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Estimation of Joint Angle Based on Surface Electromyogram Signals

Recorded at Different Load Levels

Ahmed M. Azab1, Mahanz Arvanch2, and Lyudmila S. Mihaylova3

Abstract— To control upper-limb exoskeletons and prosthe-
ses, surface electromyogram (sEMG) is widely used for estima-
tion of joint angles. However, the variations in the load carried
by the user can substantially change the recorded sEMG and
consequently degrade the accuracy of joint angle estimation.
In this paper, we aim to deal with this problem by training
classification models using a pool of sEMG data recorded from
all different loads. The classification models are trained as
either subject-specific or subject-independent, and their results
are compared with the performance of classification models
that have information about the carried load. To evaluate the
proposed system, the sEMG signals are recorded during elbow
flexion and extension from three participants at four different
loads (i.e. 1, 2, 4 and 6 Kg) and six different angles (i.e. 0, 30 ,
60, 90, 120, 150 degrees). The results show while the loads were
assumed unknown and the applied training data was relatively
small, the proposed joint angle estimation model performed
significantly above the chance level in both the subject-specific
and subject-independent models. However, transferring from
known to unknown load in the subject-specific classifiers leads
to 20% to 32% loss in the average accuracy.

I. INTRODUCTION

Upper-limb motion is essential for most daily human ac-

tivities, such as eating, drinking, and washing face, etc. Many

research studies are now focusing on how to assist people

who are disabled or elderly via the development of power-

assist robotic systems to support these daily functions [1]–

[3]. It has been widely presented that power-assist robotic

systems can be operated using surface electromyogram

(sEMG [4] which reflects electrical activities of muscles

[5]. The sEMG signals of muscles can be used as input

information for controlling exoskeleton robots [6]. However,

most of the systems introduced so far are expensive and not

mature enough to be used out of laboratories.

One of control signals required to operate a power-assisted

robotic system can be obtained by estimating the joint

angle based on the obtained sEMG [7]. Several studies

propose mathematical models to estimate joint angles [8],

[9]. For example, Aung et al estimate the angle of shoulder

based on sEMG signals to control a virtual reality (VR)

human model [9]. However, most of these studies do not

consider load variations, which can significantly affect the

accuracy of joint angle estimation. Indeed [10] shows that
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changes of the load level dropped the accuracy of myoelectric

control system up to %60. Nevertheless, there are only few

research studies focusing on reducing the error in estimating

joint angle caused by load variations. For example, [10],

[11] combine information extracted from accelerometer with

sEMG and achieved 5-10% improvement in the accuracy of

joint estimation. Furthermore, there is a study that used force

measurements with sEMG [12] and this study showed that

the average error could be reduced from 20.44% to 8.48%

[12].

This paper focuses on joint angle estimation using sEMG

signals when the load carried by the user is unknown.

To reduce the impact of load variations on the join angle

estimation accuracy, we propose to pool sEMG data from

different loads and use the pooled data for training the

classification models. Thus, using training data pooled from

different loads would enable the model to learn effects of

the load variations on the sEMG data. Two different classifi-

cation models are proposed under three different conditions,

namely 1) a subject-specific model with known load, 2) a

subject-specific model with unknown load, and 3) a subject-

independent model with unknown load. We compare the

results of these models and discuss if using pooled sEMG

data recorded from different loads as training data can lead

to an accurate estimation of the joint angle.

To develop a reliable system that is commercially inexpen-

sive and usable in mobile systems with limited computational

capacities, we use a cheap EMG acquisition system along

with machine learning algorithms that are computationally

inexpensive. Thus, the proposed system can be potentially

used as a key step in developing a complete controller for

the upper-limb power-assist robotic systems. To evaluate the

proposed system, the sEMG signals from the biceps muscle

during elbow flexion and extension are recorded from three

participants at different loads (1, 2, 4, 6 kg) and angles (0◦,

30◦, 60◦, 90◦, 120◦, 150◦).

The remainder of this paper is organized as follows.

Section II describes the proposed method. The performed

experiments are explained in Section III. Section IV presents

the experimental results, and finally Section V concludes this

paper

II. METHODOLOGY

A. Preprocessing

The output of the EMG sensor is not a raw EMG signal but

rather an amplified (10053x), rectified, and smoothed signal.

Disjoint segmentation with a window of 300 ms width is

applied to enhance signal stationarity [13].



B. Feature extraction and classifications

Two time domain features are calculated, namely the

Standard Deviation (STD) and the Root Mean Square (RMS)

of the EMG signals which are two of the most commonly

used time domain features in EMG studies [14]. The STD

and RMS features of an EMG window are calculated as

below:

STD =

√

√

√

√

1

N

n
∑

i=0

(Xi − X̄)2, (1)

RMS =

√

√

√

√

1

N

N
∑

i=0

X2

i
, (2)

where x denotes the EMG voltage at the ith sample, N is

the total number of sample points, and X̄ is the mean of the

considered EMG interval.

Two classification techniques, namely k-Nearest Neigh-

bours algorithm (KNN) and Naive Bayes classifiers (NB)

[15], are applied on the extracted EMG features to identify

the corresponding joint angle. KNN identifies the class

of a new instance query based on majority of K-Nearest

Neighbour instances available in train data. NB classifier is

a probabilistic technique where uses Bayes’ rules to calculate

the probability of classes.

As the experiment is done under six different angles (i.e.

0◦, 30◦, 60◦, 90◦, 120◦ and 150◦), six classes are defined for

classification. As mentioned before, each subject performs

three complete sets of trials with a sufficient rest period

between each trial to prevent fatigue. Moreover, the proposed

algorithms in identifying the joint angles are validated using

three-folds cross validation.

In this paper, the classifiers are trained under three differ-

ent conditions.

1) Load-dependent & subject-dependent classification:

The training and testing features are extracted from

data with the same load and the same subject. In this

condition, the three-fold cross-validation is conducted

as follows: For each subject and each load, features

from two trials are used as the training data and

features from the remaining trial are used as the test

data. Hence, the trained model is tested on the sEMG

data recorded with the same load.

2) Load-independent & subject-dependent classification:

In this condition, training and test data are obtained

from the same subject by pooling data from the

different loads together. Thus, the classifiers aim to

identify the joint angle regardless of the load that the

corresponding subject is carrying. In this condition,

the three-fold cross-validation is conducted for each

subject using all features of two trials obtained from

all the loads as the training data and all features from

the remaining trial as the test data.

3) Load-independent & subject-independent classifica-

tion: In this condition, we aim to identify the joint

angle of a new subject regardless of the load that he

is carrying using a classifier trained by the data from

other subjects. Thus, for three-fold cross validation,

the classifier is trained using all the features from all

the loads carried by two subjects. Subsequently, the

classifier is tested using all the features obtained from

the remaining subject.

III. EXPERIMENT

A. Participants

Three healthy male participants aged between 20-30 years

old participated in this study. All of them gave their signed

consents before the experiment. The experimental protocol

was approved by the graduate study department for ethical

clearance at Military Technical College in Egypt. Participants

with any musculoskeletal diseases were excluded from this

study.

B. Proposed low-cost data recording system

In this study we use our proposed low cost data recording

system to record sEMG signals [16]. The proposed system

performs the following steps: signal acquisition, then signal

digitalization, data segmentation, after that signal processing

(feature extraction and classification), and finally, control

signal generation unit. A sampling frequency of 1 KHz is

used to minimise hardware requirements in terms of memory,

processing power and processing time (i.e. less memory size,

smaller processor, and less processing time to save power).

As shown in shown in Fig. 1, the proposed low-cost

data recording system consists of EMG sensor electrodes for

signal acquisition, an EMG muscle sensor kit, and an Atmel

ATmega640 microcontroller for signal conditioning and a

Matlab program for signal processing and classification.

The Atmel ATmega640 microcontroller receives the surface

EMG signals to control the robotic arm and produce its

motion through the servomotors. In our previous study, the

proposed low-cost hardware is validated against EMG100C,

the professional EMG signal module of the Biopack system,

using several stages of validation, and shows that it provides

the same results given by the professional Biopack system.

Therefore, the proposed system reduces our target costs with

acceptable accuracy [16].

C. Experiment Protocol

EMG is acquired using the proposed low-cost muscle sen-

sor kit from three electrodes. As the standard measurement

technique for angle estimation, two electrodes are placed

over the biceps muscle attached to the subject’s right arm.

The distance between the two electrodes is 2 cm and the

placement is in the direction of the muscle fibers. The third

electrode is the reference electrode placed at one of the arm

bones [17].

Elbow flexion and extension are performed (as shown in

Fig. 2) at six angles (i.e. 0◦, 30◦, 60◦, 90◦, 120◦, 150◦) and

at the different loads (i.e. 1, 2, 4, 6 kg). The experiments are

conducted with all loads at each angle as follows. At angle

0◦, each individual load is lifted by the subject under test

while the sEMG signal of the biceps muscles is recorded



Fig. 1. Proposed low cost system

Fig. 2. Elbow flexion and extension

over 20 seconds without motion. After that, at each angle

(30◦ to 150◦), the subject moves his elbow from the zero

position (angle 0◦ where depicted as initial position in Fig.

2) to the required angle and vice versa for 20 seconds while

the sEMG signal is recorded. The participants are instructed

to keep their movement at a constant speed. These sEMG

signals are saved to be analysed using algorithms developed

in Matlab.

IV. RESULTS

The obtained results are divided into three groups, each

refers to one of the three classification conditions.

A. Load-dependent & subject-dependent classification

Tables I and II show the average cross-validation accuracy

of identifying the joint angle for each subject and each

load (i.e. load-dependent & subject-dependent classification

condition). Tables I and II report the results of the KNN and

the NB classifiers respectively. Having 6 different angles to

classify, the chance level is around 16%. When the load is

known, the KNN and NB classifiers are able to identify joint

angles with accuracies considerably higher than chance level.

Comparing the results show that when the load is known the

KNN classifier is on average more accurate than the NB

classifier in identifying the joint angles (i.e. 73.15% versus

68.51%). More specifically, on average the KNN classifier

outperforms the NB classifier for all subjects. In addition,

on average the KNN classifier outperforms the NB classifier

for the loads 1 Kg, 2 Kg, and 6 Kg.

TABLE I

AVERAGE CROSS-VALIDATION RESULTS IN IDENTIFYING THE JOINT

ANGLES FOR SUBJECT-DEPENDENT KNN CLASSIFIERS WHEN LOAD IS

KNOWN [ACCURACY%]

Subject 1 Subject 2 Subject 3 Mean

1 Kg 83.33 83.33 50 72.22

2 Kg 94.44 66.67 94.44 85.18

4 Kg 77.78 66.70 33.33 59.27

6 Kg 83.33 94.44 50 75.92

Mean 84.72 77.77 56.94 73.15

TABLE II

AVERAGE CROSS-VALIDATION RESULTS IN IDENTIFYING THE JOINT

ANGLES FOR SUBJECT-DEPENDENT NAIVE BAYESIAN (NB)

CLASSIFIERS WHEN LOAD IS KNOWN [ACCURACY%]

Subject 1 Subject 2 Subject 3 Mean

1 Kg 72.22 83.34 50 68.53

2 Kg 83.34 61.00 77.79 74.04

4 Kg 94.44 72.22 33.33 66.66

6 Kg 72.22 72.22 50 64.82

Mean 80.56 72.19 52.78 68.51

TABLE III

AVERAGE CROSS-VALIDATION RESULTS IN IDENTIFYING THE JOINT

ANGLES FOR SUBJECT-DEPENDENT CLASSIFIERS WHEN LOAD IS

UNKNOWN [ACCURACY%]

Subject 1 Subject 2 Subject 3 Mean

KNN 57.33 53 48.67 53

NB 43.33 32 33 36.11

B. Load-independent & subject-dependent classification

The results of identification of joint angles using NB

and KNN classifiers for the load-independent & subject-

dependent classification condition are shown in Table III.

Table III shows that the results exceed 50% accuracy for

identifying the joint angle when the load is unknown using

KNN classifier. Considering 16% as the chance level, the

KNN and NB classifiers perform successfully higher than the

chance level for all the three subjects. Furthermore, the KNN

classifier outperforms the NB classifiers by an average of

16.89%. This outperformance is significant as it is observed

for all the three subjects.

Comparing the results of the load-dependent & subject-

dependent classification condition with load-independent &

subject-dependent classification condition reveals that dis-

carding the load information from the classification could

yield significant loss in the accuracy (e.g. on average 20%

in KNN and 32% in NB).

C. Load-independent & subject-independent classification

Table IV shows the results of the load-independent &

subject-independent classification condition. In this part, the

goal is to identify the joint angle of a new subject regardless

of the load that he is carrying. Thus, the classifiers are trained

using data from all the loads of the other subjects. The



TABLE IV

AVERAGE CROSS-VALIDATION RESULTS IN IDENTIFYING THE JOINT

ANGLES FOR SUBJECT-INDEPENDENT CLASSIFIERS WHEN LOAD IS

UNKNOWN [ACCURACY%]

KNN NB

Mean 24.7 36

obtained accuracies are ranged between 22% to 30% with

mean of 24.7% for KNN, and 32% to 43% with mean of

36% for NB. Although all the results are above the chance

level, the KNN and NB classifiers only achieve 24.7% and

36% average correct accuracies respectively. As can be seen

in Table III and IV, transferring from subject dependent

condition to subject independent condition, when load is

unknown, result in 19% decrease in the accuracy of the KNN

classifier.

V. CONCLUSIONS

This paper shows that the load variations can have a great

impact on the accuracy of elbow-angle estimation. In order

to estimate the joint angle, two classification techniques,

KNN and NB, are applied on the extracted EMG features.

Three different classification conditions are considered: 1)

a subject-dependent classification when the carried load is

known; 2) a subject-dependent classification when the carried

load is unknown; and 3) a subject-independent classification

when the carried load is unknown. Importantly, to cope

with the uncertainties made by variations in the load, the

classifiers in the second and third conditions are trained using

sEMG data gathered from all the loads.

The proposed algorithms are evaluated using data collected

from 3 subjects. Considering 6 different angles (i.e. 0◦,

30◦, 60◦, 90◦, 120◦, 150◦) and 4 different loads (i.e. 1,

2, 4 and 6 Kg), the proposed algorithms are successful in

estimating joint angles with accuracies above the chance

level in all the conditions. However, when transfer from the

known load condition to the unknown load condition, the

average accuracy of the subject-dependent classifiers drop

from 73.15% to 53% and 68.5% to 36.11% for KNN and

NB respectively. Moreover, when transfer from the subject-

dependent condition to the subject-independent condition

when the carried load is unknown, the average accuracy drop

from 53% and 24.7% for KNN. However, we do not observe

any average loss in accuracy for the NB classifier.

It is important to mention that the results are obtained

using a very small training size. Besides, the data acquisition

system used in this study is a very low-cost system. Increas-

ing the training size as well as extracting more informative

features would improve the classification accuracy.
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