magma and repeated dyke injections (e.g. Bonafede & Danesi, 1997; Acocella & Neri, 2003) of M_3 into M_1 . Alternatively, it could be that the supply of M_5 magma simply decreased, resulting in the interruption of the M_1 - M_5 pathway.

We want to stress here that whilst the development of a branched feeder system is only one possible scenario that can account for the events recorded in the chemical stratigraphy of the 1669 olivines, it is not without precedent. Kahl et al. (2013) observed for the 2006 summit eruptions that differences in the connectivity patterns of zoned olivine populations existed for the July and October episodes. They proposed that these could have been due to fluctuations in the prevalent magma transport regime. They concluded that such short-term fluctuations - occurring within months from each other - could be associated with modifications of the shallow plumbing system; this would be an analogous event to that proposed for 1669. As further evidence, the

985 olivine rims of *SET1* and *SET2* track divergent late-stage magmatic histories (M_1 - M_5 and M_1 - M_3) 986 that are inconsistent with the progressive emptying of a mixed or hybrid reservoir.

987 CONCLUSIONS

We have applied a three-way integrated methodology linking a Systems Analysis with a time-integrated study of zoned olivine populations and a forward modelling approach using thermodynamic calculations with *rhyolite-MELTS* to constrain the nature and dynamics of magma transfer and magma mixing before and during the 1669 flank eruption of Etna volcano. System Analysis of the compositional zoning record preserved in 202 olivine crystals revealed the existence of three distinct Magmatic Environments (MEs) in which the majority of the olivine cores $[M_1 (=Fo_{75.78})]$ and rims [i.e. $M_5 (=Fo_{51.59})$ and $M_3 (=Fo_{65.69})]$ formed. Application of thermodynamic calculations with the *rhvolite-MELTS* software enabled constraint of the key intensive variables associated with these MEs. We found that temperature, water content and oxidation state are the main distinguishing features of the different MEs.

Olivine cores (~Fo75-78) formed in a partially degassed environment M₁ together with clinopyroxene (Mg $\#_{81-83}$), plagioclase (An₆₆₋₇₅) and, depending on the fO₂ (QFM or NNO), Fe-Ti oxide (Mt₃₅₋₅₂), at temperatures \leq 1170°C and pressures <1kbar. The different rim populations identified in the SET1 and SET2-MtRs olivines indicate diverging magmatic histories following the core formation, suggesting a bifurcated magma feeder system for the 1669 eruption. We find that SET1 rims (i.e. Fo₅₁₋₅₉) can form under dehydrated and QFM oxygen fugacity conditions at temperatures $<1100^{\circ}$ C, in equilibrium with evolved clinopyroxenes (Mg#₇₂₋₇₄). The less evolved SET2 olivine rims (=Fo₆₅₋₆₉) can be obtained at QFM or NNO oxygen fugacity conditions, at temperatures \leq 1140°C, under variable water contents (dry up to 1.3 wt.%), and together with clinopyroxene (Mg#₇₄₋₇₉), plagioclase (An₅₃₋₆₄) and Fe-Ti oxide (Mt₄₃₋₅₂).

Importantly, olivine cores define compositional plateaux formed under relatively uniform conditions, whereas olivine rims define broad compositional ranges that can form over a broad pressure range (0.5-3.0kbar). This suggests that olivine cores formed under relatively constant conditions, possibly within a larger reservoir M_1 that was located at shallow levels (<1kbar) within Etna's plumbing system, and olivine rims formed in dykes (M3 and M5) transecting the large M1 reservoir. These results reinforce the idea of a multi-level, vertically zoned feeding system at Mount Etna, where magma can continuously experience variable chemical-physical conditions.

Application of diffusion modelling to the zoned olivine crystals enabled us to reconstruct the timing and chronology of melt and crystal transfer prior to and during the 1669 flank eruption. We find that the pathway M_1 - M_5 was established 1.5 years prior to eruptive activity. In addition, the parallel M_1 - M_5 recharge increased notably in the months prior to eruption onset. For several weeks a bifurcated transport system with two dominant magma pathways developed along M_1 - M_5 and M_1 - M_3 dyke injections. Accompanied by vigorous seismicity, in the immediate days prior to eruption the local magma transfer dynamics changed and the M_1 - M_5 recharge activity slowed down. M_1 - M_3 recharge remained high and persisted throughout the eruption onset on March 11, which drained SET1 lavas. In the weeks following the eruption onset, the pathway M_1-M_3 became the dominant feeder dyke promoting syn-eruptive recharge and mixing in the shallow plumbing system culminating in the eruption of the later SET2 lavas.

1027 In conclusion, the three-way integrated approach used in this study allows the reconstruction of 1028 the evolutionary history of a temporally remote and hazardous flank eruption not been accessible 1029 by means of conventional volcano monitoring techniques. Combination of pre-existing and state-1030 of-the-art petrological tools enabled us to track the magmatic events that led to the 1669 eruption and to decipher changes in the local magma transfer dynamics that immediately preceded the eruption onset. Forward thermodynamic modelling linked with a time-integrated study, allowed us to recover pre- and syn-eruptive magma storage conditions and timescales within different magma reservoirs located in the shallow plumbing system of Mt. Etna. Most importantly, we demonstrate that the time elapsed between magma injections into the shallow plumbing system and accumulation and remobilization of eruptible magma is on the order of months to weeks only.

1038 FUNDING

This work was supported by an ERC Advanced Grant EVOKES (247076) to DBD. M.K. acknowledges postdoctoral research fellowship Deutsche two grants of the Forschungsgemeinschaft (DFG) (KA 3532/1-1) and the Icelandic Centre for Research (Rannís) TU acknowledges (152726-051). funding from Science Foundation Ireland grant SFI/12/ERC/E2499.

1044 ACKNOWLEDGMENTS

1045 This paper has benefited greatly from comments by G. Bergantz, N. Métrich and an anonymous 1046 reviewer. We thank A. Lumsden and M. Wilson for the editorial handling of the manuscript and 1047 for helpful comments. We are grateful to D. Müller (LMU Munich), D. Aßbichler (LMU 1048 Munich), R. Walshaw and G. Lloyd (University of Leeds) for assistance with EMP, XRF and 1049 EBSD analysis. We wish to thank S. Chakraborty for useful suggestions and discussions of the 1050 manuscript.

1	
2 3 4 5	1(
6 7 8	1(
9 10	1(
11 12 13	1(
14 15 16	1(
17 18	1(
19 20 21	1(
21 22 23 24	1(
25 26 27	1(
28 29	1(
30 31 32	1(
33 34 35	1(
36 37 38	1(
38 39 40	1(
41 42	1(
43 44 45	1(
46 47 48	1(
49 50	1(
51 52 53	1(
54 55 56	1(
57 58 59	
59 60	

053 **REFERENCES CITED**

- Acocella, V. & Neri, M. (2003). What makes flank eruptions? The 2001 Etna eruption and its
 possible triggering mechanisms. *Bulletin of Volcanology* 65, 517-529.
- Albert, H., Costa, F. & Marti, J. (2015). Timing of Magmatic Processes and Unrest Associated
 with Mafic Historical Monogenetic Eruptions in Tenerife Island. *Journal of Petrology* 56,
 1945-1966.
- 1059 Allard, P., Behncke, B., D'Amico, S., Neri, S. & Gambino, S. (2006). Mount Etna 1993-2005:
 1060 Anatomy of an evolving eruptive cycle. *Earth Science Reviews* 78, 85-114.
- Aloisi, M., Cocina, O., Neri, G., Orecchio, B. & Privitera, E. (2002). Seismic tomography of the crust underneath the Etna volcano, Sicily. *Physics of the Earth and Planetary Interiors* 134, 1063
 139-155.
- Andronico, D., Branca, S., Calvari, S., Burton, M., Caltabiano, T., Corsaro, R.A., Del Carlo, P.,
 Garfi, G., Lodato, L., Miraglia, L., Murè, F., Neri, M., Pecora, E., Pompilio, M., Salerno,
 G. & Spampinato, L. (2005). A multi-disciplinary study of the 2002-03 Etna eruption
 insights into a complex plumbing system. *Bulletin of Volcanology* 67, 314-330.
 - Armienti, P., Innocenti, F., Petrini, R., Pompilio, M., Villari, L. (1988). Sub-aphyric alkali basalt
 from Mt. Etna: inferences on the depth and composition of the source magma. *Rend Soc It Mineralogy and Petrology* 43, 877-891.
 - Armienti, P., Perinelli, C. & Putirka, K.D. (2013). A new model to estimate deep-level magma
 ascent rates with application to Mt. Etna (Sicily, Italy). *Journal of Petrology* 54, 795-813.

2 3 4	1073	Asimow, P. D. & Ghiorso, M.S. (1998). Algorithmic modifications extending MELTS to
4 5 6 7	1074	calculate sub-solidus phase relations. American Mineralogist 83, 1127–1131.
8 9 10	1075	Barbieri, M., Cristofolini, R., Delitala, M.C., Fornaseri, M., Romano, R., Taddeucci, A. &
11 12	1076	Tolomeo, L. (1993). Geochemical and Sr-isotope data on historical lavas of Mount Etna.
13 14 15	1077	Journal of Volcanology and Geothermal Research 56, 57-69.
16 17 18	1078	Behncke, B. & Neri, M. (2003). The July-August 2001 eruption of Mt. Etna (Sicily). Bulletin of
19 20	1079	<i>Volcanology</i> 65 , 461-476.
21 22 23	1080	Bergantz, G.W., Schleicher, J.M. & Burgisser, A. (2015). Open-system dynamics and mixing in
24 25	1081	magma mushes. Nature Geoscience 8, 793–796
26 27 28	1082	Bonaccorso, A., Bonforte, A., Currenti, G., Del Negro, C., Di Stefano, A., Greco, F. (2011).
29 30	1083	Magma storage, eruptive activity and flank instability: Inferences from ground deformation
31 32 33	1084	and gravity changes during the 1993-2000 recharging of Mt. Etna volcano. Journal of
34 35 36	1085	Volcanology and Geothermal Research 200, 245-254.
37 38	1086	Bonafede, M. & Danesi, S. (1997). Near-field modifications of stress induced by dyke injection
39 40 41	1087	at shallow depth. Geophysical Journal International 130,435-448.
42 43 44	1088	Borelli, G.A. (1670). Historia et meteorologia incendii aetnaei anni 1669. In Officina Dominici
45 46 47	1089	Ferri, Reggio Calabria, 162 pp.
48 49 50	1090	Branca, S. & Del Carlo, P. (2004). Eruptions of Mt. Etna during the past 3200 years: A revised
51 52	1091	compilation integrating the historical and stratigraphic records. In: Bonaccorso, A., Calvari,
53 54	1092	S., Coltelli, M., Del Negro, C. & Falsaperla, S. (eds.) Mt. Etna: Volcano Laboratory.
55 56 57 58 59 60	1093	American Geophysical Union, Geophysical Monograph 143, 1-27.

2 3 4	1094	Branca, S., Coltelli, M. & Groppelli, G. (2011). Geological evolution of a complex basaltic
5 6 7	1095	stratovolcano: Mt. Etna, Italy. Italian Journal of Geosciences 130, 306-317.
8 9 10	1096	Branca, S., De Beni, E. & Proietti, C. (2013). The large and destructive 1669 AD eruption at Etna
10 11 12	1097	volcano: reconstruction of the lava flow field evolution and effusion rate trend. Bulletin of
13 14 15	1098	Volcanology 75 , 694.
16 17 18	1099	Branca, S. Azzaro, R., De Beni, E., Chester, D. & Duncan, A. (2015). Impacts of the 1669
19 20	1100	eruption and the 1693 earthquakes on the Etna Region (Eastern Sicily, Italy): An example
21 22	1101	of recovery and response of a small area to extreme events. Journal of Volcanology and
23 24 25	1102	Geothermal Research 303, 25-40.
26 27 28	1103	Calvari, S., Coltelli, M., Neri, M., Pompilio, M. & Scribano, V. (1994). The 1991-1993 Etna
29 30 31	1104	eruption: chronology and lava flow-field evolution. Acta Vulcanologica 4, 1-14.
32 33 34	1105	Carrera, P. (1636). Il Mongibello descritto in tre libri. In Catania, nel Palazzo dell'Illustrissimo
35 36	1106	Senato, per Gio. Rossi, 204 pp.
37 38 39	1107	Chester, D.K., Duncan, A.M., Guest, J.E. & Kilburn, C.R.J. (1985). Mount Etna. The anatomy of
40 41 42	1108	a volcano. Chapman and Hall, London.
43 44 45	1109	Chew, D.M., Babechuk, M.G., Cogné, N., Mark, C., O'Sullivan, G., Henrichs, I., Doepke, D. &
46 47	1110	McKenna, C.A. (2016). (LA,Q)-ICPMS trace-element analyses of Durango and McClure
48 49	1111	Mountain apatite and implications for making natural LA-ICPMS mineral standards.
50 51 52 53 54 55 56 57 58 59	1112	Chemical Geology 435 , 35-48.
60		

2		
3 4	1113	Clark, A.M. & Long, J.V.P. (1971). The anisotropic diffusion of nickel in olivine. In: Sherwood,
5 6 7	1114	J.N., Chadwick, A.V., Muir, W.M. & Swinton, F.L. (eds.) Diffusion Processes. Gordon and
7 8 9	1115	Breach, 511-521.
10 11 12	1116	Clocchiatti, R. & Métrich, N. (1984). La cristallisation des pyroclastes des éruptions étnéennes de
13 14	1117	1669 (Mt Rossi et 1892 (Mt Silvestri). Témoignages de contamination. Bulletin of
15 16 17	1118	Volcanology 47 , 908-928.
18 19 20	1119	Clocchiatti, R., Joron, J.L. & Treuil, M. (1988). The role of selective alkali contamination in the
21 22	1120	evolution of recent historic lavas of Mt. Etna. Journal of Volcanology and Geothermal
23 24 25	1121	<i>Research</i> 34 , 241–249.
26 27 28	1122	Condomines, M., Tanguy, J.C. & Michaud, V. (1995). Magma dynamics at Mount Etna:
29 30	1123	constraints from U-Th-Ra-Pb radioactive disequilibria and Sr isotopes in historical lavas.
31 32 33	1124	Earth and Planetary Science Letters 132, 297–314.
34 35 36	1125	Corsaro, R.A., Métrich, N., Allard, P., Andronico, D., Miraglia, L. & Fourmentraux, C. (2009).
37 38	1126	The 1974 flank eruption of Mount Etna: An archetype for deep dike-fed eruptions at
39 40 41	1127	basaltic volcanoes and a milestone in Etna's recent history. Journal of Geophysical
42 43	1128	<i>Research</i> 114, B07204.
44 45 46	1129	Corsaro, R.A., Miraglia, L. & Pompilio, M. (2007). Petrologic evidence of a complex plumbing
47 48 49	1130	system feeding the July-August 2001 eruption of Mt. Etna, Sicily, Italy. Bulletin of
50 51	1131	<i>Volcanology</i> 69 , 401–421.
52 53 54	1132	Corsaro, R.A., Cristofolini, R. & Patanè, L. (1996). The 1669 eruption at Mount Etna:
55 56	1133	chronology, petrology and geochemistry, with inferences on the magma sources and ascent
57 58 59 60	1134	mechanisms. Bulletin of Volcanology 58, 348-358.

1 2		
3 4	1135	Costa, F. & Chakraborty, S. (2004). Decadal time gaps between mafic intrusion and silicic
5 6 7	1136	eruption obtained from chemical zoning patterns in olivine. Earth and Planetary Science
7 8 9 10	1137	Letters 227, 517–530.
11 12	1138	Costa, F., Dohmen, R. & Chakraborty, S. (2008). Timescales of magmatic processes from
13 14	1139	modelling the zoning patterns of crystals. Reviews in Mineralogy and Geochemistry 69,
15 16 17 18	1140	545–594.
19 20	1141	Deer, W.A., Howie, R.A. & Zussman, J. (2013). An Introduction to the Rock-Forming Minerals.
21 22 23	1142	Mineralogical Society of Great Britain and Ireland, 510 pp.
24 25 26 27	1143	Doglioni, C., Innocenti, F. & Mariotti, G. (2001). Why Mt. Etna? <i>Terra Nova</i> 13 , 25–31.
28 29	1144	Dohmen, R., Becker, HW. & Chakraborty, S. (2007a). Fe-Mg diffusion in olivine I:
30 31	1145	experimental determination between 700 and 1,200°C as a function of composition, crystal
32 33 34 35	1146	orientation and oxygen fugacity. <i>Physics and Chemistry of Melts</i> 34 , 389–407.
36 37	1147	Dohmen, R. & Chakraborty, S. (2007b). Fe-Mg diffusion in olivine II: point defect chemistry,
38 39	1148	change of diffusion mechanisms and a model for calculation of diffusion coefficients in
40 41 42 43	1149	natural olivine. <i>Physics and Chemistry of Minerals</i> 34 , 409–430.
44 45	1150	Ferlito, C., Viccaro, M., Nicotra, E. & Cristofolini R. (2012). Regimes of magma recharge and
46 47	1151	their control on the eruptive behaviour during the 2001-2005 period at Mt. Etna (Italy).
48 49 50 51	1152	Bulletin of Volcanology 74, 533-543.
52 53	1153	Ferrara, F. (1818). Descrizione dell'Etna con la storia delle eruzioni e il catalogo dei prodotti.
54 55 56 57 58 59 60	1154	Palermo presso Lorenzo Dato, 256 pp.

2 3	1155	Giacomoni, P.P., Ferlito, C., Coltorti, M., Bonadiman, C. & Lanzafame, G. (2014). Plagioclase as
4 5		
6 7	1156	archive of magma ascent dynamics on "open conduit" volcanoes: The 2001–2006 eruptive
8 9	1157	period at Mt. Etna. Earth-Science Reviews 138, 371-393.
10 11 12	1158	Giacomoni, P.P., Coltorti, M., Bryce, J.G., Fahnestock, M.F. & Guitreau, M. (2016). Mt. Etna
13 14	1159	plumbing system revealed by combined textural, compositional, and thermobarometric
15 16 17	1160	studies in clinopyroxenes. Contributions to Mineralogy and Petrology 171, 34.
18 19 20	1161	Ghiorso, M.S. & Sack, R.O. (1995). Chemical mass transfer in magmatic processes. IV. A
21 22	1162	revised and internally consistent thermodynamic model for the interpolation and
23 24 25	1163	extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and
26 27	1164	pressures. Contributions to Mineralogy and Petrology 119, 197–212.
28 29 30	1165	Ghiorso, M.S. & Gualda, G.A.R. (2015). An H2O-CO2 mixed fluid solubility model compatible
31 32 33	1166	with rhyolite-MELTS. Contributions to Mineralogy and Petrology 169, 53.
34 35 36	1167	Gillot, P.Y., Kieffer, G. & Romano, R. (1994). The evolution of Mount Etna in the light of
37 38	1168	potassium-argon dating. Acta Vulcanologica 5, 81-87.
39 40 41	1169	Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V. & Carley, T.L. (2012). Rhyolite-MELTS: A
42 43	1170	modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems.
44 45		
46 47	1171	Journal of Petrology 53 , 875-890.
48 49 50	1172	Guest, J.E. & Duncan, A.M. (1981). Internal plumbing of Mount Etna. Nature 290, 584-586.
51 52 53	1173	Gvirtzman, Z. & Nur, A. (1999). The formation of Mount Etna as the consequence of slab
54	1174	rollback. Nature 401, 782-785.
55 56		
57 58		
59		

1 2		
3 4	1175	Hartley, M.E., Morgan, D.J., Maclennan, J., Edmonds, M. & Thordarson, T. (2016). Tracking
5 6 7	1176	timescales of short-term precursors to large basaltic fissure eruptions through Fe-Mg
7 8 9 10	1177	diffusion in olivine. Earth and Planetary Science Letters 439, 58–70.
11 12	1178	Hughes, J.W., Guest, J.E. & Duncan, A.M. (1990). Changing styles of effusive eruption on Mount
13 14	1179	Etna since AD 1600. In: Ryan, M.P. (ed.) Magma transport and storage. Wiley, New York,
15 16 17 18	1180	385–405.
19 20	1181	Jochum, K.P., Weis, U., Stoll, B., Kuzmin, D., Yang, Q., Raczek, I., Jacob, D.E., Stracke, A.,
21 22	1182	Birbaum, K., Frick, D.A., Günther, D. & Enzweiler, J. (2011). Determination of reference
23 24 25	1183	values for NIST SRM 610-617 glasses following ISO guidelines. Geostandards and
26 27 28	1184	Geoanalytical Research 35, 397–429.
29 30	1185	Kahl, M., Chakraborty, S., Costa, F. & Pompilio, M. (2011). Dynamic plumbing system beneath
31 32 33	1186	volcanoes revealed by kinetic modelling and the connection to monitoring data: an example
34 35 36	1187	from Mt. Etna. <i>Earth and Planetary Science Letters</i> 308 , 11–22.
37 38	1188	Kahl, M., Chakraborty, S., Costa, F., Pompilio, M., Liuzzo, M. & Viccaro, M. (2013).
39 40 41	1189	Compositionally zoned crystals and real-time degassing data reveal changes in magma
42 43	1190	transfer dynamics during the 2006 summit eruptive episodes of Mt. Etna. Bulletin of
44 45 46	1191	Volcanology 75 , 692.
47 48 49	1192	Kahl, M., Chakraborty, S., Pompilio, M. & Costa, F. (2015). Constraints on the Nature and
49 50 51	1193	Evolution of the Magma Plumbing System of Mt. Etna Volcano (1991-2008) from a
52 53	1194	Combined Thermodynamic and Kinetic Modelling of the Compositional Record of
54 55 56 57 58 59 60	1195	Minerals. Journal of Petrology 56, 2025-2068.

3 4	1196	Landi, P., Francalanci, L., Pompilio, M., Rosi, M., Corsaro, R.A., Petrone, C.M., Nardini, I. &
5 6 7	1197	Miraglia, L. (2006). The December 2002–July 2003 effusive event at Stromboli volcano,
7 8 9	1198	Italy: an insight into the shallow plumbing system by petrochemical studies. Journal of
10 11 12	1199	Volcanology and Geothermal Research 155, 263–284.
13 14 15	1200	Lanzafame, G., Neri, M., Acocella, V., Billi, A., Funiciello, R. & Giordano, G. (2003). Structural
16 17	1201	features of the July-August 2001 Mount Etna eruption: evidence for a complex magma
18 19 20	1202	supply system. Journal of the Geological Society of London 160, 531-544.
21 22 22	1203	Larrea, P., França, Z., Lago, M., Widom, E., Galé, C. & Ubide, T. (2013). Magmatic processes
23 24 25	1204	and the role of antecrysts in the genesis of Corvo Island (Azores Archipelago, Portugal).
26 27 28	1205	Journal of Petrology 54, 769–793.
29 30	1206	Loucks, R.R. (1996). A precise olivine-augite Mg-Fe-exchange geothermometer. Contributions
31 32 33 34	1207	to Mineralogy and Petrology 125 , 140–150.
35 36	1208	Lundgren, P., Berardino, P., Coltelli, M., Fornaro, G., Lanari, R., Puglisi, G., Sansosti, E. &
37 38 39	1209	Tesauro, M. (2003). Coupled magma chamber inflation and sector collapse slip observed
39 40 41	1210	with synthetic aperture radar interferometry on Mt. Etna volcano. Journal of Geophysical
42 43 44	1211	<i>Research</i> 108 , 2247–2267.
45 46	1212	Mancino, C. (1669). Narrativa del fuoco uscito da Mongibello il di undici di marzo del 1669.
47 48 49 50	1213	Messina, Giuseppe Bisagni.
50 51 52	1214	Métrich, N. & Clocchiatti, R. (1989). Melt inclusion investigation of the volatile behaviour in
53 54 55	1215	historic alkali basaltic magmas of Etna. Bulletin of Volcanology 51, 185-198.
56 57	1216	Métrich, N. & Clocchiatti, R. (1996). Sulphur abundance and its speciation in oxidized alkaline
58 59 60	1217	melts. Geochimica et Cosmochimica Acta 60, 4151–4160.

1 2		
3 4	1218	Métrich, N. & Rutherford, M.J. (1998). Low pressure crystallization paths of H2O-saturated
5 6 7	1219	basaltic-hawaiitic melts from Mt Etna: Implications for open-system degassing of basaltic
7 8 9 10	1220	volcanoes. Geochimica et Cosmochimica Acta 62, 1195–1205.
11 12	1221	Métrich, N., Allard, P., Spilliaert, N., Andronico, D. & Burton, M. (2004). 2001 flank eruption of
13 14	1222	the alkali and volatile-rich primitive basalt responsible for Mount Etna's evolution in the
15 16 17 18	1223	last three decades. Earth and Planetary Science Letters 228, 1-17.
19 20	1224	Mulas, M., Cioni, R., Andronico, D. & Mundula, F. (2016). The explosive activity of the 1669
21 22	1225	Monti Rossi eruption at Mt. Etna (Italy). Journal of Volcanology and Geothermal Research
23 24 25 26	1226	328 , 115-133.
27 28	1227	Murru, M., Montuori, C., Wyss, M., Privitera, E. (1999). The locations of magma chambers at
29 30 31	1228	Mt. Etna, Italy, mapped by b-values. <i>Geophysical Research Letters</i> 26 , 2553–2556.
32 33 34	1229	Nicotra, E. & Viccaro, M. (2012). Unusual magma storage conditions at Mt. Etna (Southern
35 36	1230	Italy) as evidenced by plagioclase megacryst-bearing lavas: implications for the plumbing
37 38 39	1231	system geometry and summit caldera collapse. Bulletin of Volcanology 74, 795–815.
40 41 42	1232	Patanè, D., De Gori, P., Chiarabba, C. & Bonaccorso, A. (2003). Magma ascent and teh
43 44 45	1233	pressuraisation of Mt. Etna's volcanic system. Science 299, 2061–2063.
46 47	1234	Patanè, D., Barberi, G., Cocina, O., De Gori, P. & Chiarabba, C. (2006). Time resolved seismic
48 49 50	1235	tomography detects magma intrusions at Mount Etna. Science 313 , 821–825.
51 52 53	1236	Patanè, D., Aiuppa, A., Aloisi, M., Behncke, B., Cannata, A., Coltelli, M., Di Grazia, G.,
54 55	1237	Gambino, S., Gurrieri, S., Mattia, M. & Salerno, G. (2013). Insights into magma and fluid
56 57 58	1238	transfer at Mount Etna by a multiparametric approach: A model of the events leading to the
58 59 60	1239	2011 eruptive cycle. Journal of Geophysical Research - Solid Earth 118, 3519–3539.

2 3	1240	Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. (2011). Iolite: freeware for the
4 5		
6	1241	visualization and processing of mass spectrometric data. Journal of Analytical Atomic
7 8 9	1242	<i>Spectrometry</i> 26 , 2508–2518.
10 11 12	1243	Pompilio, M. & Rutherford, M. J. (2002). Pre-eruption conditions and magma dynamics of recent
13 14	1244	amphibole-bearing Etna basalt. American Geophysical Union, Fall Meeting 2002, Abstracts
15 16 17	1245	V61A-1354.
18 19 20	1246	Prior, D. J., Boyle, A. P., Brenker, F., Cheadle, M. C., Day, A., Lopez, G., Peruzzo, L., Potts, G.
21 22	1247	J., Reddy, S., Spiess, R., Timms, N. E., Trimby, P., Wheeler, J. & Zetterstrom, L. (1999).
23 24 25	1248	The application of electron backscatter diffraction and orientation contrast imaging in the
26 27 28	1249	SEM to textural problems in rocks. <i>American Mineralogist</i> 84, 1741–1759.
29 30	1250	Rae, A.S.P., Edmonds, M., Maclennan, J., Morgan, D., Houghton, B., Hartley, M.E. & Sides, I.
31 32 33	1251	(2016). Time scales of magma transport and mixing at Kilauea Volcano, Hawai'i. Geology,
34 35 36	1252	44, 463-466.
37 38 20	1253	Recupero, G. (1815). Storia naturale e generale dell'Etna. Stamperia della Regia Università degli
39 40 41 42	1254	Studi, Catania, doi:10.3931/e-rara-11880.
42 43 44 45	1255	Rittmann, A. (1965). Notizie sull'Etna. Supplemento al Nuovo Cimento 3(I), 1117–1123.
46 47	1256	Sakyi, P.A., Tanaka, R., Kobayashi, K. & Nakamura, E. (2012). Inherited Pb isotopic records in
48 49 50	1257	olivine antecryst-hosted melt inclusions from Hawaiian lavas. Geochimica et
50 51 52 53	1258	Cosmochimica Acta 95, 169–195.
54 55	1259	Schleicher, J.M, Bergantz, G.W., Breidenthal, R.E. & Burgisser, A. (2016). Time scales of
56 57 58 59 60	1260	crystal mixing in magma mushes. Geophysical Research Letters 43, 1543–1550.

1 2		
3 4	1261	Schiano, P., Clocchiatti, R., Ottolini, L. & Busà, T. (2001). Transition of Mount Etna lavas from
5 6 7	1262	a mantle-plume to an island-arc magmatic source. <i>Nature</i> 412 , 900-904.
8 9 10	1263	Spilliaert, N., Allard, P., Métrich, N. & Sobolev, A.V. (2006). Melt inclusion record of the
11 12	1264	conditions of ascent, degassing and extrusion of volatile-rich alkali basalt during the
13 14 15	1265	powerful 2002 flank eruption of Mount Etna (Italy). Journal of Geophysical Research 111,
16 17 18	1266	B04203.
19 20	1267	Stevens, N.F., Murray, J.B., Wadge, G. (1997). The volume and shape of the 1991-1993 lava
21 22 23	1268	flow field at Mount Etna, Sicily. <i>Bulletin of Volcanology</i> 58 , 449-454.
24 25 26	1269	Tanguy, J.C. (1980). L'Etna: étude pétrologique et paléomagnetique: implications
27 28 29	1270	volcanologiques, 618 p. PhD thesis, University of Paris.
30 31	1271	Tanguy, J.C. & Clocchiatti, R. (1984). The etnean lavas, 1977-83: petrology and mineralogy.
32 33 34	1272	Bulletin of Volcanology 47, 879-894.
35 36 37 38	1273	Tanguy, J.C. & Patanè, G. (1996). <i>L'Etna et le monde des volcans</i> . Diderot Editeur Paris, France.
39 40	1274	Tanguy, J.C., Condomines, M., Le Goffe, M., Chillemi, V., La Delfa, S. & Patanè G. (2007).
41 42	1275	Mount Etna eruptions of the last 2,750 years: revised chronology and location through
43 44 45 46	1276	archeomagnetic and 226Ra-230Th dating. Bulletin of Volcanology 70, 55-83.
40 47 48	1277	Ubide, T., Arranz, E., Lago, M., Galé, C. & Larrea, P. (2012). The influence of crystal settling on
49 50	1278	the compositional zoning of a thin lamprophyre sill: a multimethod approach. Lithos 132 –
51 52 53 54 55 56 57 58 59 60	1279	133 , 37-49.

1 2		
3 4	1280	Ubide, T., Galé, C., Larrea, P., Arranz, E. & Lago, M. (2014). Antecrysts and their effect on rock
5 6 7	1281	compositions: the Cretaceous lamprophyre suite in the Catalonian Coastal Ranges (NE
7 8 9 10	1282	Spain). Lithos 206–207, 214-233.
10 11 12	1283	Ubide, T., McKenna, C.A., Chew, D.M. & Kamber, B.S. (2015). High-resolution LA-ICP-MS
13 14	1284	trace element mapping of igneous minerals: In search of magma histories. Chemical
15 16 17 18	1285	<i>Geology</i> 409 , 157-168.
19 20	1286	Viccaro, M., Giacomoni, P.P., Ferlito, C. & Cristofolini, R. (2010). Dynamics of magma supply
21 22	1287	at Mt. Etna volcano (Southern Italy) as revealed by textural and compositional features of
23 24 25 26	1288	plagioclase phenocrysts. <i>Lithos</i> 116 , 77-91.
27 28	1289	Viccaro, M., Calcagno, R., Garozzo, I., Giuffrida, M. & Nicotra, E. (2015). Continuous magma
29 30	1290	recharge at Mt. Etna during the 2011–2013 controls the style of volcanic activity and
31 32 33	1291	compositions of erupted lavas. <i>Mineralogy and Petrology</i> 109 , 67–83.
34 35 36	1292	Viccaro, M., Zuccarello, F., Cannata, A., Palano, M. & Gresta S. (2016a). How a complex
37 38	1293	basaltic volcanic system works: constraints from integrating seismic, geodetic, and
39 40 41	1294	petrological data at Mount Etna volcano during the July-August 2014 eruption. Journal of
42 43 44	1295	Geophysical Research – Solid Earth 121, 5659-5678.
45 46	1296	Viccaro, M., Barca, D., Bohrson, W.A., D'Oriano, C., Giuffrida, M., Nicotra, E. & Pitcher, B.W.
47 48 40	1297	(2016b). Crystal residence times from trace element zoning in plagioclase reveal changes in
49 50 51 52	1298	magma transfer dynamics at Mt. Etna during the last 400 years. <i>Lithos</i> 248-251 , 309-323.
53 54	1299	Viccaro, M., Giuffrida, M., Nicotra, E. & Cristofolini, R. (2016c). Timescales of magma storage
55 56	1300	and migration recorded by olivine crystals in basalts of the March-April 2010 eruption at
57 58 59 60	1301	Eyjafjallajökull volcano, Iceland. American Mineralogist 101, 222-230.

1302 FIGURE CAPTIONS

Fig. 1 (a) Location and geodynamic setting of Mt. Etna with respect to the Apennine subduction front, the Malta escarpment (dashed line) and the subduction-related Aeolian island arc to the north. (b) Digital map of the S-flank of Mt. Etna illustrating the spatial distribution of the 1669 lava flow front and the progressive opening of the eruptive fissures (*1-5*). The different lava flow units are illustrated in distinct colours to highlight the temporal evolution of the flow field. Sample localities of the *SETI* (1-6/10) and *SET2* (2-1/5) lava flows and the *MtRs* bomb are marked with asterisks.

Fig. 2 Electron backscatter diffraction (EBSD) mapping of olivine. (a-b) False colour Backscatter electron (BSE) images of olivine crystals that erupted during the second half (i.e. SET2) of the 1669 flank eruption. (c-d) Electron backscatter diffraction (EBSD) maps of the same crystals (i.e. 1669 SET2 2-1 Ol-6 and 2-4 Ol-6). Different colours in the corresponding EBSD maps refer to different orientations of the three measured Euler angles indicating different orientations of the crystallographic a-, b- and c-axis in the olivines. Note that the application of EBSD mapping makes it possible to distinguish individual crystals. Individual step sizes used for the EBSD orientation maps are: 22.56µm for 2-1 Ol-6 and 20.88µm for 2-4 Ol-6.

Fig. 3 (a) Total alkali vs. silica diagram (wt.%) of 1669 samples studied by Corsaro *et al.* (1996)
and from this study (*SET1*: filled diamond; *SET2*: triangle; *MtRs*: circle). (b-l) Major element
concentrations of whole rocks of *SET1*, *SET2* and *MtRs* samples of this study and of Corsaro *et al.* (1996).

Fig. 4 Illustration of the most common zoning types identified in the 1669 olivine crystals.
Columns: Rim to core and rim to rim zoning profiles; Arrows in BSE images display direction of

electron microprobe traverse. Rows: Zoning types as functions of eruption phases: *SET1*, *SET2* and *MtRs*. Bottom row: Displays complexities of the different zoning types as identified in 1991-93 samples (Kahl *et al.*, 2015). Fo: Forsterite; Fo=100*(Mg/[Mg+Fe]). (a) Type IV, normally zoned crystals with cores at Fo₇₅₋₇₈ and rims at ~Fo₅₅ (*SET1*) or ~Fo₇₀ (*SET2* and *MtRs*). (b) Type VII, normal zoning with core at Fo₇₃₋₇₅ and variable rims. Placeholders indicate that a particular zoning type could not be identified in the corresponding eruption product(s).

Fig. 5 (a-b) Frequency histograms of core and rim compositions of 202 olivine crystals erupted during the 1669 flank eruption. (c-d) MnO versus Forsterite content of olivine cores and rims. (ef) CaO versus Forsterite content of olivine cores and rims. (g-h) MnO versus CaO plots of core and rim compositions. Coloured areas: Compositional range of the 5 different olivine populations identified in the 1991-2008 eruption products (Kahl *et al.*, 2015). Fo: Forsterite, Fo=100*(Mg/[Mg+Fe]).

Fig. 6 LA-ICP-MS element maps for Ni, Mn, Sc and P on representative olivine crystals from *SET1*, *SET2* and *MtRs* samples. Mapped areas are marked with white rectangles on false colour
BSE images (black arrows indicate the direction of the electron microprobe traverses). LA-ICPMS maps are constructed with the Iolite module 'Images from integrations' using 'Cold Warm'
colour scales.

Fig. 7 Individual Systems Analysis diagrams of zoning patterns recorded in a total of 188 olivine rystals contained in the *SET1* (a), *SET2* (b) and *MtRs* (c) samples of the 1669 eruption. The number of olivine zoning patterns depicted in the Systems Analysis plots is smaller than the total number of crystals investigated (n=202). Minor connection lines recorded by only one crystal have been removed to improve visibility. Each coloured box represents a different Magmatic Environment (ME) as identified based on the six different olivine core and rim populations.

Connection lines between these MEs represent zoning patterns recorded in populations of olivine crystals. The variable thickness of the connection lines refers to the number of crystals tracking certain connectivities. The corresponding numbers are given next to each connection line. The arrows indicate the direction of the zoning patterns as recorded in the olivine crystals (arrow heads point in the direction of olivine rims).

Fig. 8 Olivine compositions (Fo mol%) obtained from fractional crystallization (FC) simulations using *rhyolite-MELTS* (Gualda et al., 2012; Ghiorso and Gualda, 2015). The simulations were performed using the bulk rock compositions shown in Table 3 at the quartz-favalite-magnetite (QFM) and the Ni–NiO (NNO) oxygen buffers, and variable water contents (dry to 1.5 wt%) water). Vertical axis: crystallization temperature in degrees Celsius; horizontal axis: forsterite content. Filled squares: olivine compositions obtained for a given isobaric cooling path. M_1 , M_3 and M₅: compositional range of olivine core and rim populations characterizing the dominant 'core' [i.e. M_1 (= Fo₇₅₋₇₈)] and 'rim forming' [i.e. M_3 (= Fo₆₅₋₆₉) and M_5 (= Fo₅₁₋₅₉)] environments.

Fig. 9 Diffusion model fits. (a-d) False colour BSE images of representative olivine crystals. Black lines: Directions of EMP traverses. (e-h) Core to rim concentration profiles of olivine crystals erupted during the 1669 flank eruption of Mt. Etna. Blue circles: EMP traverses showing concentration profiles for Forsterite [100*Mg/ (Mg+Fe), in mol%]. Black stippled lines: Initial conditions; Red lines: Best fit diffusion models for the observed zoning profiles. Numbers in days indicate diffusive timescales obtained from best fit model solutions. M1, M3, M4 and M5 indicate core and rim formation within distinct Magmatic Environments. (i-l) Stereographic lower hemisphere plots depicting the angular relations between the major crystallographic directions (a-

, b- and c-axis) in olivine and the directions of the analytical traverses. Olivine orientation data
were obtained using EBSD technique (see *Methods* section for full details).

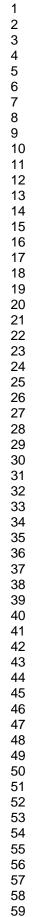

Fig. 10 Comprehensive timescale record obtained from modelling the diffusive modification of Fe-Mg concentration profiles preserved in a total of 150 olivine crystals that fulfilled the robustness criteria described in Kahl et al. (2011) and Costa et al. (2008). (a) Frequency distribution of timescales for SET1 (gray) and SET2 (green) olivine crystals. Bin size: 20 days. (b) Compilation of calculated timescales as a function of crystal number including 1σ uncertainties arising from geothermometry. Coloured symbols refer to mixing timescales obtained from modelling individual SET1 (gray diamonds) and SET2 (green triangles) olivines. Modelling parameters: $T=1070\pm20^{\circ}C$ and $fO_2=OFM$. Diffusion models performed in this study used the Fe-Mg inter-diffusion coefficients provided by Dohmen et al. (2007a, b). No diffusion timescales for *MtRs* olivines were obtained, as EMP profiles did not fulfil robustness criteria.

Fig. 11 Calculated timescales of intrusive events into Etna's shallow plumbing system along different transport routes. Coloured symbols refer to individual intrusion times along different transport pathways calculated by subtracting the mixing timescales from the eruption dates of SET1 (i.e. March 19, 1669) and SET2 (i.e. April 04, 1669) samples. Black symbols refer to intrusion times related to rarely connected MEs such as M_0-M_5 ; M_0-M_2 and M_2-M_3 [M₀ (=Fo₇₉. ₈₃), not displayed in Figure 7]. Red dashed line (E) marks the overall eruption onset (i.e. March 11, 1669); Shaded area indicates the approximate range of seismic activity preceding the onset of the 1669 eruption. Contemporary records report that vigorous seismicity preceded the eruption by approximately two weeks and that earthquake intensity increased in the days (starting on March 8, 1669) prior to the eruption onset (e.g. Mulas *et al.*, 2016 and references therein).

	1391	Fig. 12 (a) Schematic illustration depicting the approximate depth of the reservoir M_1 and the
	1392	dyke-like environments M_5 and M_3 in which the SET1 (M_5) and the SET2-MtRs (M_3) olivine rims
	1393	formed. Inserts list the physical conditions of the three environments obtained by thermodynamic
0 1	1394	modelling using <i>rhyolite-MELTS</i> . For comparison the depths contours of the high Vp velocity
2345678904	1395	body (HVB; [8] Aloisi et al., 2002; [9-10] Patanè et al., 2003 & 2006) and the consensus main
	1396	magma pathway (grey arrow) (e.g. [11] Patanè et al., 2013) are shown. (b) Schematic
	1397	reconstruction of Etna's vertical feeding system (from Giacomoni et al., 2014, 2016) from
	1398	plagioclase and clinopyroxene crystallisation depths ([1] Giacomoni et al., 2014; [2] Giacomoni
2 3	1399	et al., 2016; [3] Armienti et al., 2013). Vertical bars represent the depth range of low-velocity
4 5	1400	zones detected by [4] Bonaccorso et al. (2011), [5] Lundgren et al. (2003) and [6] Murru et al.
6 7 8	1401	(1999). For comparison the major stratigraphic units (AFM: Apennine Maghrebian folds; HB:
9 0	1402	Hyblean Platform; UC: Upper Crust) underlying Mt. Etna are shown. (c-e) Schematic
1 2	1403	reconstruction of the sequence and chronology of magmatic events in the internal plumbing of
3 4 5	1404	Mt. Etna before and during the 1669 flank eruption. (c) Dyke intrusions of M ₅ -type magma into
6 7	1405	the major reservoir M_1 (=Fo ₇₅₋₇₈) commenced 1.5 years prior to the eruption onset. Since October
8 9	1406	1668 repeated dyke injections of M_5 into M_1 resulting in the formation of the SET1 olivine rims.
0 1 2	1407	(d) Starting in November 1668, a new batch of magma (M_3 -type) intruded the reservoir M_1 as
1 2 3 4	1408	recorded in the chemical stratigraphy of the SET2 olivines. Intrusions of M_3 -type magma into M_1
5 6 7	1409	resulted in the formation of the SET2 olivines rims. In the months and weeks prior to the
, 8 9	1410	eruption, simultaneous injections of M5- and M3-type magma into the M1 reservoir occurred and
0 1	1411	continued until the eruption onset. A branched feeder system with two dominant but diverging
2 3 4	1412	magma transport routes M_1 - M_5 and M_1 - M_3 developed. (e) Change of magma transport dynamics
5 6	1413	shortly after the beginning of the 1669 flank eruption resulting in the disruption of the pathway
7 8 9	1414	M_1 - M_5 and the stabilisation of the transport route M_1 - M_3 , that facilitated syn-eruptive magma

Page	64	of	86
------	----	----	----

1 2		
3 4	1415	recharge and magma mixing in the weeks following the eruption onset. See main text for more
5 6 7	1416	details.
8 9 10 11	1417	TABLE CAPTIONS
12 13 14	1418	Table 1 Summary of 17 th century flank activity
15 16 17	1419	Table 2 Sample locations
18 19 20	1420	Table 3 Bulk rock compositions of SET1, SET2 and MtRs eruption products
21 22 23	1421	Table 4 Comprehensive timescale record of SET1 and SET2 olivines
$\begin{array}{c} 24\\ 25\\ 26\\ 27\\ 29\\ 30\\ 32\\ 33\\ 45\\ 36\\ 78\\ 90\\ 41\\ 43\\ 45\\ 46\\ 78\\ 90\\ 51\\ 23\\ 55\\ 56\\ 78\\ 90\\ \end{array}$	1422	

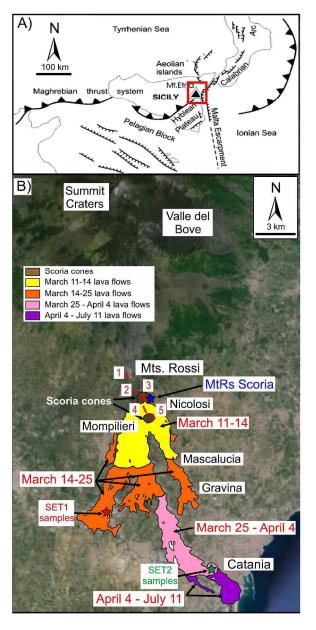
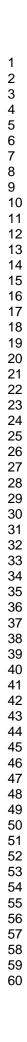
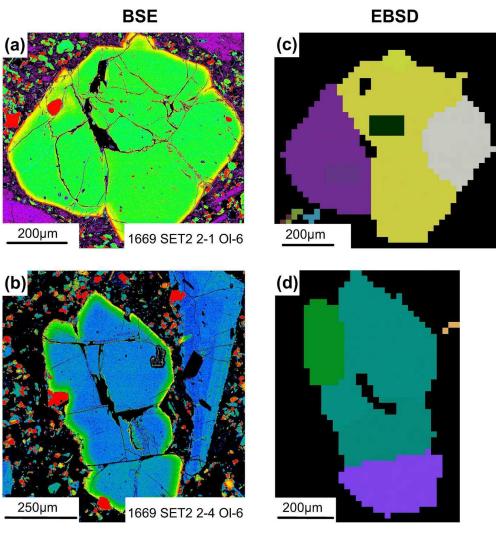




Figure 1

201x418mm (300 x 300 DPI)

166x171mm (300 x 300 DPI)

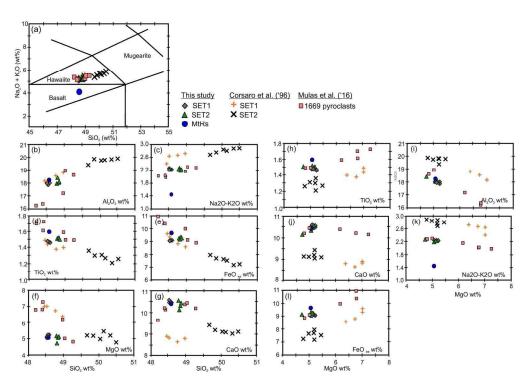
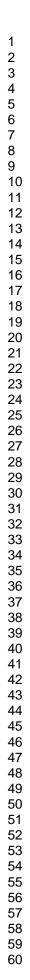
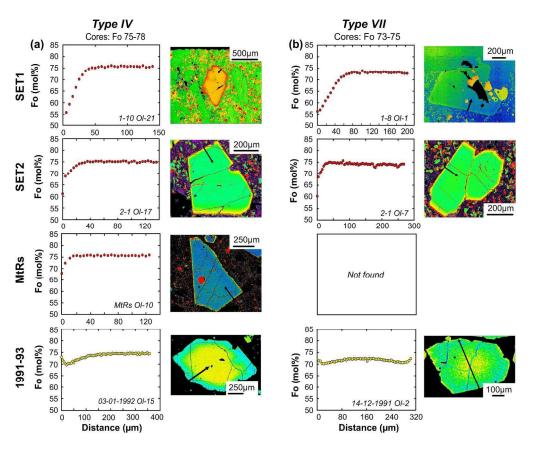




Figure 3

203x142mm (300 x 300 DPI)

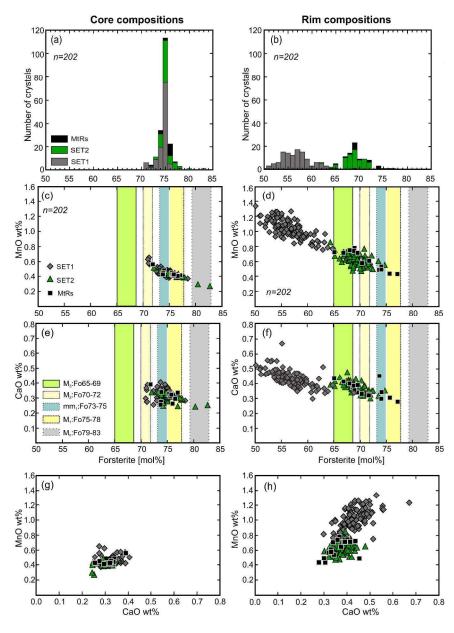
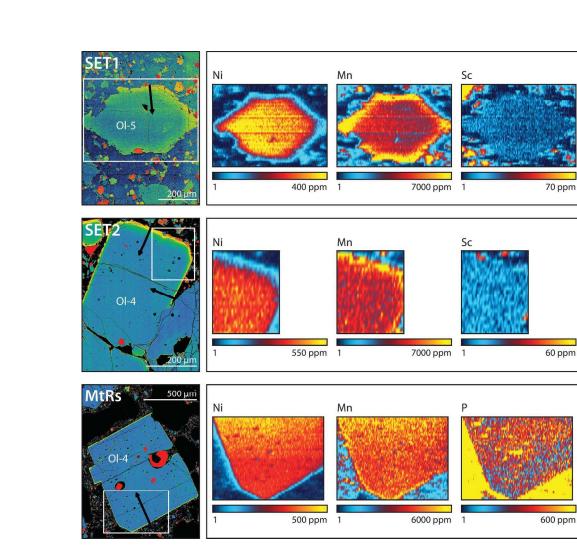
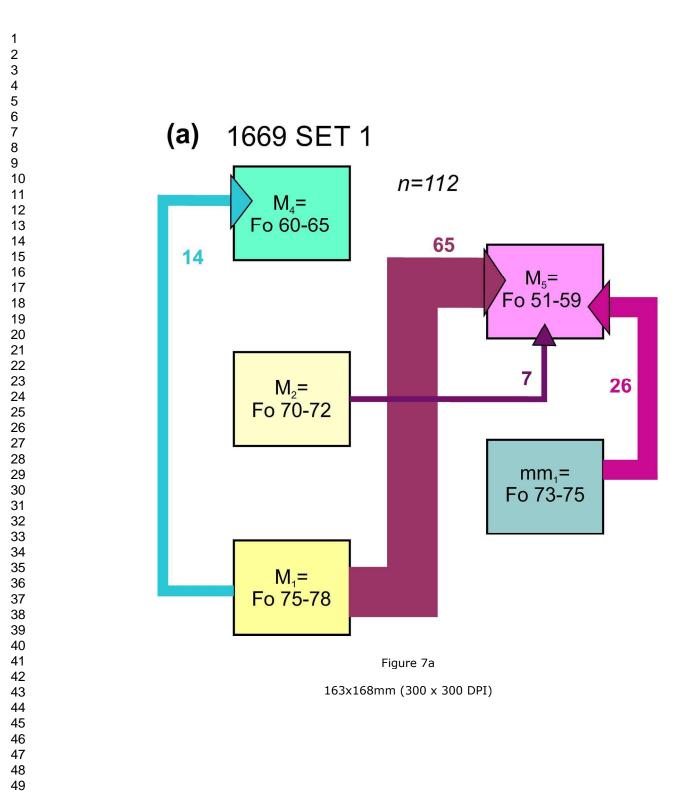
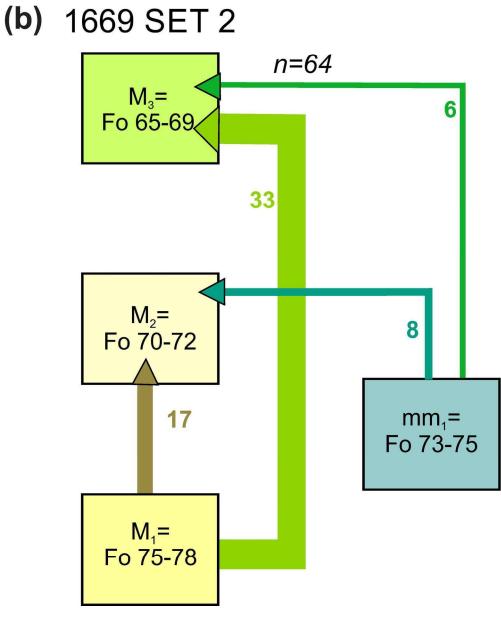
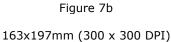
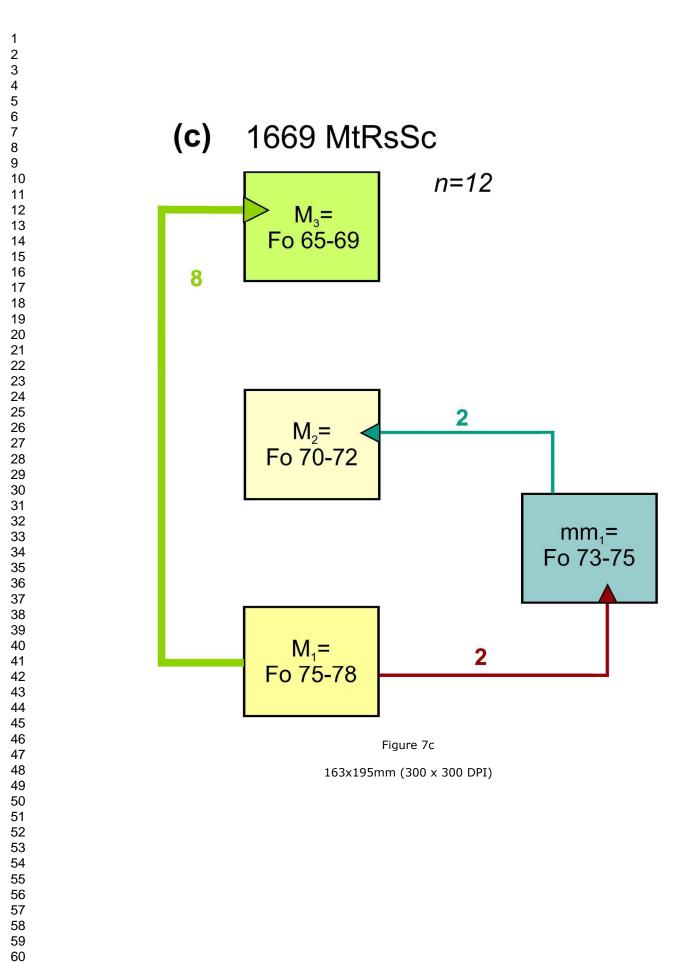


Figure 5

289x403mm (300 x 300 DPI)


Figure 6


180x176mm (300 x 300 DPI)

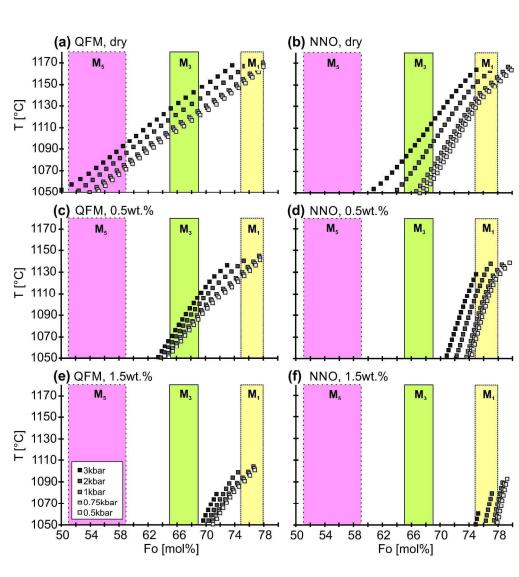
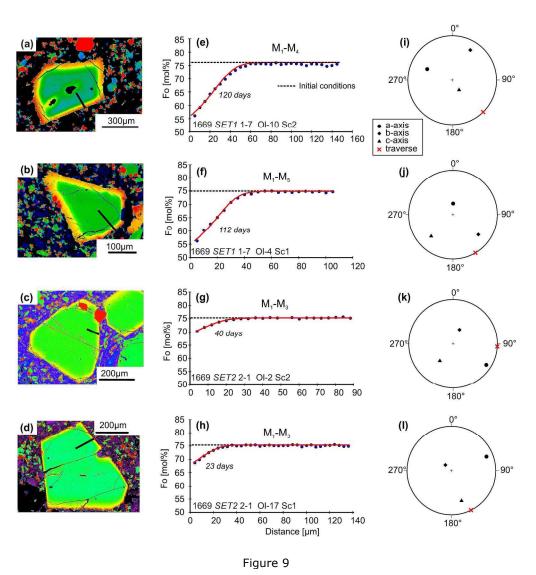
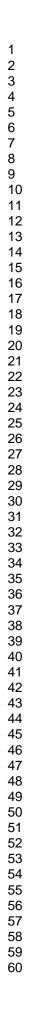




Figure 8

208x216mm (300 x 300 DPI)

205x210mm (300 x 300 DPI)

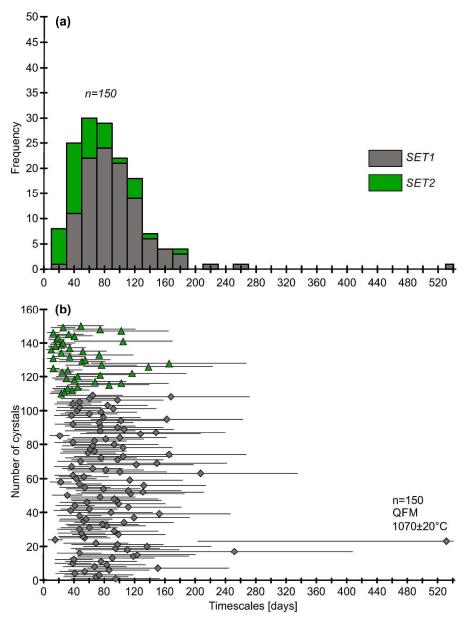
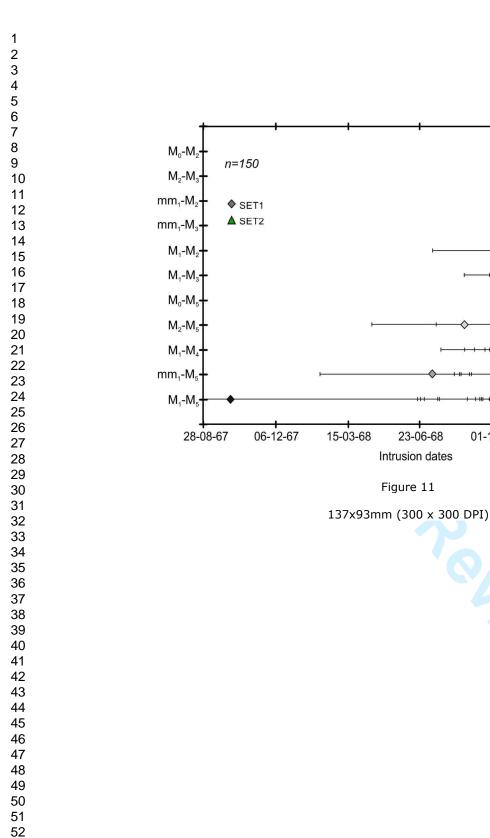


Figure 10

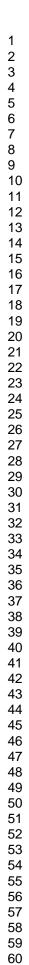
265x356mm (300 x 300 DPI)

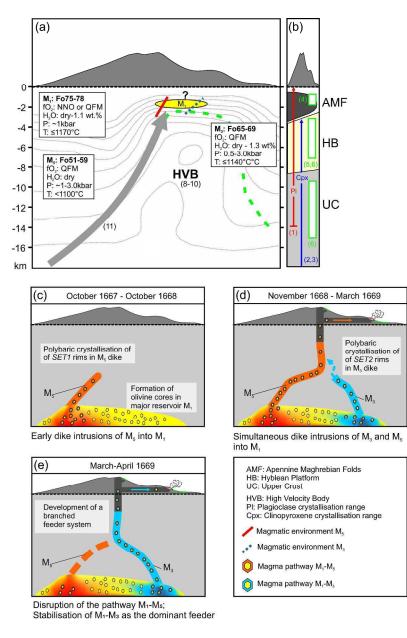
Seismicity

 $\sim \sim \sim$


09-01-69

01-10-68


Ъ


нA

19-04-69

53

279x423mm (300 x 300 DPI)

Flank eruption	Location and notes	Volume and length	References
1607 (June 28 - ?)	NW flank (2500-1500 m?); fissure above Monte Spagnolo cinder cone	Volume n.d.; lava flow of ~5 km	[1-3]
	1 st phase: SSW flank (2800-2200 m); Grotta degli Archi craters; 2 nd phase: SW flank (2300-1700 m); Large lava flows near Adrano	Total volume of lava flows: 120×10^6 m ³ (1 st phase 30×10^6 m ³ ; 2 nd phase 90×10^6 m ³); Total volume of pyroclastic material: $<4 \times 10^6$ m ³ (1 st phase 3×10^6 m ³ ; 2 nd phase $<1 \times 10^6$ m ³); Total length of lava flow field: 11 km	[1-4]
1614 (July 1) – 1624 (?)	N flank (~2500 m); most of the eruptive fissure is buried under younger lavas, but two larger cones (Due Pizzi) remain visible	Total volume of lava flows: ~1 km ³ ; Total volume of pyroclastic material: 2×10^6 m ³ ; Complex lava flow field up to ~9 km in length	[1-3]
~1630	NW flank from a fissure at 2250 m elevation, emitting "Val di Cannizzola" lava flow Another small lava flow located higher upslope was erupted from a fissure just below Punta Lucia.	n.d.	
1634 (December 18) – 1636 (June)	SE flank (2090-1975 m); short fissure forming a row of hornitos and lava flows causing damages in the area above Zafferana and threatens the village of Fleri	Total volume of lava flows: 180×10^6 m ³ ; Total volume of pyroclastic material: 1×10^6 m ³ ; Length lava flow field: ~9 km, divided into two branches	[4]; [1]; [2] [3]
1643 (February)	NE flank (2000-1700-1380-1350- 1250 m); this is probably one of the smallest flank eruptions of Etna characterized by a NE-SW and NNE- SSW fracture system that produced small lava flows	Total volume of lava flows: ~1×10 ⁶ m ³ ?; Length of lava flows: up to ~5 km	[1-2]
1646 (November 20) – 1647 (January 17)	NNE flank (1950 m); intense Strombolian activity formed the Mt. Nero scoria cone, and lava flows causing damages to cultivated areas	Total volume of lava flows: 160×10^6 m ³ ; total volume of pyroclastic material: 7×10^6 m ³ ; lava flow up to ~7 km long	[1-3]; [5]
1651 (January 17) – 1653 (?)	W flank (2500-2120 m); lava flows partially destroys Bronte and causes damage. The lava flow-field has many areas of ropy pahoehoe, a	Total volume of lava flows (only western flank): 500×10 ⁶ m ³ ; lava flow field	[6]; [2]; [3]

	rather rare lava type on Etna. An eruption is also reported to have occurred in 1651 on the eastern flank (Macchia di Giarre) and was covered by the 1689 lava	up to ~14 km long	
1669 (March 11 – July 11)	S Flank (850-700 m); development of a NNW-SSE-oriented fracture system 14-km-long (from Mt. Frumento Supino, 2800 m to Mompilieri, 600 m). Vigorous Strombolian activity formed the Mts. Rossi scoria cones. Lava effusions divided into three main branches that destroyed La Guardia, Belpasso, Mompilieri, Camporotondo, S. Pietro Clarenza, Massa Annunziata, S. Giovanni Galermo, Misterbianco and the western part of Catania	flows: $>600 \times 10^6$ m ³ ; total volume of pyroclastic material: from 80 to	

n.d.: not determined; [1] Recupero (1815); [2] Branca & Del Carlo (2004); [3] Tanguy *et al.* (2007); [4] Carrera (1636); [5] Ferrara (1818); [6] Mancino (1669); [7] Borelli (1670); [8] Branca *et al.* (2015); [9] Mulas *et al.* (2016)

	Sample	Latitude (N)	Longitude (E)	Location	Notes
	1-6	37.550439°	14.986601°	Piano Tavola	samples of lava emitted on March 19 1669
	1-7	37.550313°	14.988188°	Piano Tavola	samples of lava emitted on March 19 1669
SET1	1-8	37.549912°	14.988487°	Piano Tavola	samples of lava emitted on March 19 1669
07	1-9	37.549524°	14.987525°	Piano Tavola	samples of lava emitted on March 19 1669
	1-10	37.549245°	14.986397°	Piano Tavola	samples of lava emitted on March 19 1669
	2-1	37.515367°	15.041863°	Catania San Nullo	samples of lava emitted after March 29 (possibly April 04) 1669
	2-2	37.516550°	15.041239°	Catania San Nullo	samples of lava emitted after March 29 (possibly April 04) 1669
SET2	2-3	37.515609°	15.043251°	Catania San Nullo	samples of lava emitted after March 29 (possibly April 04) 1669
	2-4	37.514929°	15.043315°	Catania San Nullo	samples of lava emitted after March 29 (possibly April 04) 1669
	2-5	37.514670°	15.042788°	Catania San Nullo	samples of lava emitted after March 20 (possibly April 04) 1669
	MtRs	37.61924°	15.01103°	Monte Rossi scoria cone	Monte Rossi scoria cone bomb erupted after March 20 (possibly March 25) 1669

Table 3 Bulk rock compositions of SET1 and SET2 eruption products

		SE	T1			SE	T2		MtRs
Oxide (wt%)	1-6	1-7	1-8	1-9	2-1	2-2	2-3	2-4	MtRs
SiO ₂	48.59	48.52	48.55	48.52	48.81	48.79	48.84	48.86	48.57
TiO ₂	1.46	1.48	1.47	1.48	1.51	1.51	1.52	1.50	1.60
Al ₂ O ₃	18.02	18.01	17.87	17.96	18.43	17.98	18.03	18.13	18.25
Fe ₂ O ₃	10.09	10.06	10.07	10.04	10.17	10.27	10.37	10.28	10.72
FeO	9.08	9.05	9.06	9.03	9.15	9.24	9.33	9.25	9.65
CaO	10.47	10.47	10.54	10.58	10.12	10.56	10.32	10.44	10.40
MgO	5.23	5.05	5.23	5.11	4.73	5.17	5.07	5.13	5.06
MnO	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.17	0.19
K₂O	1.45	1.46	1.41	1.47	1.57	1.46	1.52	1.49	1.32
Na₂O	3.67	3.72	3.64	3.68	3.84	3.70	3.71	3.71	2.77
P ₂ O ₅	0.50	0.51	0.50	0.51	0.54	0.52	0.53	0.52	0.51
Total	99.59	99.36	99.53	99.42	100.48	99.53	100.34	100.44	100.66
LOI	-0.29	-0.32	-0.15	-0.33	-0.32	0.12	0.03	-0.03	1.27
Rb (ppm)	36	35	30	33	34	33	32	36	27
Ba (ppm)	768	773	701	712	737	782	713	780	764
Th (ppm)	33	33	27	27	28	34	29	34	39
U (ppm)	<20	<20	<20	<20	<20	<20	<20	<20	<20
Nb (ppm)	50	53	47	46	49	53	51	54	59
La (ppm)	75	87	87	66	79	81	80	86	80
Ce (ppm)	135	123	118	132	126	131	133	131	138
Pb (ppm)	30	22	19	17	20	20	21	20	18
Sr (ppm)	1171	1183	1161	1169	1205	1166	1172	1178	1251
Nd (ppm)	44	53	49	47	50	47	47	51	49
Zr (ppm)	211	216	215	215	225	220	223	219	241
Y (ppm)	27	27	25	23	25	28	25	28	31
Ni (ppm)	31	33	32	30	30	31	34	47	34
Cr (ppm)	52	48	57	47	40	47	44	67	43
V (ppm)	253	259	245	227	238	260	252	261	292
Co (ppm)	31	31	28	27	28	32	28	31	34
Cu (ppm)	127	134	94	107	115	120	112	132	140
Zn (ppm)	91	94	84	80	84	99	94	97	110

Notes: LOI: Loss on ignition; Note that the MtRs sample has a high LOI, which is not untypical for scoria.

Sample	Olivine	Timescale [days]	1σ	Sequence of reservoirs
	Ol-1	95	59	mm1-M5
	Ol-3	69	43	M1-M5
	Ol-4	73	45	M1-M5
	OI-19	42	26	mm1-M5
	OI-16	55	34	M1-M5
	OI-11	86	53	M1-M5
	OI-13	151	93	M1-M5
	Ol-12b	68	42	M1-M4
	OI-14	84	52	mm1-M5
	OI-28	39	24	mm1-M5
	OI-27	76	47	M1-M5
1-6	OI-24	40	25	M1-M5
~	OI-30	91	56	M1-M4
	Ol-6	119	73	M1-M5
	OI-8	124	76	mm1-M5
	OI-9	48	29	M1-M5
	OI-5	252	156	mm1-M5
	OI-29	111	68	M1-M4
	OI-22	95	59	mm1-M5
	OI-23	137	84	mm1-M5
	OI-25	98	60	M1-M5
	OI-31	69	43	M1-M5
	OI-7	531	328	M1-M5
	OI-23	16	10	M1-M5
	OI-22	55	34	M1-M5
	OI-21	52	32	mm1-M5
	OI-20	99	61	M1-M4
	OI-19	50	31	M1-M4
	OI-18	94	58	M1-M5
	OI-16	48	29	M1-M4
	OI-17	60	37	M1-M5
1-7	Ol-15b	84	52	M1-M5
~	OI-14	78	48	M1-M5
	OI-13	107	66	M1-M5
	OI-12	53	33	M1-M5
	OI-11	56	35	M2-M5
	OI-10	120	74	M1-M4
	Ol-9a	48	29	M1-M5
	Ol-8b	153	94	M2-M5
	Ol-8a	89	55	M2-M5

Page 84 of 86

Table 4 cont.

Sample	Olivine	Timescale [days]	1σ	Sequence of reservoirs
	OI-7	36	22	M1-M4
	OI-6	60	37	M1-M5
	OI-4	112	69	M1-M5
	OI-3	42	26	M2-M5
N.	Ol-2a	99	61	M1-M5
1-7	OI-1	58	36	mm1-M5
	OI-24	96	60	M1-M5
	OI-25	94	58	M1-M5
	OI-2c	75	46	M1-M5
	OI-2d	32	20	M1-M4
	OI-19	115	71	M1-M5
	OI-18	131	81	mm1-M5
	OI-17	112	69	M1-M5
	OI-16	79	49	M0-M5
	OI-15	55	34	mm1-M5
	OI-14	132	82	mm1-M5
	OI-13	48	29	M1-M5
	OI-11	23	14	M1-M5
ω	OI-12	114	70	M1-M5
1-8	OI-10	43	27	M1-M5
	O-19	53	33	M1-M5
	OI-7	39	24	M2-M5
	OI-6	207	128	M2-M5
	OI-5	101	62	M1-M5
	OI-4	82	51	mm1-M5
	OI-3	65	40	M1-M5
	OI-2	37	23	mm1-M5
	OI-1	122	76	mm1-M5
	OI-1	150	92	M1-M5
	OI-22	49	30	M1-M5
	OI-18	98	60	M1-M5
	OI-14	76	47	M1-M5
	OI-21	105	65	M1-M5
0	OI-20	166	102	M1-M5
1-9	OI-24	59	36	M2-M5
	OI-19	68	42	mm1-M5
	OI-17	62	38	M1-M5
	OI-8	105	65	M1-M4
	OI-12	65	40	M1-M4
	Ol-7a	94	58	M1-M5

Table 4 cont.

Sample	Olivine	Timescale [days]	1σ	Sequence of reservoirs
	Ol-7b	39	39	M1-M4
	OI-4	68	68	M1-M5
نب	OI-6	82	82	mm1-M5
1-9 cont.	OI-2	101	101	mm1-M5
Ŭ Ŭ	OI-10	22	22	M1-M4
ၐ	OI-11	128	128	M1-M4
,	OI-16	148	148	M1-M4
	OI-5	75	75	M2-M5
	OI-7c	107	107	M1-M4
	Ol-21b	98	60	M1-M5
	Ol-20a	75	46	M1-M5
	OI-20b	39	24	M1-M5
	OI-18	73	45	M1-M5
	OI-17	102	63	mm1-M5
	OI-15	163	100	M1-M5
	OI-14	79	49	M1-M5
	OI-13	37	23	M1-M5
	OI-11	60	37	M1-M5
1-10	OI-10	76	47	M1-M5
÷ –	Ol-9a	45	28	mm1-M5
•	OI-8	92	57	M1-M5
	OI-6	48	29	mm1-M5
	OI-5a	85	52	M1-M5
	OI-4	39	24	M1-M5
	OI-2	48	29	mm1-M5
	Ol-1a	98	60	M1-M5
	Ol-1b	60	37	M1-M5
	OI-12	168	104	M1-M5
	OI-22	65	40	M1-M5
	OI-17	23	14	M1-M3
	OI-15	27	17	M1-M3
	OI-8	37	23	M1-M3
	OI-7	32	20	mm1-M3
~	OI-6a	45	28	M1-M3
2-1	OI-5	86	53	mm1-M2
	OI-4	102	63	M1-M3
	OI-3	68	42	M1-M3
	OI-2	40	25	M1-M3
	OI-1	30	19	M1-M3

OI-12

OI-11

OI-7

OI-5

2-5

	OI-15	45	28	M1-M3
	OI-12	75	46	mm1-M3
	Ol-11	117	72	M1-M3
2-2	OI-10	24	15	M1-M2
2	OI-7	32	20	M1-M3
	OI-5	13	8	mm1-M2
	Ol-14	138	85	M1-M3
	Ol-2a	76	47	M1-M2
	Ol-2b	166	102	M1-M2
2-3	OI-3	50	31	mm1-M2
2	OI-5	55	34	M1-M3
	Ol-6	13	8	M2-M3
	OI-23	35	21	M1-M3
	OI-20	73	45	M1-M3
	Ol-19	23	14	M1-M2
	Ol-18	52	32	M1-M2
	Ol-17	10	6	M1-M3
	Ol-14	35	21	M1-M3
4	OI-9	16	10	M1-M3
2-4	OI-8	23	14	mm1-M3
	OI-7	26	16	M1-M3
	Ol-6b	105	65	M1-M2
	Ol-6a	17	11	M1-M2
	OI-4	19	12	M1-M3
	OI-2	40	25	M1-M3
	Ol-1	33	20	M1-M2
	Ol-3	13	8	M1-M3

M1-M3

M0-M2

mm1-M3

mm1-M3