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Abstract: The paper presents a modified particle swarm optimization (MPSO) control

strategy for the maximum power point tracking applied to a multilevel DC-link PV power

generation system. This system consists of a chain of PV modules with individual DC-DC

converters and has a DC-AC converter at its terminals for generating AC voltage. The proposed

MPSO control method can predict all PV voltages at their maximum power point on the basis

of respective light level and temperature. A PWMwith permutation of DC converter switching

is applied to balance switch utilization. The method is applied to a system of five-voltage levels

with two PV-converter units under different light intensities and the results are compared with

the perturb and observe (P&O) method and the traditional PSO method under the same

operating conditions. The paper shows that the new method gives more rapid convergence,

increased power output, and lower total harmonic distortion.

Keywords: Multilevel DC-Link Converters; Modified Particle Swarm Optimization (MPSO);

Maximum Power Point Tracking (MPPT); Photovoltaic (PV) System.

1 Introduction

PV power generators are now widely installed in residential areas and commercial centers

for supplying electricity to local users as well as to the utility grid. They are usually constructed



by connecting many PV cells of the same type in series chains. These long chains of PV cells

incur operational complications; the characteristics of the chained PV cells are not identical,

hence they may not conduct the same current at their operating points. The cells which are least

efficient set the safe operating current of the string. A more serious problem occurs when

illumination of the chains is uneven, i.e. a subset of the PV cells is shaded. The current must be

limited to the maximum forward current in the shaded set to avoid driving any of these into a

reverse voltage condition. This always absorbs power and can result in reverse breakdown and

overheating. The use of by-pass diodes has limited this problem, but power potentially available

from by-passed cells is lost. Various control methods, such as such as perturb and observe (P&O)

(Femia et al.,2009; Killi and Samanta, 2015; Elbaset et al., 2016), Incremental conductance

(IncCond) (Elgendy et al., 2012; Radjai et al., 2014; Li et al., 2016), hill climbing (HC) (Alajmi

et al., 2011; Xiao et al., 2016), fuzzy logic (Messai et al., 2011; Letting et al., 2012; Cheng et

al., 2015; Rezvani and Gandomkar, 2016), artificial neural network (ANN) ( Liu et al., 2013;

Boumaaraf et al. 2015; Lin et al., 2016;Messalti et al., 2017), particle swarm optimization (PSO)

(Ishaque et al., 2012; Cheng et al., 2015; Letting et al., 2012; Manickam et al., 2016;

Renaudineau et al., 2015), sliding mode (Kim, 2007; Chu and Chen, 2009; Zhang et al., 2015;

Mojallizadeh et al., 2016; Ouchen et al., 2016) and so on, have been proposed to enable optimal

power generation from the chained PV strings with by-pass diodes and under partial shading

conditions, but satisfactory solutions in terms of simultaneously maximizing the power

generated and protecting the PV panels have still been a challenge (Rezk and Eltamaly, 2015;

Chen et al., 2015; Liu et al., 2016; Kumar and Chatterjee, 2016; Gupta et al., 2016).

The approach of connecting a PV module with a DC-DC converter, cascading many such

units in a chain, and generating a multilevel DC output voltage may provide a solution. The

benefit of this configuration is clear, since the individual PV modules can be controlled for

maximum power output according to their respective light levels and characteristics. The same

total chain current flows through the converter switches, but is no longer the same as the

individual PV currents, and high power dissipation problems caused by shaded PV cells can be



prevented. With continuously falling cost of power semiconductor devices, this type of

configuration should become commercially viable. Various configurations for generating

multilevel DC-voltage by chained PV-Converter units have been proposed in the literature

including the work initiated by Shimizu et al. (Shimizu et al., 2001; Abdalla et al., 2016;

Busquets-Monge et al., 2008; Gao et al., 2009; Velasco-Quesada et al., 2009; Renaudineau et

al., 2015). Zhang et al. (Zhang et al., 2009) proposed the scheme which uses fly-back converters

for each PV source. The drawback of this is that the individual PV sources cannot be controlled

completely independently, hence locating the MPP of one PV source does not mean that the

other PV source can be operating at its MPP. In (Renaudineau et al., 2015), architecture,

including one dc/dc converter for each PV generator, is considered. The converters' output

terminals are series connected to a high-voltage dc bus, where also a bidirectional dc/dc

converter managing the power from/to a storage device is plugged, and then the real-time

constrained optimization problem is solved by using the particle swarm optimization method,

which needs the knowledge of the actual current versus voltage curve of each PV generator. A

system proposed by Abdalla et al (Abdalla et al., 2016) uses step-down DC-DC converters for

each PV module, and can achieve independent control for each PV module. However the

control of this type of configuration can be challenging since it needs to track the MPPs of all

the PV modules and control their corresponding converters simultaneously. In addition, the

well-known perturb and observe (P&O) method is applies to the scheme to control each PV-

converter unit, but this makes the system slow to converge to the MPPs and the output voltages

of all the PV modules oscillate during the searching process.

This paper presents a new MPPT control strategy based on a modified particle swarm

optimization (MPSO) for the multilevel DC-link PV system proposed in (Abdalla et al., 2016)



operating under PSCs and load variations. PSO is an evolutionary computation algorithm and

has been applied for MPPT of PV systems in some investigations (Ishaque et al., 2012; Koad

et al., 2016; Manickam et al., 2016; Seyedmahmoudian et al., 2015; Sundareswaran et al., 2015;

Liu et al., 2012; Babu et al., 2015), but none of these treat the multilevel DC-link PV converter

system. In this context the benefit of using theMPSO is clear; it can predict all the PV-Converter

voltages at their respective MPPs as defined by their light levels quickly and without disturbing

the system. The predicted voltages are applied to control the individual DC-DC converters

simultaneously. In this paper a permutation PWM scheme is applied to control the multiple

module terminal converters, so that switching utilisation can be balanced. In addition the

output of the whole converter chain is connected to a DC-AC voltage source converter,

providing a suitable AC output for grid connection.

The rest of the paper is organized as follows: Section 2 presents in detail the new optimal

control scheme based on permutation of PV sources combined with the modified PSO – based

MPPT method. The structure of the PV system based on multilevel DC-Link converters is

described in Section 3. Section 4 presents and discusses the experimental results, with

conclusions in Section 5.

2 Structure of the PV System based on Multilevel DC-Link Converter

Figure 1 shows the configuration of a PV system comprising two PV units acting in

conjunction with a multilevel DC-link converter. Each PV unit consists of a single PV source,

a capacitor and a switch with a complimentary diode (Abdalla et al., 2016). In Figure 1, Inx

represents the different inputs. The units are connected in series and any of them can be

switched in or out of the chain by turning on or off its switch. When a unit is switched off, it is

being bypassed by a diode. The two switches (SW1, SW2) operate at a high frequency and are

controlled by the direct PWM method (Dai et al., 2005) to form a three-level positive DC

voltage. The H–bridge inverter at the output serves to convert the multilevel DC voltage



waveform to alternative positive and negative output voltage half-cycles of the required output

frequency (e.g. 50Hz). The generation of multiple voltage levels, combined with proper control,

enables forming the approximate sinewave output (Abdalla et al., 2016).

Figure 1 PV system with multilevel DC- link converter and the MPPT method

3 Optimal Control Scheme based on Permutation of PV Sources

The optimal control scheme should maximise the power transferred from PV sources to the AC

load or grid in different light conditions, and generate a nearly sinusoidal voltage with minimum

harmonic distortion and DC offset. Ideally, it should also ensure equal switching utilisation and

hence the losses. The solution presented in this paper comprises two parts: (i) the modified PSO

based-MPPT algorithm for generation of the MPP reference voltage and (ii) PWM algorithm

with permutation of PV sources for switching control.

3.1 Modified PSO Based-MPPT algorithm



Under PSCs and load variation, the terminal voltage of PV system with a simple search

method may oscillate around a MPP, and the system may lose the MPP during rapid irradiance

changes. To address this issue, the detailed methods for MPPT control will be introduced in this

section. The proposed algorithm combines the extended memory searching capabilities and the

adaptive inertia weight of MPSO, which is performed by a boost DC/DC converter to quickly

and accurately search for the MPPs and reduce the voltage ripple and increase the power output

under different partial shading conditions. In addition, the proposed algorithm can rapidly

search the MPP, and set the MPP as the initial position to track the accuracy MPP dynamically.

The proposed algorithm is helpful to enhance efficiency and minimize errors for the MPPT

problem under PSCs and load variation. The procedure and the equations of the proposed

MPSO algorithm are detailed as follow.

3.1.1 Principles of PSOAlgorithm

PSO is an evolutionary computation technique proposed by Kennedy and Eberhart in 1995

(Eberhart and Kennedy, 1995). Originated from observing the behavior of the bird flocks,

which and is used to solve the optimization issues, and in PSO particles, each particle represents

a potential solution, which is corresponding to a fitness values based on fitness function. The

standard PSO is shown as follows:

   1

l l g g

t t t t t t t t
v v p x p x       

(1)

1 1t t tx x v  
(2)

where subscript t denotes the index of iteration; vt represents the speed of the particle in the tth

iterative process; xt represents the position of the particle in the tth iterative process; pt
l

represents the current local extreme value point of the particle in the tth iterative process; pt
g



represents the current global extreme value point of the population in the tth iterative process;

 is known as the inertia weight; c1 and c2 are treated as the acceleration factors, and t
l= c1r1,

t
g= c2r2, r1, r2U(0,1),, t

l, t
gR, t

lU(0,c1), t
gU(0,c2).

3.1.2. PSO with Extended Memory (PSOEM)

Although the traditional PSO algorithm can have good performance in most cases, there are

still some defects needed to solve, such as prior low precision, slow late convergence and

relapsing into local optimization. PSOEM combines several improved PSO algorithms, making

full use of their advantages (Duan et al., 2016). From a psychological point of view, expanded

memory means that the individual accumulates the search experience, which is conducive to

improve the convergence speed. PSOEM can be expressed as follows (Duan et al., 2016):

   
   

1 1 1 1

1 1 1

l l l

t t t t t t t t t

g g g

t t t t t t t

v v p x p x

p x p x

   

  

   

  

      
      (3)

where pt-1
l represents current extreme value point of the particle in the t-1th iterative process; pt-

1
g represents the current global extreme value point of the population in the t-1th iterative process;

t is called current effective factor; t-1 is called effective factor of extended memory, and

xt+1=xt+vt+1, t,t-1R+, i=1. In particular, when t-1=0, that is, t=1, then (3) = (1). In this

sense, PSO is a special case of PSOEM.

3.1.3 The proposed algorithm with adaptive inertia weight

Given its simple concept and effectiveness, the PSO has become a popular optimizer and has

widely been applied in practical problem solving (Zhan et al., 2009). Meanwhile, much research

on performance improvements has been reported, including parameter studies, combination with

auxiliary operations, and topological structures (Eberhart and Shi, 2004).



According to Shi and Eberhart’s analysis in (Shi and Eberhart, 1998), the inertia weight is

critical in balancing global and local search. A larger inertia weight facilitates global exploration

while a smaller one facilitates local exploitation (Shi and Eberhart, 1998). It controls the balance

between exploration (global search state) and exploitation (local search state) (Wu et al., 2015).

Furthermore, implementing a damping mechanism to  contributes to better global exploration

in the initial stages, and better local exploitation when the swarm is closer to the source (Zou et

al., 2015). Therefore, aimed to the nonlinear and multiple peaks characteristics of the output P-

V curves in PV system under PSCs, the linearly decreasing  with the iterative generation

proposed in (Shi and Eberhart, 1999) is used to overcome the multiple local MPPs and further

improve the effectiveness of GMPPT under different PSCs. The inertia weight is described by

the following equation:

 max max min

g

G
      (4)

where g is the generation index representing the current number of evolutionary generations,

and G is a predefined maximum number of generations. Here, the maximal and minimal

weights max and min are set according to the need.

3.1.4 Stability analysis of PSO and the proposed algorithm

One of hot issue in present research about PSO algorithm is the stability analysis. From

the perspective of discrete control theory, the stability region of PSO and the proposed

algorithm is presented as follow:

First of all, we assume that

g
t t tx p x  (5)

By using that, we have



 l l g
tt t t t

p x p p x    (6)

Eqs. (1) and (5) can be combined and written as follow˖

   1

l l g g l l g
t t tt t t t t t t t t t tv v p p x x v x p p     

           (7)

whereˈ
l g

t t t
   

.

According to Eq.(5), 1tx  can be explained as follow:

1 1 1

g
t t tx p x    (8)

Furthermore, Eqs. (2) and (7) can be combined as follow˖

   1 1
1 l l g g g

t tt t t t t t t
x x v p p p p          (9)

By merging Eqs.(8) and (9)ˈthe vector matrix form of PSO algorithm is

1

0 0

1

t t

t t

x x
A b

v v





   
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   
(10)

whereˈ
 

0

1
t

t
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 
   

  
 

ˈ  0 0 0

T
b M N ˈ  0 1
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M p p p p      ˈ and

 0

l l g

t t tN p p  . In addition, Eq.(10) represents the state space equation of PSO algorithm,

A0 is coefficient matrix.

For ease of analysisˈwe define:

1

1

0

1
= =

2
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i
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


.

Furthermore, we assume:

   1 1
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2 2
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Similarly, the vector matrix form of the proposed algorithm is shown as follow

1

1
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whereˈ
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In order to simplify the stability analysis of PSO and the proposed algorithm, we assume

that Įt and Įt-1 are real constant, and Įt = Įt-1. The stability region of PSO and the proposed

algorithm can be obtained by using their coefficient matrix (A0 and A1) respectively.

The characteristic equation of A0 is

 2 1 0
t

        
(13)

When the characteristic root is in the unit circle, its stability region is [45]:

    0
, : 1, 0 2 1

t t
S         

(14)

Meanwhile, the characteristic equation of A1 is

4 3 21 1
1 0

2 2
t t

                 
    (15)

Eq. (15) can be simplified as follow:

2 1 1
1 0

2 2
t t            

  (16)

When the characteristic root is in the unit circle, its stability region is

    1 , : 1,0 2 1
t t

S         
(17)

The stability region of PSO and the proposed algorithm is shown in Figure 2, in which the

light gray area represents the real number root, and the dark gray area represents the complex

root. The dividing line between the real root and the complex root is a parabola of which the

discriminant equals zero. Obviously, it can be clearly seen from Figure 2 that the stability region

of the two algorithms is equal.



(a) PSO (b) The proposed algorithm

Figure 2 Stability Region of PSO and the proposed algorithm

3.1.5 Fitness function for the proposed MPPT algorithm

Taking the branch current as the optimization variables, the fitness function is P-I

relationship of the series branch, as shown in formula (18) and formula (19).

1

( , , ), 10
sn

k k k z

k

fit I PVprog i Sun T n


   (18)

8

10 8

3.8 2.2 10
( , , ) 1.1103 ( ) 0.2844

2.2 10

Sun I
PVprog I Sun T log I





   
   

 (19)

where PVprog(I, Sun, T) represents the output power of each of PV panels-current characteristic

function, Sun and T respectively represent light intensity and environment temperature.

3.1.6 The proposed MPPT algorithm

From the above, the flowchart of the proposed algorithm is shown in Figure 3. From the above,

the proposed MPPT method is applied in sequence to each PV unit at each sampling instant, to

track individually their respective reference voltages. This may lead to different voltage values

depending on the weather conditions and PV panel characteristics.

The specific process of the proposed MPPT method is shown as follows:

i) Initialize the position and speed of the fish, the optimal locations of each fish’s memory

and the optimal position parameters recorded on bulletin board;

ii) Test the 4 kinds of combination behavior patterns: cluster or foraging, collision or foraging,

memory or foraging and communication or foraging;



iii) Select the optimal combination behavior model from ii) and use the velocity update

current location of the artificial fish;

iv) If the specified number of iterations is available, the optimization will end, otherwise

going to step ii).

Figure 3 Flowchart of the proposed MPPT method

3.2 PWM Algorithm with Permutation of PV Sources

For maximum power extraction, the terminal voltage of each PV unit should be as close as

possible to its individual reference voltage established by the TSPSO based-MPPT method

process. A PWM algorithm based on permutation of PV sources has been used to meet the

criteria of equal switch utilisation and low waveform distortion, which consists of three stages

(Abdalla et al., 2016; Dai et al., 2005): i) the direct PWM determines the output voltage levels

and switch-on time intervals in the first stage; ii) the sequential permutation algorithm is

implemented to determine the switching states of all PV units for building up the output voltage

of the system in the second stage; iii) the H-bridge converter is used to change the multilevel

DC voltage waveform to a single-phase AC waveform of low frequency by tracking the



sinusoidal reference signal in the last stage.

For clarification, a graphical illustration of the process for generating the output waveform

in the basic system with two PV sources is given in Table 1. Table 1 presents the switching

states and output voltage generation for the system with two PV sources (n = 2), and gives a

more practical demonstration of the generated output voltage through the permutation

algorithm, and in each case the non-controlled PV source is used to form the basis voltage for

the controlled PV source. Furthermore, Figure 4 contains the whole process of the algorithm

for two PV sources (reference signals, switch control signals, output voltage) (Abdalla et al.,

2016). In Figure 4, vref1 and vref2 are two reference voltages of the five-level converter. These

signals are sampled at periods Ts yielding Mf samples for each reference signal over the time

period Tr= 1/fr.

Table 1 Output Generation from Two PV Sources

C voffset1 voffset2

Output generation per

switching period Ts

1

0 0
SS

1 0

0 1

1 1

2

0 0

0 1

1 0

Ton1

0 0
Vpv1

Ton1

0 0
Vpv1

Ton2

0 0
Vpv2

Vpv2 Vpv2

Ton2

0 0
Vpv2

Vpv1 Vpv1



1 1

Figure 4 Graphical illustration of the process for generating the output waveform in the basic

system with two PV sources

4 Simulation Results

4.1 Numerical simulation analysis of the proposed MPPT algorithm

To evaluate and analyze the performance of the proposed algorithm, we perform numerical

simulation with Matlab7.1. A number of numerical simulation experiments are done on 3

benchmark functions to compare its performance with the PSO algorithm under the same

parameter settings. Parameter settings of the proposed algorithm are shown in Table 2, and

benchmark functions with their optimum value (column 3) and search range (column 5) are

presented in Table 3. In addition, we use 3 benchmark functions with D=10, 30, 50, as listed in



Table 3. These scalable benchmark functions in Table 3 involve different types of problems

such as the continuous unimodal function Sphere, and the multimodal functions Rastrigin and

Griewank. Furthermore, two algorithms run 100 times independently, the population size is 100

and the maximum number of iteration is 1000, 2000 and 300 respectively in the cases of the

low-, middle- and high-dimensional benchmark functions. And the reported results are the

M_iteration, Success ratio and E_number of the statistical experimental data.

Table 4 shows the M_iteration, Success ratio and E_number of obtained by each algorithm

for 3 benchmark functions. M_iteration represents the number of iteration when algorithm

converges to the optimal value. Success ratio is the optimizing success rate. E_number

represents the number of iteration that benchmark function is expected to, which is one of the

main evaluations of algorithm performance in practical applications. From Table 4, it is clear

that the proposed algorithm consistently outperforms the PSO algorithm in most cases. This

can be explained that the proposed algorithm could make use of the searching extended

capabilities of the extended memory and the self-learning ability to optimize the searching

process and improve the convergence precision.

Table 2 Parameter Settings of the proposed algorithm

Algorithm  , 1t t  

PSOEM1 (0.1,0.9)

PSOEM2 (0.2,0.8)

PSOEM3 (0.3,0.7)

PSOEM4 (0.4,0.6)

PSOEM5 (0.5,0.5)

PSOEM6 (0.6,0.4)

PSOEM7 (0.7,0.3)

PSOEM8 (0.8,0.2)

PSOEM9 (0.9,0.1)



Table 3 Parameter Settings of Benchmark Functions

Name Function
Optimal

value

Threshold

value
Search range

Sphere   2

1

n

i

i

f x x


 0 0.01 [-100,100]

Rastrigin    2

1

10cos(2 ) 10
n

i i

i

f x x x


   0 100 [-5.12,5.12]

Griewank   2

1 1

1
cos 1

4000

nn
i

i

i i

x
f x x

i 

 
   

 
  0 0.15 [-600,600]

Table 4 Optimization results tested on three benchmark functions

Algorithm
Pop.

size
Dim Gene.

Sphere Rastrigin Griewank

(M_iteration, Success

ratio, E_number)

(M_iteration, Success

ratio, E_number)

(M_iteration, Success

ratio, E_number)

PSO 100

10 1000 (18.41,100%,1841.00) (11.41,97%,1176.53) (41.78,83%,5034.11)

30 2000 (23.56,87%,2708.42) (32.22,90%,3580.25) (30.54,83%,3679.80)

50 3000 (34.92,89%,3923.75) (21.83,80%,2728.13) (21.23,87%,2440.22)

PSOEM1 100

10 1000 (5.86,100%,586.00) (5.92,99%,597.90) (5.05,100%,505.00)

30 2000 (5.91,100%,591.00) (5.87,99%,592.80) (5.12,100%,512.00)

50 3000 (5.91,100%,591.00) (5.99,97%,617.49) (5.13,98%,523.74)

PSOEM2 100

10 1000 (5.63,100%,563.00) (5.60,100%,560.00) (5.02,98%,512.29)

30 2000 (5.75,100%,575.00) (5.73,100%,573.00) (5.18,100%,500.00)

50 3000 (5.72,100%,572.00) (5.66,100%,566.00) (5.00,100%,566.00)

PSOEM3 100

10 1000 (5.26,100%,526.00) (5.24,100%,524.00) (4.93,100%,493.00)

30 2000 (5.37,100%,537.00) (5.39,100%,539.00) (4.82,100%,482.00)

50 3000 (5.37,100%,537.00) (5.42,100%,542.00) (5.98,100%,498.00)

PSOEM4 100

10 1000 (5.10,100%,510.00) (5.06,100%,506.00) (5.13,99%,515.67)

30 2000 (5.07,99%,512.19) (5.14 ,100%,514.00) (5.29 ,100%,529.00)

50 3000 (5.14,100%,514.00) (5.19,99%,524.44) (5.42,99%,546.25)

PSOEM5 100

10 1000 (5.01,100%,501.00) (5.02 ,100%,502.00) (5.37 ,99%,541.33)

30 2000 (5.08,100%,508.00) (5.13,100%,513.00) (5.44,99%,547.60)

50 3000 (5.16,99%,521.38) (5.14,100%,514.00) (5.06,98%,510.09)

PSOEM6 100

10 1000 (5.04,100%,504.00) (5.11,100%,511.00) (6.37,100%,637.00)

30 2000 (5.34,99%,539.74) (5.27,99%,532.60) (6.15,100%,615.00)

50 3000 (5.47,99%,553.00) (5.49,95%,578.39) (6.65,99%,672.07)

PSOEM7 100

10 1000 (5.13,100%,513.00) (5.01,100%,501.00) 6.61,100%,661.00)

30 2000 (5.13,100%,513.00) (5.64,99%,569.33 ) (6.25,100%,625.00 )

50 3000 (5.36,98%,546.65) (5.34 ,99%,539.74) (6.49 ,100%,649.00)

PSOEM8 100

10 1000 (5.23,100%,523.00) (5.32,100%,532.00) (10.14,99%,1027.19)

30 2000 (6.23,100%,623.00) (6.24,99%,630.55) (11.36,98%,1158.04)

50 3000 (7.55,99%,762.17) (6.54,100%,654.00) (25.00,97%,2606.71)

PSOEM9 100 10 1000 (6.85,100%,685.00) (6.29,100%,629.00) (14.57,97%,1500.32)



30 2000 (9.01,100%,901.00) (10.22,96%,1064.45) (10.47,99%,1060.60)

50 3000 (13.42,97%,1383.78) (38.41,96%,4000.65) (33.20,98%,3405.75)

4. 2 Empirical evaluations on the novel PV system

4.2.1 Simulation analysis under fast transient variations of shading patterns

Laboratory simulation experiments were performed on a system having two serially

connected PV modules (sources) with 5-level converter as shown Figure 1. The parameters of

the experimental system are listed in Table 5.

Table 5 PV system parameters used in simulations

Symbol Parameter Value

Pmpp Maximum power of PV source 48.29W

Vmpp Maximum voltage of PV source 16V

Impp Maximum current of PV source 3.018A

Cpv PV source terminal capacitor 2200ȝF 

L Load inductance 5mH

f AC output frequency 50Hz

To evaluate the effectiveness of the proposed scheme with the novel MPPT algorithm,

empirical tests are done on the PV system with the P&O method, the conventional PSO method

and the proposed method under fast transient variations of shading patterns. The P&O method

is set as the fixed step size (step size=1), and Table 6 shows the basic parameters used in the

traditional PSO method and the proposed method, including the inertia weight, acceleration

factors c1 and c2, maximum iterative number Gene., number of particles S, the effective factor

of extended memory t-1 and current effective factor t.

Table 6 Parameter setting of the PSO and proposed methods



Method c1 c2 w Gene. S t-1 t

PSO 2 2 0.9 50 20 -- --

Proposed Algorithm 2 2
self-adaption

(max=0.9,min=0.4)
50 20 0.7 0.3

To study the algorithms five different light conditions are set for this PV system: Case 1,

G1=1000W/m2, G2=600W/m2; Case 2, G1=1000W/m2, G2=800W/m2; Case 3, G1=1000W/m2,

G2=350W/m2; Case 4, G1=1000W/m2, G2=900W/m2; Case 5, G1=1000W/m2, G2=500W/m2.

Starting from case 1 initially, the switch to case 2 occurs at t = 2 sec., the switch to case 3 occurs

at t = 4 sec., the switch to case 4 occurs at t = 8 sec., and case 4 to case 5 at t = 10 sec. as shown

in Figure 5(a).

(a)



(b)

(c)

(d) (e)

Figure 5 Experimental results of the three methods: (a) The changing process of illumination

levels of the PVmodule; (b) Results from the three methods; (c) Pload curves of the three methods

under Case 1; (d) Pload curves of the three methods under Case 2; (e) Pload curves of the three

methods under Case 5.

Figure 5(b) shows the variations of output load power (Pload) of the PV system, using the P&O

method, the traditional PSO algorithm, and the proposed method, under five fast transient

variations of shading patterns. To vividly describe the advantage of the proposed method,

Figures 5(c)-(e) show the output load power curves of the PV system under Case 1, Case 2 and

Case 5 respectively. It can be clearly observed from Figure 5(c), compared to the traditional

P&O algorithm, other two methods have less oscillation during the MPP searching processes. In



particular the output power converges to the peak points with little ripple. Also the proposed

method converges much faster, taking only about 0.7sec. on average, but P&O’s average time is

about 0.85 sec. In addition, Figures 5(c)-(e) show that the proposed method obviously has more

output load power than the other method, especially, in Case 2 and Case 5. From Figures 5(b)-

(e), it is very obvious that the proposed algorithm is superior in the convergence speed, output

accuracy and stability under different PSCs. This method can locate the precise MPP, reduce the

oscillation and increase the output load power effectively.

4.2.2 Simulation analysis under different irradiance levels and load resistance

Laboratory simulation experiments were performed on a system having two serially connected

PV modules (sources) with the proposed MPPT algorithm and multilevel DC-Link converter

as shown in Figure 1. Each module was exposed to a separate artificial sunlight with adjustable

irradiance emulated by three halogen bulbs each of which was supplied from a different phase

of a 3-phase variac connected to the 3-phase 50-Hz mains supply. This arrangement provides a

fairly uniform irradiance to each module.

The parameters of the experimental system are listed in Table 5. The measured P-V

characteristic of the PV module is shown in Figure 6 under different irradiance levels at room

and surface temperatures of 20°C. The different irradiation levels can result in the different

output characteristics of the components, and the variable load resistance (Rload) meanwhile

affects the output characteristics. To evaluate the superiority of the proposed optimal control

method, the proposed method is compared with the basic P&O method and the traditional PSO

method under different shading patterns. The basic parameters used in the traditional PSO

method and the proposed method are shown in Table 6.



It was tested under different illumination and load resistance values. The PSCs and load

variation are divided into six cases, including: Case 1, setting G1=250W/m2 and G2=500W/m2ˈ

where the Rload =20ȍ; Case 2, setting G1=250W/m2 and G2=800 W/m2ˈwhere the Rload =17ȍ; 

Case 3, setting G1=500W/m2 and G2=800 W/m2ˈwhere the Rload =8ȍ; Case 4, setting 

G1=1000W/m2 and G2=250 W/m2ˈwhere the Rload =15ȍ; Case 5, setting G1=1000W/m2 and

G2=500W/m2 w̍here the Rload =6.5ȍ; Case 6, setting G1=1000W/m2and G2=800W/m2 w̍here

the Rload =5ȍ. What’s more, the values used for the different PSCs and the variable Rload in each

case are presented in Table 7, and fr= 50 Hz, mf=30 and CPV= 5.5 mF, Lload = 5 mH. The

frequency modulation index could be chosen to be even higher, if the equipment used allows it,

in order to get even better results when it comes to harmonics. For comparison purposes, the

total harmonics distortion (THD) along with the amplitude of 50Hz fundamental harmonicis is

calculated for the first thousand harmonics.

Figure 6 Measured P-V characteristics of the PV source for different irradiance levels (MPP

is indicated on each characteristic)

Table 7 RLoad variation value of each case of irradiance (at 20฀) 

Case G1 (W/m2) G2 (W/m2) Rload (ȍ) 

1 250 500 20



2 250 800 17

3 500 800 8

4 1000 250 15

5 1000 500 6.5

6 1000 800 5

(a)

(b)

(c)



(d)

(e)

(f)

Figure 7 Output voltage, current waveforms and permutations of five-level converter measured

under the control by P&O method (column 1), PSO method (column 2) and the

proposed method (columns 3). Irradiances in W/m2 and load resistance values in ȍ 

applied to sources PV1 and PV2: (a) 250, 500, 20; (b) 250, 800, 17; (c) 500, 800, 8;

(d) 1000, 250, 15; (e) 1000, 500, 6.5; (f) 1000, 800, 5.

(a)



(b)

(c)

(d)

(e)



(f)

Figure 8 Load power (Pload), pv1 power (Ppv1) and pv2 power (Ppv2) of five-level converter

measured under the control by P&O method (column 1), PSO method (column 2) and

the proposed method (columns 3). Irradiances in W/m2 and load resistance values in

ȍ applied to sources PV1 and PV2: (a) 250, 500, 20; (b) 250, 800, 17; (c) 500, 800, 

8; (d) 1000, 250, 15; (e) 1000, 500, 6.5; (f) 1000, 800, 5.

Table 8 Summary of simulated results at various shading levels

CASE

P&O method PSO method Proposed method

THD (%) VP (V) THD (%) VP (V) THD (%) VP (V)

1 40.59% 25.15 47.16% 26.30 47.18% 27.16

2 41.67% 24.64 46.11% 25.52 45.69% 27.57

3 41.20% 24.6 34.81% 26.84 34.79% 26.91

4 52.88% 23.83 45.98% 24.45 44.91% 26.87

5 41.77% 23.88 56.13% 23.68 35.31% 25.22

6 41.55% 24.13 33.77% 26.55 33.68% 26.57

Table 9 Measured values of power delivered to the load at different shading patterns

Case
P&O method (W) PSO method (W) Proposed method (W)

Ppv1 Ppv2 PLoad Ppv1 Ppv2 PLoad Ppv1 Ppv2 PLoad

1 7.96 8.89 16.26 9.20 11.16 19.76 9.22 11.19 19.80

2 8.92 10.69 18.94 10.04 14.25 23.61 10.02 14.24 23.59

3 18.10 19.89 36.63 20.45 24.82 43.80 20.42 24.83 43.77

4 12.04 9.56 20.87 16.22 9.92 25.41 16.24 9.94 25.47



5 23.41 19.90 41.60 29.07 18.13 45.47 29.08 19.11 46.40

6 28.55 27.28 53.28 35.44 31.94 64.39 35.47 31.94 64.44

Table 8 gives a comparison between the three algorithms in terms of the output quality, where

the THD along with the amplitude of 50Hz fundamental harmonic are presented. From Table

8, it can be seen that although the THD of the proposed method is lower than the other two

methods in Case 1 and Case 2, its output voltage is better. And, the output quality of the

proposed method completely outperforms the other methods in the other Cases, which shows a

lower output harmonic distortion of the proposed method. Furthermore, Figure 7 are plotted to

show the 50Hz fundamental amplitude of the load voltage waveforms, load current waveforms

and permutation waveforms, using the P&O, PSO and proposed methods as a function of the

PV extracted power. Some significant conclusion can be obtained from Table 8 and Figure 7

that at the same conditions of partial shading and load resistance value, the proposed method

has resulted in a lower output harmonic distortion and larger amplitude of the fundamental

harmonic (50 Hz) compared to the other two methods in most cases.

What’s more, Table 9 lists the output load power (Pload), respective output power (Ppv1) and

(Ppv2) of the two PV arrays, and the output power curves are shown in Figure 8. From Table 9,

we can find that although the output power of the PSO method is slightly higher in Case 3, but

the proposed method is completely beyond the other method in other cases. By comparing and

analyzing the curves in Figure 8, we can more clearly see that the proposed method outperforms

the P&O and PSO methods in the same shading conditions, which indicates that the control

scheme with the proposed method has a lower energy loss.

5 Conclusions



This paper described optimal control scheme for the single-phase grid-connected PV system

under different fast variation shading patterns, which includes the proposed MPSO based-

MPPT algorithm, DC/DC boost converter and a half-bridge ANPC inverter, is presented. The

main features of the scheme are: i) combining the extended memory searching capabilities and

the adaptive inertia weight of MPSO, MPSO is successfully performed by a boost DC/DC

converter to quickly and accurately search for the MPP and hence reduce the voltage ripple and

increase the power output under different partial shading conditions; ii) the PV system with

multilevel DC link converters and a PWM permutation algorithm is used to validate the

effectiveness of the control scheme. The proposed MPSO algorithm has been validated by

means of stability analysis and numerical simulation analysis. Simulation results tested on the

static and dynamic irradiance levels show the effectiveness of the proposed control scheme is

effective in terms of the accuracy of the MPP tracking and the quality of the output waveforms,

and can generate higher output power.

This paper only analyzes and applies the simulation of the proposed control scheme, so we

will continue optimizing the proposed algorithm and the simulation experiment platform, using

the multilevel DC link converters with seven-level AC output voltages and further completing

the verification of the hardware platform in the future.

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant

No. 51377187), the Graduate Scientific Research and Innovation Foundation of Chongqing

(Grant No.CYB16048), and the China Scholarship Council (CSC).



References

Alajmi, B. N., Ahmed, K. H., Finney, S. J., Williams, B. W., 2011. Fuzzy-logic-control

approach of a modified hill-climbing method for maximum power point in microgrid

standalone photovoltaic system. IEEE Trans. Power Electron. 26(4), 1022-1030.

Abdalla, I., Corda, J., Zhang, L., 2016. Optimal control of a multilevel DC-link converter

photovoltaic system for maximum power generation. Renew. Energy 92, 1-11.

Boumaaraf, H., Talha, A., Bouhali, O., 2015. A three-phase NPC grid-connected inverter for

photovoltaic applications using neural network MPPT. Renew. Sustain. Energy Rev. 49,

1171-1179.

Babu, T.S., Rajasekar, N., Sangeetha, K., 2015. Modified particle swarm optimization

technique based maximum power point tracking for uniform and under partial shading

condition. Appl. S. Comput. 34, 613-624.

Busquets-Monge, S., Rocabert, J., Rodríguez, P., Alepuz, S., Bordonau, J., 2008. Multilevel

diode-clamped converter for photovoltaic generators with independent voltage control

of each solar array. IEEE Trans. Ind. Electron. 55(7), 2713-2723.

Cheng, P.C., Peng, B.R., Liu, Y.H., Cheng, Y. S., Huang, J.W., 2015. Optimization of a fuzzy-

logic-control-based MPPT algorithm using the particle swarm optimization

technique. Energies 8(6), 5338-5360.

Duan, Q., Mao, M., Duan, P., Hu, B., 2016. An improved artificial fish swarm algorithm

optimized by particle swarm optimization algorithm with extended

memory. Kybernetes 45(2), 210-222.

Dai, N.Y., Wong, M.C., Chen, Y.H., Han, Y.D., 2005. A 3-D generalized direct PWM algorithm

for multilevel converters. IEEE Power Electron. Let. 3(3), 85-88.

Elgendy, M.A., Zahawi, B., Atkinson, D.J., 2012. Assessment of Perturb and Observe MPPT

algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain.

Energy 3 (1), 21–33.

Elbaset, A.A., Ali, H., Abd-El, S.M., et al., 2016. Implementation of a modified perturb and

observe maximum power point tracking algorithm for photovoltaic system using an

embedded microcontroller. IET Renew. Power Gener. 10(4), 551-560.

Eberhart, R., Kennedy, J., 1995. A new optimizer using particle swarm theory. In Micro

Machine and Human Science, Proceedings of the Sixth International Symposium on, 39-



43.

Eberhart, R.C., Shi, Y., 2004. Guest editorial special issue on particle swarm

optimization. IEEE Trans. Evolut. Comput. 8(3), 201-203.

Gupta, A., Chauhan, Y.K., Pachauri, R.K., 2016. A comparative investigation of maximum

power point tracking methods for solar PV system. Sol. Energy 136, 236-253.

Gao, L., Dougal, R.A., Liu, S., Iotova, A.P., 2009. Parallel-connected solar PV system to

address partial and rapidly fluctuating shadow conditions. IEEE Trans. Ind.

Electron. 56(5), 1548-1556.

Ishaque, K., Salam, Z., Amjad, M., Mekhilef, S., 2012. An improved particle swarm

optimization (PSO)–based MPPT for PV with reduced steady-state oscillation. IEEE

Trans. Power Electron. 27(8), 3627-3638.

Ishaque, K., Salam, Z., Shamsudin, A., Amjad, M., 2012. A direct control based maximum

power point tracking method for photovoltaic system under partial shading conditions

using particle swarm optimization algorithm. Appl. Energy 99, 414-422.

Killi, M., Samanta, S., 2015. Modified perturb and observe MPPT algorithm for drift avoidance

in photovoltaic systems. IEEE Trans. Ind. Electron. 62 (9), 5549-5559.

Koad, R., Zobaa, AF., El Shahat, A., 2016. ANovel MPPTAlgorithm Based on Particle Swarm

Optimisation for Photovoltaic Systems. IEEE Trans. Sustain. Energy.

Kim, I.S., 2007. Robust maximum power point tracker using sliding mode controller for the

three-phase grid-connected photovoltaic system. Sol. Energy 81(3), 405-414.

Li, C., Chen, Y., Zhou, D., et al., 2016. AHigh-Performance Adaptive Incremental Conductance

MPPTAlgorithm for Photovoltaic Systems. Energies 9(4), 288.

Letting, L. K., Munda, J. L., Hamam, Y., 2012. Optimization of a fuzzy logic controller for PV

grid inverter control using S-function based PSO. Sol. Energy 86(6), 1689-1700.

Lin, F.J., Lu, K.C., Ke, T.H., 2016. Probabilistic Wavelet Fuzzy Neural Network based reactive

power control for grid-connected three-phase PV system during grid faults. Renew.

Energy 92, 437-449.

Liu, Y.H., Huang, S.C., Huang, J.W., Liang, W.C., 2012. A particle swarm optimization-based

maximum power point tracking algorithm for PV systems operating under partially

shaded conditions. IEEE Trans. Energy Convers. 27(4), 1027-1035.

Liu, L., Meng, X., Liu, C., 2016. A review of maximum power point tracking methods of PV

power system at uniform and partial shading. Renew. Sustain. Energy Rev. 53, 1500-

1507.



Messai, A., Mellit, A., Guessoum, A., Kalogirou, S. A., 2011. Maximum power point tracking

using a GA optimized fuzzy logic controller and its FPGA implementation. Sol.

energy 85(2), 265-277.

Manickam, C., Raman, G.R., Raman, G.P., Ganesan, S.I., Nagamani, C., 2016. A Hybrid

Algorithm for Tracking of GMPP Based on P&O and PSO With Reduced Power

Oscillation in String Inverters. IEEE Trans. Ind. Electron. 63(10), 6097-6106.

Mojallizadeh, M.R., Badamchizadeh, M., Khanmohammadi, S., Sabahi, M., 2016. Designing a

new robust sliding mode controller for maximum power point tracking of photovoltaic

cells. Sol. Energy 132, 538-546.

Middlebrook, R.D., Cuk, S., 1976. A general unified approach to modelling switching-

converter power stages. In Power Electronics Specialists Conference, 18-34.

Radjai, T., Rahmani, L., Mekhilef, S., Gaubert, J. P., 2014. Implementation of a modified

incremental conductanceMPPT algorithmwith direct control based on a fuzzy duty cycle

change estimator using dSPACE. Sol. Energy 110, 325-337.

Rezvani, A., Gandomkar, M., 2016. Modeling and control of grid connected intelligent hybrid

photovoltaic system using new hybrid fuzzy-neural method. Sol. Energy 127, 1-18.

Rezk, H., Eltamaly, A.M., 2015. A comprehensive comparison of different MPPT techniques

for photovoltaic systems. Sol. energy 112, 1-11.

Renaudineau, H., Donatantonio, F., Fontchastagner, J., Petrone, G., Spagnuolo, G., Martin, J.

P., Pierfederici, S., 2015. APSO-based global MPPT technique for distributed PV power

generation. IEEE Trans. Ind. Electron. 62(2), 1047-1058.

Shimizu, T., Hirakata, M., Kamezawa, T., Watanabe, H., 2001. Generation control circuit for

photovoltaic modules. IEEE Trans. Power Electron. 16(3), 293-300.

Sundareswaran, K., Palani, S., 2015. Application of a combined particle swarm optimization

and perturb and observe method for MPPT in PV systems under partial shading

conditions. Renew. Energy 75, 308-317.

Seyedmahmoudian, M., Rahmani, R., Mekhilef, S., Oo, A.M.T., Stojcevski, A., Soon, T.K.,

Ghandhari, A.S., 2015. Simulation and hardware implementation of new maximum

power point tracking technique for partially shaded PV system using hybrid DEPSO

method. IEEE Trans. Sustain. Energy 6(3), 850-862.

Shi, Y., Eberhart, R., 1998. Amodified particle swarm optimizer. In Evolutionary Computation

Proceedings, IEEE World Congress on Computational Intelligence., The 1998 IEEE

International Conference on , 69-73.



Shi, Y., Eberhart, R.C., 1998. Parameter selection in particle swarm optimization.

In International Conference on Evolutionary Programming, 591-600.

Shi, Y., Eberhart, R.C., 1999. Empirical study of particle swarm optimization. In Evolutionary

Computation, Proceedings of the 1999 Congress on, 3,1945-1950.

Velasco-Quesada, G., Guinjoan-Gispert, F., Piqué-López, R., Román-Lumbreras, M., Conesa-

Roca, A., 2009. Electrical PV array reconfiguration strategy for energy extraction

improvement in grid-connected PV systems. IEEE Trans. Ind. Electron. 56(11), 4319-

4331.

Wu, H., Nie, C., Kuo, F.C., Leung, H., Colbourn, C.J., 2015. A discrete particle swarm

optimization for covering array generation. IEEE Trans. Evolut. Comput. 19(4), 575-

591.

Xiao, X., Huang, X., Kang, Q., 2016. AHill-Climbing-Method-Based Maximum-Power-Point-

Tracking Strategy for Direct-Drive Wave Energy Converters. IEEE Trans. Ind. Electron.

63(1), 257-267.

Zhan, Z.H., Zhang, J., Li, Y., Chung, H.S.H., 2009. Adaptive particle swarm

optimization. IEEE Trans. Sys. Man Cyber. Part B (Cybernetics) 39(6), 1362-1381.

Zou, R., Kalivarapu, V., Winer, E., Oliver, J., Bhattacharya, S., 2015. Particle swarm

optimization-based source seeking. IEEE Trans. Auto. Sci. Eng. 12(3), 865-875.


