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Abstract  

The airway epithelium secretes proteins that function in innate defense against 

infection. BPI fold-containing family member A1 (BPIFA1) is secreted into airways 

and has a protective role during bacterial infections, but it is not known whether it 

also has an antiviral role. To determine a role in host defense against influenza A 

virus (IAV) infection and to find the underlying defense mechanism we developed 

transgenic mouse models that are deficient in BPIFA1 and used these, in 

combination with in vitro 3D mouse tracheal epithelial cell (mTEC) cultures, to 

investigate its antiviral properties. We show that BPIFA1 has a significant role in 

mucosal defense against IAV infection. BPIFA1 secretion was highly modulated after 

IAV infection. Mice deficient in BPIFA1 lost more weight after infection, supported a 

higher viral load and virus reached the peripheral lung earlier, indicative of a defect 

in the control of infection. Further analysis using mTEC cultures showed that 

BPIFA1-deficient cells bound more virus particles, displayed increased nuclear 

import of IAV ribonucleoprotein complexes and supported higher levels of viral 

replication. Our results identify a critical role for BPIFA1 in the initial phase of 

infection by inhibiting the binding and entry of IAV into airway epithelial cells.  
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Introduction  1 

The airway epithelium has a fundamental role in the initial defense against 2 

pathogens and as such secretes a number of proteins/peptides that function in 3 

innate defense 1. Bactericidal/permeability-increasing (BPI) fold-containing family A1 4 

(BPIFA1; also called SPLUNC1) is a glycoprotein that is highly expressed in the 5 

respiratory epithelium and submucosal glands of the upper airways in mice and 6 

humans 2-9.  The mouse and human BPIFA1 sequences are homologous 8, 10, 11.  7 

Previous studies have demonstrated that BPIFA1 acts as a surfactant 12, can 8 

regulate the amiloride-sensitive epithelial sodium channel, ENaC 13 and affects 9 

mucociliary clearance in the upper airways 14.  It has also been shown to have anti-10 

bacterial roles. For example, Bpifa1 expression is induced after Mycoplasma 11 

infection, enhancing IL-8 production and bacterial clearance 15. BPIFA1 also has a 12 

role in defense against Klebsiella pneumoniae 16, possibly acting through modulation 13 

of macrophage function 17.  Less is known about any anti-viral role of BPIFA1, 14 

although our previous work has shown modulation of BPIFA1 levels after murine γ-15 

herpesvirus 68 infection 18.  16 

Influenza A virus (IAV) is an enveloped RNA virus of the Orthomyxovirus 17 

genus. Seasonal influenza is a major cause of respiratory infection resulting in 18 

substantial morbidity, mortality and thus economic burden worldwide 19. Pandemic 19 

influenza strains emerge sporadically as a result of genetic reassortment and are a 20 

substantial global health concern 20. There are vaccines and antiviral drugs to 21 

combat influenza. However, due to rapid virus evolution, vaccines need to be re-22 

formulated and re-administered most years 21 and resistance against antiviral drugs 23 

is emerging 22. It is therefore important to understand how intrinsic and innate 24 



4 

 

mechanisms modulate influenza virus infection and how these may be used to 25 

develop novel therapeutic interventions. 26 

The negative-sense, single-stranded genome of IAV comprises eight 27 

segments of viral RNA which are separately encapsidated into ribonucleoprotein 28 

particles (RNPs) 23. Infection and entry of IAV into cells involves viral attachment, via 29 

the hemagglutinin (HA) glycoprotein that is embedded in the virion membrane, to cell 30 

surface receptors that contain sialic acid 24.  After binding, virus particles enter the 31 

cell by receptor-mediated endocytosis.  Fusion of the virus membrane with the 32 

endosomal membrane results in release of RNPs into the cytoplasm 24, 25 which are 33 

then imported into the nucleus , where genome replication and transcription of viral 34 

genes take place 26. Understanding the entry process and how the host counters it is 35 

critical to uncovering inhibitors with therapeutic potential. 36 

In this study, we used transgenic mouse models combined with in vitro 3D-37 

culture systems to show that BPIFA1 has a role in the intrinsic defense against IAV 38 

infection. 39 

 40 

Results 41 

BPIFA1 expression after IAV infection.  42 

To determine changes in BPIFA1 levels following IAV infection, C57BL/6J mice were 43 

infected intranasally (i.n.) with 103 pfu IAV X-31 (or as controls with u.v.-inactivated 44 

virus or mock-infected) and analyzed at time-points post-infection (p.i.).  IAV X-31 is 45 

a mouse-adapted H3N2 strain that generates a sub-lethal infection 27.  It thus models 46 

most of the IAV-associated disease in humans and also allows for analysis over an 47 

extended time-course.   48 
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Firstly, levels of BPIFA1 in broncho-alveolar lavage (BAL) were accurately 49 

quantified using (Wes™; ProteinSimple). The results (Fig. 1) showed BPIFA1 levels 50 

decreased dramatically after infection (100-fold) to a nadir at day 7 p.i. before 51 

returning to a level that was not significantly different to uninfected mice by day 14 52 

p.i. u.v.-inactivated virus did not affect the levels of BPIFA1 as measured at day 5 p.i. 53 

Next, the pattern and quantity of BPIFA1 staining was determined by 54 

immunohistology (IH).  In mock-infected mice, BPIFA1 was abundant in the 55 

epithelium of the trachea and bronchi (Fig. 2A, B arrows) but present only within 56 

scattered cells in the bronchioles (Fig. 2C, arrows) and absent in the surrounding 57 

alveoli (Fig. 2C). Following infection with IAV, a substantial decrease in the number 58 

of BPIFA1-positive cells was observed and confirmed by the quantitative analysis 59 

that showed a 4 – 8-fold (p <0.05) decrease in the percentage area stained in the 60 

trachea and bronchi respectively to day 7 p.i.; at this point, there were foci of erosion 61 

with reduced cell height, loss of cilia, loss of cellular polarity and occasional loss of 62 

epithelial cells.  Recovery of levels of BPIFA1 and evidence of epithelial regeneration 63 

with foci of multilayered epithelium and mitoses was seen by day 14 p.i. (Fig. 2A, B).  64 

The intensity of BPIFA1 staining in the positive areas (i.e. in individual epithelial 65 

cells) did not decrease significantly in the trachea, but in the bronchi a similar pattern 66 

to that of area stained was noted with an initial decrease followed by a gradual 67 

recovery.  In contrast, in bronchioles the intensity of staining in epithelial cells 68 

increased five-fold to day 14 p.i., whilst the number of positive cells (area stained) 69 

increased three-fold by day 14 p.i. (Fig. 2C).  70 

 71 
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Mice deficient in BPIFA1 support higher levels of IAV replication.  72 

To determine the role of BPIFA1 in defense against IAV, BPIFA1-deficient mice 73 

(Bpifa1-/-) were generated as described in supplementary data and S1 Fig. (A). 74 

Bpifa1-/- mice expressed no detectable BPIFA1 protein in the lungs (S1 Fig. (B)), but 75 

did not exhibit any morphological changes or altered distribution of cell types in 76 

airways and alveoli (S1 Fig. (C); described in supplementary data). 77 

C57BL/6J and Bpifa1-/- mice were infected i.n. with 103 pfu IAV X-31. The 78 

weight of the mice and lung virus titers were determined over a 28-day period.  The 79 

results (Fig. 3A, B) showed that wt mice were readily infected with IAV. They lost 80 

weight (max. 5%; day 6 p.i.) before recovering. Titers of IAV increased in the lungs, 81 

peaking at 106 pfu/g tissue on day 5 p.i. Infection in Bpifa1-/- mice followed a similar 82 

course. Weight loss was significantly greater (p < 0.01) in Bpifa1-/- mice (12% at day 83 

6 p.i.). In addition, IAV titers were significantly (p < 0.05) and at least 1 log10 higher at 84 

all time-points. Virus was not detectable in either group at days 7 and 14 p.i. 85 

To control for potential developmental adaptation in the knockout mice, a club 86 

cell-specific, tamoxifen (tmx)-inducible conditional knockout mouse strain (Bpifa1loxP; 87 

Scgb1a1-CreERTM) was generated as described in the S1 text. Western blot analysis 88 

of lung tissue confirmed a 9-fold knockdown in the level of BPIFA1 in Bpifa1loxP; 89 

Scgb1a1-CreERTM mice after tmx treatment as compared with mice that were treated 90 

with carrier (Fig. 3C).  91 

Bpifa1loxP; Scgb1a1-CreERTM mice were treated with either carrier (vegetable 92 

oil) or tmx and, along with untreated Bpifa1loxP; Scgb1a1-CreERTM and Bpifa1-/- mice, 93 

were infected i.n. with IAV. Virus titers in the lungs were determined at day 7 p.i.  94 

The results (Fig. 3D) showed that titers of infectious virus were significantly lower in 95 

untreated or carrier-treated mice than in tmx-treated Bpifa1loxP; Scgb1a1-CreERTM 96 
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mice or Bpifa1-/- mice. Thus, reduction of BPIFA1 expression using either total or 97 

conditional knockout of BPIFA1 enabled IAV to be more pathogenic and replicate to 98 

higher titers in the lungs of infected mice.  99 

 100 

BPIFA1 limits the initial spread of IAV in vivo.  101 

To assess whether BPIFA1 influenced the distribution of IAV infection, C57BL/6J 102 

and Bpifa1-/- mice were infected and IAV-infected cells identified by IH.  At day 1 p.i., 103 

IAV antigen was seen within, and adjacent to foci of necrotic respiratory epithelial 104 

cells in the nasal cavity, trachea, bronchi and proximal bronchioles of both wt and 105 

Bpifa1-/- mice (S2 Fig., arrows).  However, in Bpifa1-/- mice, epithelial cells in the 106 

distal bronchioles were found to be infected and macrophages in alveoli around the 107 

infected bronchioles were positive for IAV (Fig. 4. arrows and red arrowheads 108 

respectively).  In contrast, IAV antigen was not observed in distal bronchioles and 109 

alveoli of wt mice. At subsequent days post-infection there were no differences in the 110 

distribution of IAV antigen between wt and Bpifa1-/- mice.   111 

Thus, in the absence of BPIFA1, IAV infection reached the distal airways and 112 

alveoli earlier during infection.  113 

 114 

BPIFA1 restricts IAV infection in normal epithelial cells.  115 

Given the differences in viral titer as early as day 1 p.i., we hypothesized that one 116 

function of BPIFA1 could be to influence directly the infection of epithelial cells. To 117 

investigate this, tracheal cell cultures were established from mice and cultured at the 118 

air-liquid interface to generate well-differentiated cultures (mTEC) 28, 29. The 119 

validation of these cultures from wt mice is presented in supplementary data and S3 120 

Fig. Differentiated mTEC ALI cultures displayed phenotypic features associated with 121 
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complex populations of cells including ciliated cells (β-tubulin, FoxJ1), BPIFA1, 122 

mucin (MUC5B), and SCGB1A1 (CCSP)-expressing cells that matched with the 123 

features of the native rodent airway epithelium.  The cultures from Bpifa1-/- mice had 124 

similar levels of ciliogenesis (β-tubulin staining) and mucin (MUC5B staining) to 125 

those from wt counterparts (S4 Fig.). Quantification of β-tubulin-staining showed that 126 

approx. 17% of cells were ciliated in both types of cultures. In wt cultures, 24% of 127 

cells were BPIFA1 positive and were non-ciliated. Thus, mTEC ALI cultures are 128 

highly representative of mouse airway epithelium and an ideal model to study the 129 

role of BPIFA1 during infection.    130 

mTEC ALI cultures from wt and Bpifa1-/- mice were infected with IAV (0.1 131 

pfu/cell) and infection analyzed by immunofluorescence (IF). In wt mTEC ALI cells, 132 

IAV antigen was observed predominantly in epithelial cells that did not express 133 

BPIFA1, at both 24 and 48 h p.i. (Fig. 5B, C). An increased number of cells 134 

containing IAV NP antigen was seen in Bpifa1-/- mTEC ALI cultures as compared 135 

with wt cells at both time-points (Fig. 5E, F). Quantification revealed a >2-fold and 136 

nearly 2-fold higher intracellular IAV NP load in Bpifa1-/- than in wt mTEC cultures at 137 

24 h p.i. and 48 h p.i. respectively (Fig. 5G; p < 0.05). There was also a significant 138 

increase in infectious IAV titer in apical wash fluid from Bpifa1-/- compared with wt 139 

cells (Fig. 5H). Thus, BPIFA1 inhibits the infection of normal (mTEC ALI) cells by IAV 140 

at a stage up to or before early viral gene expression. 141 

 142 

BPIFA1 limits the import of IAV into epithelial cells.  143 

Import of virus ribonucleoprotein (vRNP) complexes into the nucleus is one of the 144 

initial steps of the IAV replication cycle.  To investigate whether BPIFA1 influences 145 

the early stages of IAV infection, day 14 mTEC ALI cultures were infected with IAV. 146 
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Import of RNP complexes into the nucleus was then assessed by 147 

immunofluorescence analysis using anti-IAV NP. Blocking protein synthesis with 148 

cycloheximide (CHX) was performed to distinguish imported RNPs from de novo NP 149 

production. The amount of purified virus used was sufficient enable detection of RNP 150 

import in 100% of cells in an equivalent assay performed on MDCK cells (data not 151 

shown). The results (Fig. 6A, B) showed that in the absence of CHX, IAV NP was 152 

readily observed 4 h after infection in the nuclei of cells from wt mice but, as with the 153 

previous experiment, was present in 3.5x more nuclei in cells from Bpifa1-/- mice. In 154 

the presence of CHX, RNP complexes were observed in the nuclei of 1% of wt cells 155 

but in a significantly (p < 0.05) higher proportion (25x) of nuclei in Bpifa1-/- cells (Fig. 156 

6A right panels, B, C).  Thus BPIFA1 appreciably decreased the number of cells with 157 

visible accumulation of IAV RNPs after infection, indicating that it acts at an early 158 

stage of the viral life cycle.      159 

 160 

BPIFA1 inhibits IAV binding to respiratory epithelial cells.  161 

To determine if BPIFA1 affected virus binding, mTEC ALI cultures derived from 162 

Bpifa1-/- and wt mice were incubated with Alexa Fluor 488-labelled IAV (IAV-488) 163 

and bound virus was assessed by confocal microscopy. The amount of labelled virus 164 

used was sufficient to enable detection of binding in 100% of cells in an equivalent 165 

assay performed on MDCK cells (data not shown). wt cells showed IAV binding 166 

predominantly to the surface of Foxj1-positive (ciliated) cells that were negative for 167 

BPIFA1 (Fig. 7A). The BPIFA1-positive sub-population of cells (non-ciliated; S3 Fig. 168 

A, C) presented as focal clusters in mTEC ALI cultures (outlined in yellow) and were 169 

predominantly free from IAV-binding (Fig. 7A). Analysis of the distribution of α2,3-170 

linked and α2,6-linked sialic acid residues using the lectins MAA and SNA 171 
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respectively showed that there were numerous cells with α2,3-linked residues on the 172 

cell surface in both wt and Bpifa1-/- cultures (mean n = 3; 25% and 22% respectively) 173 

and that these were on the BPIFA1-negative cells (S5 Fig. (A)). The few α2,6-174 

positive cells present in the wt and Bpifa1-/- cultures (mean n = 3; 3% and 5% 175 

respectively) were mostly BPIFA1-positive (S5 Fig. (B - E)). Quantification of bound 176 

IAV-488 showed that the integrated fluorescence intensity from Bpifa1-/-  cells was 4 177 

fold greater than that from wt cells (Fig. 7B, C). Thus, our data show that IAV bound 178 

predominantly to ciliated cells that were BPIFA1-negative, α2,3-linked sialic acid-179 

positive, and that the presence of BPIFA1 decreased the binding of IAV to these 180 

cells.  181 

182 
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 183 

Discussion 184 

BPIFA1 is constitutively expressed and secreted by the airway epithelium 2, 6, 185 

7, 18, 30, 31 including the submucosal glands 9, 28, 30, 31. However, its precise biological 186 

functions remain elusive. Our studies have uncovered an important role for BPIFA1 187 

in the host defense against IAV infection. BPIFA1 levels were modulated after 188 

infection and genetic knockout of BPIFA1 led to a higher viral titer both in vivo and in 189 

mTEC ALI cultures. There was also greater nuclear import of virus RNP complexes 190 

and binding of virus to cells in mTEC cultures lacking BPIFA1. 191 

BPIFA1 has previously been shown to have a defensive role in M. 192 

pneumoniae and K. pneumoniae infection, enhancing bacterial clearance and 193 

inhibiting biofilm formation 15, 16. Here we show for the first time, that BPIFA1 also 194 

has a major role in the defense against IAV. Notably higher weight loss was 195 

observed and higher viral titers (> 1 log10) were recovered from the lungs of Bpifa1-/- 196 

mice as compared to wt controls. A more rapid spread of IAV to the lung 197 

parenchyma was also seen in Bpifa1-/- mice. Specifically, IAV antigen was observed 198 

in the bronchiolar epithelium and alveoli of Bpifa1-/- but not of wt mice at 24 h p.i. 199 

indicating a possible role for BPIFA1 both in intrinsic or innate defense during early 200 

infection and in the adaptive immune response to IAV. The higher viral titers in lungs 201 

after conditional knockdown of BPIFA1 in Scgb1a1-expressing club cells indicates 202 

that the observations seen in the Bpifa1-/- mice are not due to developmental 203 

adaptations to the total loss of BPIFA1 expression.   204 

 To investigate intrinsic functions of BPIFA1 in the airway epithelium we 205 

cultured mTEC cells from wt and Bpifa1-/- mice. Although we did not formally rescue 206 

the Bpifa1-/- cells using exogenous protein, we controlled for differences between 207 
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cultures by performing extensive phenotypic characterization. Thus, approximately 208 

25% of the cells in wt mTEC had α2,3-linked sialic acid (SA) residues on the surface. 209 

These cells were BPIFA1-negative. A similar proportion of cells (22%) were α2,3 SA-210 

positive in the Bpifa1-/- cultures. Very few cells on wt and Bpifa1-/-  cultures were α2,6 211 

SA-positive (3% and 5% respectively). Mouse-adapted IAV strains such as those 212 

used in this study (X-31 and PR8) will use both α2,3- and α2,6-linked and sialic acid 213 

residues as a receptor 32, 33. The similar proportions of cells with α2,3- and α2,6-214 

linked and sialic acid residues between wt and Bpifa1-/- cultures indicates that 215 

differences in infection and binding between wt and Bpifa1-/- are due to the absence 216 

or presence of BPIFA1 and not differences in the number of cells expressing 217 

receptors.  Infection of mTEC cultures with IAV paralleled our observations in vivo in 218 

that there was a significantly more rapid spread and higher viral titers in cultures 219 

lacking BPIFA1. In line with the distribution of α2,3-linked sialic acid receptors, IAV 220 

had a preference for infecting the BPIFA1-negative population. This confirms a role 221 

for BPIFA1 in the intrinsic defense against IAV at the airway epithelium during the 222 

first few days of infection and shows that the secreted protein exerts its effects on 223 

the epithelial cell surface rather than solely in the cells that produce it. 224 

Further analysis revealed a much greater import of IAV RNPs into the nuclei 225 

of cells and significantly increased virus binding in the Bpifa1-/- cultures. The fact that 226 

only a percentage of cells were infected in these assays reflects in part the complex 227 

nature of mTEC ALI cultures and where only a proportion of the cells express the 228 

α2,3- and α2,6-SA receptors. The greater level of inhibition in the RNP import assay 229 

compared to the binding assay suggests an important role for BPIFA1 in decreasing 230 

post-binding entry into cells via endosomes as well as initial binding of IAV to normal 231 

ciliated epithelial cells in airways. BPIFA1 is secreted and is present in the periciliary 232 
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layer 34 so it is easy to envisage how it might be part of a barrier to IAV infection at 233 

the epithelial surface. We did not characterize whether and how BPIFA1 binds to 234 

virus particles. However, BPIFA1 could either form a non-specific barrier to IAV 235 

engaging with cellular receptors, or bind to IAV and prevent receptor interactions. 236 

Gel-forming mucins such as MUC5AC inhibit virus infection 35 and BPIFA1 has been 237 

shown to associate with the mucus rich portion of the pericellular lining fluid 34, 36.  It 238 

has been hypothesized that in the case of IAV this is due to competitive inhibition for 239 

receptors as MUC5AC from mice contains abundant α2,3-linked sialic acid residues 240 

35.  The glycosylation on BPIFA1 contains sialic acid residues 37 and could potentially 241 

act by binding to IAV particles via specific sialic acid-HA interactions.  Alternatively, 242 

BPIFA1 is a member of the wider tubular lipid-binding (TULIP) superfamily 38, has a 243 

hydrophobic cavity and binds several lipids found in mammalian membranes 39. It 244 

therefore has the potential to bind to lipids found in the IAV membrane and interfere 245 

with receptor binding and endosomal fusion. Further studies are required to 246 

determine precisely how BPIFA1 blocks binding and entry of IAV into normal 247 

epithelial cells.  248 

Previous studies have shown that infection by a number of pathogens (e.g. P. 249 

aeruginosa, S. pneumoniae, M. pneumoniae, murine γ-herpesvirus 68 and IAV) 250 

cause an initial transient increase in secretion of the protein in the first 2 - 3 hours 251 

post infection but this is followed by a decrease over 2 - 7 days 15, 18, 40. Our results in 252 

vivo extend these observations using IAV (Figs. 1 - 2). Decrease in BPIFA1 levels 253 

after infection is mediated by pathogen-associated molecular patterns (PAMPs) and 254 

IFN-γ 40.  The IAV strains used here target BPIFA1-negative ciliated epithelial cells 255 

and BPIFA1 is produced by non-ciliated epithelial cells. Thus, although IAV induces 256 

necrosis of respiratory epithelial cells, the decrease in BPIFA1 expression is unlikely 257 
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result from direct killing of BPIFA1-expressing cells. Also, intact respiratory epithelia 258 

exhibited decreased BPIFA1 expression at day 7 p.i. (Fig. 2). IAV induces signaling 259 

by a number of PAMPs and so the decrease in BPIFA1 could be due to this 260 

mechanism 41.  Inactivated IAV had no effect suggesting that active replication is 261 

required to mediate a decrease in BPIFA1 levels.  After resolution of the initial 262 

infection, BPIFA1 levels returned to pre-infection levels in BAL and the tracheal and 263 

bronchial epithelium.  264 

It seems unlikely that BPIFA1 has evolved to have a role in the defense 265 

against IAV alone and thus it is likely that the protein will influence the pathogenesis 266 

of other viruses. It has been shown to have an inhibitory effect on the replication of 267 

Epstein-Barr virus (a membrane-bound herpesvirus) in lymphoblastoid cells 42. 268 

Down-regulation of BPIFA1 expression 43 and polymorphisms in the BPIFA1 gene 269 

are also associated with susceptibility to Epstein-Barr virus-associated 270 

nasopharyngeal carcinoma 44.  It will be of interest to determine if BPIFA1 affects the 271 

pathogenesis of other respiratory viruses. 272 

These studies have uncovered a significant and unappreciated role for 273 

BPIFA1 in host defense against experimental IAV infections in murine models. It 274 

remains to be seen if this protein is able to modulate IAV infection in the human host 275 

in a similar manner. The observation of elevated levels of BPIFA1 in nasal aspirates 276 

of children with IAV 45 suggests that some modulation of the protein does occur 277 

during clinical infection and thus is a potential biomarker.  We propose that BPIFA1 278 

may be one component of the airway surface lining fluid critical to antiviral host 279 

defense. Further studies are needed to determine if natural variations in BPIFA1 280 

levels due to genetic polymorphisms 44 may pre-dispose to more severe IAV-281 

associated disease. 282 
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 284 

Methods  285 

Virus.  286 

Influenza virus strains A/X-31 (X-31, H3N2) and A/PR/8/34 (PR8, H1N1) were 287 

propagated in the allantoic cavity of 9-day-old embryonated chicken eggs and titered 288 

by plaque assay on MDCK cells 46. 289 

Mice.  290 

Animal work was reviewed and approved by the local University of Liverpool Animal 291 

Welfare Committee and performed under UK Home Office Project Licences 40/2483 292 

and 70/8599.  Mice were all specified pathogen free and maintained under barrier 293 

conditions in individually ventilated cages. Transgenic Bpifa1-/- mice were bred at the 294 

University of Liverpool under UK Home Office Project Licence 70/8378. Transgenic 295 

mice deficient in BPIFA1 (Bpifa1-/-) and conditional knockout were generated 296 

(Bpifa1loxP; Scgb1a1-CreERTM) as described in S1 text and S1 Fig. Both transgenic 297 

strains were backcrossed 10 generations to C57BL/6J. Wild-type sex and age-298 

matched C57BL/6J control mice were purchased from Charles River (UK). 299 

Tamoxifen Administration.  300 

A 20 mg/ml Tamoxifen (tmx) stock solution was dissolved in Mazola corn oil. Tmx 301 

was administered by gavage of 0.25 mg per gram body weight to Bpifa1loxP; 302 

Scgb1a1-CreERTM adults daily for five days. Mice were then infected with IAV 4 days 303 

after the last gavage. 304 

Virus infection of mice.  305 

Animals were randomly assigned into multiple cohorts, anesthetized lightly with 306 

KETASET i.m. and inoculated intra-nasally with 103 pfu IAV in 50 µl sterile PBS, or 307 

were mock-infected with a similar volume of allantoic fluid. Mice were sacrificed at 308 
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variable time-points after infection by cervical dislocation. Tissues were removed 309 

immediately for downstream processing.  310 

Histology, Immunohistology.  311 

Histology and immunohistology (IH) was performed on paraformaldehyde-fixed, 312 

paraffin-embedded tissue using the peroxidase anti-peroxidase (PAP) method as 313 

previously described 47, 48. Primary antibodies used were rabbit anti-mBPIFA1 6 and 314 

goat anti-IAV (Meridian Life Sciences Inc., B65141G).   315 

Quantitative Histopathological Assessment.  316 

The percentage area and density of DAB staining within airway epithelium was 317 

quantified using whole slide images scanned and analyzed using Image-Pro Premier 318 

image analysis software version 9.1 (MediaCybernetics Inc.). An automated macro 319 

and app (named Trachea.ipp and Airways.ipx, respectively) were developed in 320 

conjunction with MediaCybernetics Inc. They were designed to identify and outline 321 

regions of interest comprising the airway epithelium of the trachea, bronchi and 322 

bronchioles, while excluding other cells. The macro and app analyze thresholds of 323 

hue, luminosity and saturation, which were set relative to the chromogen (DAB) 324 

utilized for BPIFA1 localization.  These data provided an average density of staining 325 

for each region of interest. The percentage area stained was defined as the brown 326 

area (positive immunostaining) divided by the total brown area plus blue area 327 

(hematoxylin; negative staining) ×100.  328 

Western Blotting.  329 

Samples were analysed by 12.5% SDS-PAGE gel electrophoresis and blotted using 330 

rabbit anti-mBPIFA1 6. Band density was measured using the gel analysis tool of 331 

Image J software. 332 

Quantitative protein analysis.  333 
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The Wes™ system was used to identify and quantify BPIFA1 protein in BAL and 334 

lung samples (ProteinSimple) and rabbit anti-mBPIFA1 as primary antibody. The 335 

area of BPIFA1 peak, in relation to the standard curve, was determined and virtual 336 

blot-like images generated using Compass software (ProteinSimple). 337 

Mouse tracheal epithelial cell cultures.  338 

Mouse tracheal epithelial cells (mTEC) were isolated and differentiated into upper 339 

airway-like epithelium in an air-liquid interface (ALI) culture following previously 340 

described methodology with slight modification 28, 29. Whole tracheas were excised 341 

from 6-8 weeks old mice. Five or six tracheas were pooled for each evaluation. 342 

 Immunofluorescent labeling and confocal imaging.  343 

Transwell membranes were fixed with 10% buffered formalin and then stained using 344 

primary and secondary antibodies.  Primary antibodies used were as follows: rabbit 345 

anti-BPIFA1 (1:200)6, rabbit anti-LPLUNC1 (1:100)6, mouse anti-β tubulin (1:100; 346 

Sigma Aldrich, Cat No- T5201), mouse anti-Foxj1 (1:100; eBioscience, Cat No- 14-347 

9965-82, Clone- 2A5), goat anti-SCGB1A1  (1:500; Gift from Barry Stripp), rabbit 348 

anti-MUC5B (1:100; Santa Cruz; H-300, Cat no- sc-20119,) and mouse anti-349 

Influenza A virus NP (anti-IAV NP; 1:200; H16-L10-4R5 (ATCC® HB-65™)). 350 

Secondary antibodies are as follows (all from Life Technology; 1:200): Alexa Fluor 351 

568 Goat anti-rabbit antibody (Cat No- A11011), Alexa Fluor 488 Goat anti-mouse 352 

antibody (Cat No- A11001), Alexa Fluor 488 Rabbit anti-goat antibody (Cat No- 353 

A11078), Alexa Fluor 633 Goat anti-mouse IgG (Cat No- A21050). Samples were 354 

mounted on glass slides with DAPI Vectashield (Vector Laboratories, Cat No- H-355 

1200) and visualized with an Olympus Fluoview 1000 Confocal microscope. 356 

Virus labeling and IAV binding assay.  357 

IAV A/PR/8/34 was purified from the allantoic fluid of infected eggs by pelleting 358 
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through a 30% sucrose/PBS cushion followed by banding on 15-60% sucrose/PBS 359 

density gradients. Virus was then labelled using a green Alexa-fluorophore labelling 360 

kit (Life Technologies) to yield Alexa Fluor 488-labelled virus (IAV-488). Unreacted 361 

dye was removed by pelleting the virus at 125,000 g. For binding assays, IAV-488 362 

was added to the apical surfaces of day 14 mTEC ALI cultures. After incubation for 1 363 

h and washing off unbound virus, membranes were immediately fixed with 10% 364 

buffered formalin and co-stained with anti-BPIFA1 and anti-FoxJ1 antibodies. 365 

Images were captured from at least five fields per sample by confocal microscope. 366 

Integrated fluorescence intensity was measured by Image J to assess the levels of 367 

IAV-488 binding on the cell surface of mTEC cultures. Three independent 368 

experiments were conducted with cells from three different batches of mice.  369 

Nuclear import assay of IAV ribonucleoprotein (vRNP) complexes.  370 

Apical surfaces of Day 14 ALI mTEC cultures were infected with purified IAV 371 

A/PR/8/34. Following infection, cells were overlaid with DMEM/F-12 media 372 

plus/minus cycloheximide (CHX) at a final concentration of 100 μg/ml (no CHX was 373 

the control). Cells were incubated in 5% CO2 at 37°C for 4 h, then washed three 374 

times with pre-warmed HBSS and fixed with 10% buffered formalin as above. 375 

Samples were processed and dual immunostained with anti-IAV NP as described 376 

above. Cells displaying nuclear localization of viral RNP were counted at 40x 377 

magnification in five fields (one center and four peripheral fields) per sample and 378 

presented as a percentage of positive cells over total cells counted. Three 379 

independent experiments were conducted with cells from three biologically different 380 

batches of mice.   381 
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Figure Legends 

Figure 1. BPIFA1 protein levels in BAL are modulated after IAV infection. BAL 

samples were taken from C57BL/6J mice infected with IAV X-31 at multiple days p.i. 

The Simple Western (Wes™; ProteinSimple) system was used to quantify BPIFA1 

protein using a rabbit anti-mBPIFA1 primary antibody. Equal amounts of protein (120 

μg as determined by BCA, Pierce) were loaded per lane. The area of the BPIFA1 

peak, in relation to the standard curve, was determined using Compass software 

(ProteinSimple). Bars represent mean ± SEM (n = 4). Statistically significant 

differences (One-way ANOVA with Tukey’s post-hoc analysis) between groups are 

represented by square brackets above. * represents p <0.05; ** represents p < 0.01. 

 

Figure 2. BPIFA1 level in airway epithelia is modulated after IAV infection. 

Lungs were dissected from C57BL6/J mice that were either mock- or IAV-infected 

(i.n. with 103 pfu IAV X-31) at multiple days p.i. as indicated. BPIFA1 was detected 

by IH using rabbit anti-mBPIFA1, visualized with DAB and counter-stained with 

hematoxylin. The percentage area of epithelium stained (left graph panels) and 

intensity of staining (right graph panels) in the trachea (A), bronchi (B) and 

bronchioles (C) were assessed by image analysis. Data are for four mice per group 

presented as mean + SEM. Statistically significant differences (One-way ANOVA 

with Tukey’s post-hoc analysis) between groups are represented by square brackets 

above. * represents p <0.05, ** represents p < 0.01, *** represents p < 0.001. 

Micrographs of representative areas at each time point are shown below the graph 

panels. Black arrows point to expression of BPIFA1 in respiratory epithelium. Scale 

bars represent; panel A: 50 µm, panel B: 10 µm and panel C:20 µm. 
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Figure 3. BPIFA1 influences the infection of mice by IAV. Panels A, B. 

C57BL/6J and Bpifa1-/- mice (n = 4 per group) were infected i.n. with 103 pfu IAV X-

31. Panel A. Mice were weighed daily and the weights represented as a percentage 

of the starting weight. Data represent the mean value ± SEM. Asterisks indicate 

statistical difference (two-way ANOVA with Bonferroni post-test; **represents p < 

0.01.  Panel B. Lung tissues were taken at multiple days p.i. as indicated and virus 

titer determined by plaque assay. Data represent the mean value ± SEM. Asterisks 

indicate statistical difference (two-way ANOVA with Bonferroni post-test; * represents 

p < 0.05, *** represents p < 0.001). Panel C. Bpifa1loxP; Scgb1a1-CreERTM mice 

were treated with either carrier (vegetable oil) or carrier plus Tamoxifen (tmx) by oral 

gavage five times as described in materials and methods. Lung tissue (n = 4 per 

group) was analyzed by western blotting for BPIFA1. Equal amounts (100 μg) of 

protein as determined by BCA (Pierce) were loaded per lane. The mean (± SEM) 

levels of BPIFA1 protein were measured by Image J as integrated band intensity. * 

represents statistical significance (Mann-Whitney U test; p < 0.05) BPIFA1 is clearly 

knocked down in the Tamoxifen-treated animals. Panel D. Tamoxifen-inducible, club 

cell specific BPIFA1 knockout mice (Bpifa1loxP; Scgb1a1-CreERTM) were dosed on 5 

consecutive days by gavage with 0.25 mg per gram body weight tamoxifen (tmx) or 

carrier (vegetable oil). Four days after the last gavage these mice, along with 

untreated Bpifa1loxP; Scgb1a1-CreERTM and Bpifa1-/- mice (n = 4 for all groups) were 

infected with IAV for 7 days. Lungs were collected and virus titer determined by 

plaque assay.  Data represent the mean value ± SEM. Asterisks indicate statistical 

difference (One-way ANOVA with Tukey’s post-hoc analysis; p < 0.05). 
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Figure 4. IAV spreads more rapidly in the absence of BPIFA1. C57BL/6J and 

Bpifa1-/- mice were infected i.n. with 103 pfu IAV X-31. Lung tissues were harvested 

at one day p.i. IAV antigen was detected by IH using goat anti-IAV, visualized with 

DAB and counter-stained with hematoxylin. Micrographs of representative areas 

from distal bronchioles and alveoli four mice are shown. Large arrows, positive 

epithelial cells. Red arrowheads, positive macrophages. 

 

Figure 5. BPIFA1 influences the infection of normal mTEC by IAV. mTEC ALI 

cultures were infected with IAV X-31 (0.1 pfu/cell). Panels A – F. Cells were 

processed and stained with anti-IAV NP (green), anti-mBPIFA1 (red), nuclei 

counterstained with DAPI (blue) and imaged using a confocal microscope. Scale bar 

represents 50 µm. Micrographs show representative areas from C57BL/6J mTEC 

cultures (A, B, C) and Bpifa1-/- mTEC cultures (D, E, F) at 2, 24 and 48 h p.i. (G) 

Mean integrated florescence intensity IAV nucleoprotein in mTEC ALI shown for 3 

independent biological replicates (± SEM). * represents p < 0.05, One-way ANOVA 

with Tukey’s post-hoc analysis. (H) Titer of IAV in apical wash. Data presented as 

mean ± SEM; n = 3; * represents p < 0.05, One-way ANOVA with Tukey’s post-hoc 

analysis. 

 

Figure 6. BPIFA1 decreases the nuclear import of IAV RNPs into normal mTEC. 

mTEC ALI cultures from wt C57BL/6J or Bpifa1-/- mice were incubated with purified 

IAV A/PR/8/34 in the presence or absence of cycloheximide (CHX) as indicated. 

Cycloheximide blocks protein synthesis and so indicates the import of pre-existing 

IAV RNP from incoming virus particles. After 4 h incubation at 37°C cultures were 

processed and stained with anti-IAV NP and counter-stained with DAPI before 
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visualization using a confocal microscope. Scale bar represents 50 μm. (A) 

Representative micrographs from cultures incubated with IAV in the absence or 

presence of CHX (B) micrographs from cultures incubated with IAV in presence of 

CHX at a higher magnification. (C) Nuclei that were positive for IAV NP in the 

presence of cycloheximide were counted at 40x magnification in five fields (one 

center and four peripheral fields) per sample and presented as a percentage of 

positive cells over total cells counted. The mean percentage positive nuclei are 

shown for 3 independent biological replicates (± SEM). * represents statistical 

significance (One-way ANOVA with Tukey’s post-hoc analysis; p < 0.05)  

 

Figure 7. BPIFA1 restricts binding of IAV to normal epithelial cells in mTEC ALI 

cultures. mTEC ALI cultures were incubated for 1 h with IAV Alexa-fluor 488-labeled 

purified IAV A/PR/8/34 (IAV-488), then fixed with formalin, stained with anti-BPIFA1 

and anti-FoxJ1 antibodies and then imaged using a confocal microscope (A) 

Representative images of two different fields of day 14 C57BL/6J mTEC ALI culture 

showing IAV-488 (green) preferentially binding to FoxJ1-positive (white) ciliated cells 

but not BPIFA1 (red)-positive cell populations (circled by yellow dotted line). (B) 

Micrograph showing IAV-488 binding (green) with the epithelium of wt C57BL/6 and 

Bpifa1-/- cultures. (C) Integrated florescence intensity of IAV-488 virus binding with 

the surfaces of mTEC culture. Images were captured from at least five fields per 

sample by confocal microscope at 20x, 40x and 60x magnification. The levels of IAV-

488 binding on mTEC cell surfaces were measured by Image J as integrated 

fluorescence intensity. The mean fluorescent intensity is shown for 3 independent 

biological replicates (± SEM). * represents statistical significance (Mann-Whitney U 

test; p < 0.05)  

















Supplementary Data 

Results 

Generation of transgenic mice deficient in BPIFA1.  

Animal procedures for generation of the Bpifa1loxP and Bpifa1-/- transgenic lines were 

approved by the Institutional Animal Care and Use Committee at University of Hawaii 

under protocols 07-056 and 11-1112.  

A conditional targeting vector for Bpifa1 used for transfection of C57BL/6J 

mouse embryonic stem cells was constructed by InGenious Targeting Laboratory, Inc. 

(Ronkonkoma, NY). The targeted region on the Bpifa1 gene includes exons 2-3 (see 

S1 Fig. A).  

Embryonic stem cells were microinjected into BALB/c blastocysts. Resulting 

chimeras with a high percentage black coat color were mated to wild-type C57BL/6J 

mice to generate F1 heterozygous offspring. Correctly targeted F1 mice contained a 

Neo-selection cassette, three lox-P sites and two FRT sites. 

Deletion of the Neo-cassette was achieved by breeding with a heterozygous 

C57BL/6J background FLP+/- mouse (Jackson Laboratories, JAX; stock# 003800). 

Since these FLP mice are heterozygotes (homozygotes are embryonic lethal), the 

resulting F2 mosaic mice were screened for presence of the FLP transgene and 

deletion of the Neo cassette. After breeding with C56BL/6J mice, the resulting F3 

generation was screened for FLP transgene absence and deletion of the Neo cassette. 

This mouse was bred with another heterozygous FLP-/- and Neo-/- F3 offspring to 

produce a homozygous floxed F4 mouse without the FLP transgene and without the 

Neo cassette (Bpifa1loxP).  

To generate a systemic Bpifa1 KO mouse (Bpifa1-/-), Bpifa1loxP mice were 

mated with a mouse containing the Cre-recombinase transgene under the control of 



hCMV IE promoter (CMV-Cre, formally B6.C-Tg(Tg (CMV-Cre)1Cgn/J; JAX Stock 

No: 006054; see S1 Fig. A).  

Bpifa1loxP and Bpifa1-/-  mice were deposited at the MRC Mammalian Genetics 

Unit (Harwell, UK; FESA:5217 and 5945 respectively) and then transferred from there 

to the University of Liverpool. 

 To generate a conditional, club cell-specific KO mouse (Bpifa1loxP; Scgb1a1-

CreERTM), Bpifa1loxP mice were mated with Scgb1a1-CreERTM (Scgb1a1tm1(cre/ERT)Blh ; 

Jackson Lab, stock# 016225) [1]. These mice express a tamoxifen-inducible form of 

cre recombinase from the Scgb1a1 locus (secretoglobin).  

 

Phenotyping of Bpifa1-/- mice.   

Four wild type (wt) mice (C57BL/6J) and four Bpifa1-/- mice, two males and two 

females of each, aged 6 – 10 weeks, were examined grossly and histologically for 

phenotypical differences as a result of lack of expression of the Bpifa1 gene. There 

were no differences grossly. Histological examination of the lymphoid, gastrointestinal, 

urinary, cardiovascular, endocrine, reproductive organs and the CNS was 

unremarkable. In addition to the respiratory tract, BPIFA1 is expressed in minor glands 

of the nose, sinuses, posterior tongue and tonsil [2, 3], in some of the seromucous 

cells of the major salivary glands and is detectable in saliva. In glandular tissues 

examined (submandibular, parotid and sub-lingual salivary glands, minor tongue (von 

Ebner’s) gland, Zymbal’s gland, Harderian gland and lacrimal gland), the only 

difference noted was that the eosinophilic granules within the epithelium of the 

convoluted tubules of the submandibular salivary glands, which are prominent in male 

mice only, were far less striking in the male Bpifa1-/- mice. The serous and mucous 



glands were unaffected, and Alcian blue (AB) and periodic acid-Schiff (PAS) staining 

yielded similar results in both wt and Bpifa1-/- mice in these glands (data not shown). 

The tissues of the upper and lower respiratory tract were examined using H&E, 

AB and PAS stains, as well as immunohistology (IH) for BPIFA1 and SCGB1A1. 

Tissues from Bpifa1-/- were consistently IH-negative for BPIFA1, and there were no 

differences in the intensity or distribution of SCGB1A1 immunostaining between the 

wt and the Bpifa1-/- mice.  In Bpifa1-/- mice the nasal respiratory epithelial cells at the 

transition to the olfactory epithelium generally exhibited abundant hyalinized globular 

cytoplasmic material, leading to expansion of the cells (S1 Fig C). This is a common 

finding in many strains of mice and increases in severity with age [4-6] but is of interest 

as in the present study it was only present in the Bpifa1-/- mice, and at this young age. 

In the trachea, bronchi and lower respiratory tract, no phenotypical differences were 

noted between the wild type and Bpifa1-/- mice.  

 

Normal tracheal epithelial cultures (mTEC) are a good model to study IAV 

infection in vitro.  

Normal mouse tracheal cell cultures were established from C57BL/6J mice and 

cultured at the air-liquid interface to generate well-differentiated cultures (mTEC). 

Differentiated mTEC ALI cultures displayed phenotypic features associated with a 

complex population of ciliated cells (β-tubulin), BPIFA1, mucin (MUC5B), Foxj1 (cilia 

marker) and SCGB1A1 (CCSP)-expressing cells that matched with the features of the 

native rodent airway epithelium (S3 Fig. A, C, D, E).  The surface topology of day 14-

differentiated mTEC ALI cultures also showed ciliated epithelial cells interspersed with 

domed shaped non-ciliated cells with a cobble stone appearance, which is typical of 

the upper airway morphology (S3 Fig. B). The expression of a selected cohort of 



airway epithelium-specific genes was also assessed in 14-day cultures to further 

validate our in vitro model. SCGB1A1 (a club cell marker), and BPIFB1 (LPLUNC1) 

gene expression was present but relatively low when compared with mTEC original 

cells (freshly isolated mTEC cells without culture modification) (S3 Fig. F). BPIFA1 

was readily detected in cultured epithelial cells and within the apical secretions (S3 

Fig. A, G) but was not found in ciliated cells (S3 Fig. A, C). Airway epithelium-

associated genes, Bpifa1, Bpifb1, Scgb1a1, Muc5ac, Muc5b, Tekt-1 (a cilia gene) 

were consistently expressed in Day-14 mTEC ALI cultures and matched with the 

original cell gene expression signature of the mTECs (S3 Fig. F). The in vitro tracheal 

cultures are thus a good in vitro model with which to study BPIFA1 biology during IAV 

infection.  
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Supplementary Figure Legends 
S1 Fig. Construction and characterisation of Bpifa1loxP and Bpifa1-/- mice 

Panel A (i).  Wild-type Bpifa1 locus. The targeted region on the Bpifa1 gene includes 

exons 2-3.  (ii). Targeting vector. The conditional targeting vector contained exons 2 

and 3 flanked by LoxP sites and a Neo selection cassette flanked by FRT sites. (iii). 

Deletion of the Neo-cassette was achieved by breeding with a heterozygous C57BL/6J 

background FLP+/- mouse to generate conditional targeted Bpifa1loxP mice. (iv). To 

generate a systemic Bpifa1 KO mouse (Bpifa1-/-), Bpifa1loxP mice were mated with a 



mouse containing the Cre-recombinase transgene under the control of hCMV IE 

promoter.  

Panel B. Western blot analysis of lung tissue from either wild-type C57BL/6J or Bpifa1-

/- mice (as indicated) using rabbit anti-BPIFA1 as primary antibody. The first lane 

shows the molecular weight markers. A characteristic 27-31 kDa doublet was 

observed corresponding to alternatively-glycosylated forms of BPIFA1 in the wild-type 

but not Bpifa1-/- mice. 

Panel C. Nasal cavities of C57BL/6J and Bpifa1-/- mice were dissected, processed for 

histology and stained with hematoxylin/eosin.  In Bpifa1-/- mice there was hyalinised 

globular cytoplasmic material present in the respiratory epithelium at the transition to 

olfactory epithelium shown by black arrows. Micrographs of representative areas from 

four mice are shown. 

 

S2 Fig. IAV-specific staining in mice at 1 day p.i.  C57BL/6J and Bpifa1-/- mice were 

infected i.n. with IAV X-31. Lung tissues were taken at one day p.i. IAV antigen was 

detected by IH using goat anti-IAV, visualized with DAB and counter-stained with 

hematoxylin. Micrographs of representative areas from four mice are shown. Large 

arrows, positive epithelial cells. 

 

S3 Fig. Validation normal tracheal epithelial cell (mTEC) model. Tracheal 

epithelial cells were prepared from C57BL/6J mice and differentiated at the air-liquid 

interface for 14 days. (A) Confocal image showing cells stained for β-tubulin (ciliated 

cells; green) and BPIFA1 (red). The Z-slice (side panels) shows BPIFA1 cells are non-

ciliated. (B) Scanning electron micrograph of the apical surface of the mTEC cultures 

showing ciliated cells and non-cilated cells with a cobble-stone appearance. (C, D, E) 



Confocal images showing BPIFA1 and FoxJ1 (C), MUC5B (D) and SCGB1A1 (E) in 

day 14 ALI cultures of WT mTECs. (F) RT-PCR showing airway epithelium associated 

gene expression profile of mTEC ALI culture of WT (representative of three 

independent cultures). The OAZ-1 gene was used as housekeeping gene [7] (G) 

Western blot on apical washes collected from WT mTEC-ALI culture (representative 

of three independent cultures). Scale bar for confocal images represents 50 µm. 

 

S4 Fig. Validation of the phenotype of mTEC ALI cultures from Bpifa1-/- mice. 

mTEC ALI cultures from wild-type C57BL6/J and Bpifa1-/- mice were analyzed by 

confocal microscopy.  Micrographs show representative areas from three separate 

cultrues. Panels A, B. Cells were processed and stained with anti-β-tubulin (cilia 

marker; green), anti-mBPIFA1 (red) and nuclei counterstained with DAPI (blue). 

Panels (C, D) Cells were processed and stained with anti-MUC5B (mucin secreting 

cells; red) and nuclei counterstained with DAPI (blue). Scale bar represents 50 µm. 

 

S5 Fig. Detection of α2,3- and α2,6-linked sialic acid residues on uninfected 

mTEC. The presence of α2,3-linked sialic acid (SA) and α2,6-linked SA residues on 

the surface of cells was detected by binding of fluorescein-labelled lectins from 

Maackia amurensis (MAA) and Sambucus nigra (SNA), respectively. Uninfected day 

14 ALI cultured mTECs were dual-labelled with either anti-BPIFA1 plus MAA or anti-

BPIFA1 plus SNA. (A) α2,3-linked SA receptor expression (detected by MAA) was 

present in both wt and Bpifa1-/- mTEC cultures. Interestingly, the BPIFA1+ cell 

population was absolutely devoid of α2,3-linked SA residue expression. (B) α2,6-

linked SA receptor expression (detected by SNA) was only seen in a low proportion of 



cells in both wt and Bpifa1-/- mTECs. (C, D, E) Occasional expression of α2,6-linked 

SA residues was detected in BPIFA1+ mTECs. This is a representative result from 

three separate experiments on two batches of mice. Scale bar represents 20 µm. 
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