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External potentials play a crucial role in modeling quantum systems, since, for a given interparticle interaction,

they define the system Hamiltonian. We use the metric-space approach to quantum mechanics to derive, from

the energy conservation law, two natural metrics for potentials. We show that these metrics are well defined for

physical potentials, regardless of whether the system is in an eigenstate or if the potential is bounded. In addition,

we discuss the gauge freedom of potentials and how to ensure that the metrics preserve physical relevance. Our

metrics for potentials, together with the metrics for wave functions and densities from I. D’Amico et al. [Phys.

Rev. Lett. 106, 050401 (2011)] paves the way for a comprehensive study of the two fundamental theorems of

density-functional theory. We explore these by analyzing two many-body systems for which the related exact

Kohn-Sham systems can be derived. First we consider the information provided by each of the metrics, and

we find that the density metric performs best in distinguishing two many-body systems. Next we study for the

systems at hand the one-to-one relationships among potentials, ground-state wave functions, and ground-state

densities defined by the Hohenberg-Kohn theorem as relationships in metric spaces. We find that, in metric space,

these relationships are monotonic and incorporate regions of linearity, at least for the systems considered. Finally,

we use the metrics for wave functions and potentials in order to assess quantitatively how close the many-body

and Kohn-Sham systems are: We show that, at least for the systems analyzed, both metrics provide a consistent

picture, and for large regions of the parameter space the error in approximating the many-body wave function

with the Kohn-Sham wave function lies under a threshold of 10%.

DOI: 10.1103/PhysRevA.94.062509

I. INTRODUCTION

Density-functional theory (DFT) is one of the most widely

used methods for performing quantum mechanical analysis of

many-body systems. DFT is founded upon two core theorems.

The first of these is the Hohenberg-Kohn theorem [1], which

demonstrates, for ground states, that the many-body wave

function, the external potential, and the density are uniquely

determined by each other:

V (r,r2, . . . ,rN ) ⇋ ψ(r,r2, . . . ,rN ) ⇋ ρ(r). (1)

Therefore, wave functions, potentials, and expectation values

of any operator can, in principle, be written as functionals of the

ground-state density. The Hohenberg-Kohn theorem applies

for any given strength of the interaction between the particles.

Thus, in the second core theorem of DFT, Kohn and Sham

recognized that the many-body system of interacting particles

can be described by an auxiliary system of noninteracting

particles, in a different external potential (the Kohn-Sham

potential), that produces the same ground-state density [2].

Since the Kohn-Sham particles are noninteracting, the wave

function for this system is composed of single-particle orbitals,

found by solving a system of single-particle equations, the

Kohn-Sham equations. The solution of these equations thus
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provides a method to obtain the many-body ground-state

density that bypasses the many-body wave function (the

Kohn-Sham scheme) [2].

These two theorems are sufficient to construct DFT in a

formal way; however, there are open questions with regards

to both of them. Although the Hohenberg-Kohn theorem

guarantees a one-to-one relationship between potentials and

ground-state wave functions, as well as ground-state wave

functions and ground-state densities, it offers no prescription

on how these wave functions or potentials are produced given

a particular density. For the Kohn-Sham scheme, although it is

known that the Kohn-Sham potential is constructed from the

sum of external, Hartree, and exchange-correlation potentials,

the exchange-correlation component is generally unknown

and hence must be approximated when DFT calculations are

implemented practically. There are numerous approximations

to the exchange-correlation potential that cover a wide range

of sophistication and complexity [3], and the suitability of an

approximation usually depends on the problem studied.

In this work, we apply the metric-space approach to

quantum mechanics [4–6] to potentials in order to gain

insight into the two fundamental theorems of DFT. First,

we use the general procedure from Ref. [5] to derive two

metrics for external potentials. These metrics will complement

the metrics for wave functions and densities derived in

Ref. [4] and ensure that we have metrics for each of the

fundamental physical quantities associated to DFT. We will

then revisit the Hohenberg-Kohn theorem. This was first

studied with the metric-space approach to quantum mechanics

in Ref. [4], where only the second part of Eq. (1), concerning
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ground-state wave functions and densities, was studied. Now,

with the external potential metrics, we will extend the study

to incorporate the first part of Eq. (1), which establishes a

unique map between the external potential and the ground-

state wave function. We will then turn our attention to the

Kohn-Sham scheme. By studying model systems for which

the Kohn-Sham quantities can be determined exactly, we

will use our metrics to quantify the differences between

many-body and Kohn-Sham quantities. We will use atomic

units (� = me = e = 1/4πǫ0 = 1) throughout this paper.

II. DERIVING METRICS FOR POTENTIALS

In order to derive a metric for external potentials, we use

the metric-space approach to quantum mechanics [4–6], which

allows us to derive metrics from conservation laws of the form
∫

|f (x)|pdx = c, (2)

where c is a finite, positive constant. Equation (2) has the form

of an Lp norm, from which a metric can be derived in a standard

way. As these metrics then naturally descend from the physical

conservation laws, we refer to them as “natural” metrics for the

related physical functions. A metric is a function that assigns

a distance between two elements of a set and is subject to the

axioms [7,8]

D(x,y) � 0 and D(x,y) = 0 ⇐⇒ x = y, (3)

D(x,y) = D(y,x), (4)

D(x,y) � D(x,z) + D(z,y), (5)

for all elements x,y,z in the set. A set with an appropriate

metric defined on it is called a metric space.

In time-independent quantum mechanics, the system en-

ergy is conserved and it is given by the expectation value
∫

· · ·
∫

ψ∗(r1, . . . ,rN )Ĥψ(r1, . . . ,rN )dr1, . . . ,drN = EN,

(6)

where

Ĥ = −
N
∑

i=1

1

2
∇2

i +
N
∑

j<i

U (ri,rj ) +
N
∑

i=1

v(ri) (7)

is the system Hamiltonian, where V =
∑N

i=1 v(ri) is the

external potential and ψ(r1, . . . ,rN ) is the system state.

We have followed Ref. [4] and normalized the many-body

wave function ψ(r1, . . . ,rN ) to the particle number N . In

the following we will concentrate on the Coulomb particle-

particle interaction U (ri,rj ) = 1/|ri − rj |, though the results

are valid for a general form of U (ri,rj ). In Eq. (7) and

the following analysis we focus on electronic systems, as

is often done in studies involving DFT when invoking the

Born-Oppenheimer approximation. However, our results can

be extended to include nuclear terms in the Hamiltonian,

which we demonstrate in the Appendix. The derivations in the

Appendix can be straightforwardly extended to more complex

systems comprising various particles and/or species, such as

systems including electrons and different ionic species.

We will now derive metrics for the external potential from

Eq. (6) by applying the metric-space approach to quantum

mechanics. We start by performing some simple algebra and

rewrite Eq. (6) in the following two forms:

∫

· · ·
∫ N

∑

i=1

⎡

⎣−
1

2
ψ∗∇2

i ψ +
N
∑

j<i

|ψ |2

|ri − rj |
+ |ψ |2v(ri)

⎤

⎦

× dr1, . . . ,drN = EN (8)

and

∫

N

[

τ (r) +
1

2

∫

dr1

g(r,r1)

|r − r1|
+ v(r)ρ(r)

]

dr = EN. (9)

Here, we have used the definitions

τ (r) ≡
1

2

∫

· · ·
∫

|∇rψ(r,r2, . . . ,rN )|2dr2, . . . ,drN � 0

(10)

for the kinetic energy density,

g(r1,r2) ≡ (N − 1)

∫

· · ·
∫

|ψ(r1,r2, . . . ,rN )|2

× dr3, . . . ,drN � 0 (11)

for the two-particle correlation function, and

ρ(r) ≡
∫

· · ·
∫

|ψ(r,r2, . . . ,rN )|2dr2, . . . ,drN � 0 (12)

for the single-particle density. To derive Eq. (10), we have used

that for any i = 1, . . . ,N

−
1

2

∫

ψ∗∇2
i ψdri = −

1

2
[ψ∗

∇iψ]ri→∞

+
1

2

∫

[(∇iψ
∗) · (∇iψ)]dri

=
1

2

∫

|∇iψ |2dri, (13)

as ψ → 0 when ri → ∞. This also shows that the kinetic term

in Eq. (8) is positive.

To derive “natural” metrics, we must ensure that the

conservation laws Eqs. (8) and (9) can be written in the form

of Eq. (2), so, after taking the absolute value of their left

and right sides, we need to demonstrate that the integrands in

their left-hand sides always have the same sign throughout

the corresponding domains. From previous considerations,

the parts of these integrands corresponding to the kinetic and

particle-particle interaction terms, for both Eqs. (8) and (9), are

positive semidefinite everywhere, so we need only to consider

the external potential term.

Although we cannot guarantee the sign of v(r), we can make

use of a gauge transformation. If the potential is modified by a

constant, v(r) → v(r) + c, then the solution to the Schrödinger

equation is unaffected. Thus, for potentials with a lower bound,

we can choose a constant c such that the potential term (and

hence the overall integrand) in Eqs. (8) and (9) is positive

semidefinite everywhere [9].

062509-2
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With this in mind we can rewrite Eqs. (8) and (9) as

∫

· · ·
∫

∣

∣

∣

∣

∣

∣

N
∑

i=1

⎧

⎨

⎩

1

2
|∇iψ |2 +

N
∑

j<i

|ψ |2

|ri −rj |
+|ψ |2[v(ri)+c]

⎫

⎬

⎭

∣

∣

∣

∣

∣

∣

× dr1, . . . ,drN = |(E + c)N |, (14)

and
∫

∣

∣

∣

∣

N

{

τ (r) +
1

2

∫

dr1

g(r,r1)

|r − r1|
+ [v(r) + c]ρ(r)

}∣

∣

∣

∣

dr

= |(E + c)N |. (15)

Given that both Eq. (14) and Eq. (15) are of the sought form (2),

we can apply the metric-space approach to quantum mechanics

[5] and derive the corresponding metrics, which read

Dv1
=

∫

· · ·
∫

|f1 − f2|dr1, . . . ,drN , (16)

Dv2
=

∫

|h1 − h2|dr, (17)

where

f (r1, . . . ,rN )

≡
N
∑

i=1

⎧

⎨

⎩

1

2
|∇iψ |2 +

N
∑

j<i

|ψ |2

|ri − rj |
+ |ψ |2[v(ri) + c]

⎫

⎬

⎭

,

(18)

and

h(r) ≡ N

{

τ (r) +
1

2

∫

dr1

g(r,r1)

|r − r1|
+ [v(r) + c]ρ(r)

}

.

(19)

Dv1
and Dv2

apply to both the case in which the system is in an

eigenstate and when a more general system state is considered,

as demonstrated below.

We note that both τ (r) and g(r,r1) are uniquely defined

by the many-body wave function, ψ(r1, . . . ,rN ). When the

system is in an eigenstate, and for a given particle number

and many-body interaction, the time-independent Schrödinger

equation shows that the many-body wave function is uniquely

determined by the external potential v(r). Hence, every term

in the integrands of both Eq. (14) and Eq. (15) (and hence in

the related metrics) can be uniquely written as a functional

of the external potential so that f = f [v] and h = h[v].

This demonstrates that Eqs. (14) and (15) indeed define two

norms (and hence metrics) for the external potential v(r). It is

simple to show that, when comparing the same two systems,

Dv2
< Dv1

.

We note that the metric Dv2
is well defined for comparing

systems with different numbers of particles because it relies on

a single-particle quantity, the function h(r) defined in Eq. (19).

The metric Dv1
instead is well defined here only for systems

with the same number of particles, N1 = N2. The issue of

defining Dv1
for systems with different numbers of particles is

an open problem related to the fact that the wave function

is a many-particle quantity. This issue has been discussed

previously with reference to Dψ [10,11].

When considering a system with a time-independent

Hamiltonian but not in an eigenstate, conservation of energy

applies to the time evolution of this state. In this case we

can still consider the norms (14) and (15) as derived from

the conservation of energy. However, now the system state

at any time t , ψ(t), will still be determined by the external

potential v(r), but together with the initial condition ψ(t = 0).

The norms (14) and (15) will then still represent norms for

the external potential v(r), and at any time t , but given the

initial state ψ(t = 0). This condition mirrors the condition

for uniqueness of the relationship between the potential and

the wave function v(t) ←→ ψ(t) as set in the core theorems

of time-dependent DFT [12], where indeed this uniqueness is

subject to the specific initial condition. Given this caveat, we

can also in this case use Eqs. (14) and (15) to derive appropriate

metrics for the external potential in the way presented above.

A. Potential metric for eigenstates

For system eigenstates, Eq. (6) becomes

∫

· · ·
∫

Ei |ψi(r1, . . . ,rN )|2dr1, . . . ,drN = EiN. (20)

The norms for the external potential can then be rewritten as

∫

· · ·
∫

|(Ei + c)|ψi |2|dr1, . . . ,drN = |(Ei + c)N |, (21)

∫

|(Ei + c)ρi(r)|dr = |(Ei + c)N |. (22)

From here the metrics for the external potential become

Dv1
=

∫

· · ·
∫

∣

∣

(

E1i
+ c1

)∣

∣ψ1i

∣

∣

2 −
(

E2j
+ c2

)∣

∣ψ2j

∣

∣

2∣
∣

× dr1, . . . ,drN , (23)

Dv2
=

∫

∣

∣

(

E1i
+ c1

)

ρ1i
(r) −

(

E2j
+ c2

)

ρ2j
(r)

∣

∣dr. (24)

B. Coulomb external potentials

Often bare Coulomb potentials are replaced by softened

potentials that are finite at r = 0. One example is the

modeling of one-dimensional quantum systems [13,14]. When

considering softened Coulomb potentials the external potential

metrics defined above in Eqs. (16) and (17) are well defined.

However, when the external potential has the bare Coulomb

form v = −1/r , it diverges to −∞ as r → 0. This implies that,

if ψ(r1, . . . ,ri = 0, . . . ,rN ) 
= 0 for at least one value of i and

ρ(0) 
= 0, it does not seem possible for a gauge transformation

to enable the integrand of the potential norms (14) and (15),

respectively, to be positive semidefinite everywhere. We show

below that, even in this case, the potential norms (14) and (15)

instead remain well defined.

Let us consider the gauge transformation v(r) → v(r) + c

and rewrite Eq. (8) using that ψ =
∑

i diψi , where {ψi} are

the eigenstates of H , and that Hψi = Eiψi . Equation (8) then

062509-3
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becomes
∫

· · ·
∫

∑

i

(Ei + c)|di |2|ψi(r1, . . . ,rN )|2dr1, . . . ,drN

= (E + c)N. (25)

Equation (25) shows that, as long as |Ei | < ∞ for any i, we

can choose a finite c > 0 such that the integrand in Eq. (25) is

positive semidefinite everywhere, even when v(r), as for the

bare Coulomb potential, is not bounded from below.

III. GAUGE FREEDOM AND PHYSICAL

CONSIDERATIONS

In Sec. II, we demonstrated that a gauge transformation

is necessary in order to ensure that the metrics (16) and (17)

are well defined. The gauge must ensure that the integrands

in Eqs. (8) and (9), respectively, are positive semidefinite

everywhere, but one could make different choices of gauge

once this condition is fulfilled.

The gauge freedom we are considering reflects the fact

that energies are defined up to a constant; however, energy

differences have physical significance: When considering

problems where it is necessary that the (physical) difference

in energy between the systems we are comparing is preserved,

we must ensure that we always work in the same gauge for all

systems of interest. Hence, the constant c should be the same

for all of the external potentials that we consider. In fact, from

Eqs. (14) and (15) we see that in this way the energy of each

system is modified by the same amount, and hence the energy

difference between any two systems remains unaffected. For

c to satisfy this condition, it must be sufficiently large so that

the integrand of Eq. (8) or Eq. (9) is positive semidefinite

everywhere for all of the potentials characterizing the set of

systems {Sn} under consideration. This condition is satisfied

for any c � c̄1(2), with c̄1 and c̄2 defined as

c̄1 ≡ min{c ∈ R such that f (r1, . . . ,rN ) � 0,

∀{r1, . . . ,rN } and ∀ S ∈ {Sn}}, (26)

c̄2 ≡ min{c ∈ R such that h(r) � 0,∀ r and ∀ S ∈ {Sn}},
(27)

for the metrics Dv1
and Dv2

respectively.

IV. MODEL SYSTEMS

In order to assess the performance of the potential metrics

Dv1
and Dv2

and examine the two core theorems of DFT,

we will study model systems for which we can obtain both

the many-body and exact Kohn-Sham quantities with high

accuracy. Since it is possible to reverse engineer the Kohn-

Sham equations exactly for systems of two electrons [15–17],

we will study two-electron model systems, namely, Hooke’s

atom and the helium atom. Their Hamiltonians are

ĤHA =
1

2

(

p2
1 + ω2r2

1 + p2
2 + ω2r2

2

)

+
1

|r1 − r2|
, (28)

ĤHe =
1

2
p2

1 −
Z

r1

+
1

2
p2

2 −
Z

r2

+
1

|r1 − r2|
. (29)

Hooke’s atom can be solved exactly for particular frequencies

via the method of Ref. [18], and numerical solutions for all

frequencies can be found by the methods of Ref. [19].

We solve the helium atom with the variational method

[20,21]. For our purposes, we need a basis set that will allow

us to obtain the ground state for any entry in the helium

isoelectronic series, i.e., two-electron ions with any nuclear

charge Z. The basis set chosen is

χijk(r1,r2) = cijkNijkL
(2)
i (2Zr1)L

(2)
j (2Zr2)Pk(cos θ ), (30)

with

Nijk =

√

1

(i + 1)(i + 2)

√

1

(j + 1)(j + 2)

√

2k + 1

2
, (31)

where L(2)
n are the generalized Laguerre polynomials, Pn are

Legendre polynomials, and θ is the angle between r1 and r2.

The wave function for the helium atom is then

ψ(r1,r2) =
1

√
8π

e−Z(r1+r2)

i+j+k�

∑

i,j,k

χijk(r1,r2), (32)

where the parameter 
 controls the number of basis

functions [20].

This choice of basis combines the approaches taken by

Accad et al. [20] and Coe et al. [21]. It has the important

advantages that, with the constants Nijk , basis functions

are orthonormal and separable in the three coordinates

(2Zr1,2Zr2, cos θ ). These coordinates are chosen so that the

basis function with i,j,k = 0 corresponds to the ground state

of a hydrogenlike atom of charge Z. This basis function

always makes the largest contribution to the ground state

(i.e., c000 ≫ cijk), particularly for large Z, and hence enables

the ground state to converge more rapidly with respect to the

number of basis functions.

For both model systems, we will generate families of states

for the metric analysis by varying a parameter in the external

potentials of our systems. For Hooke’s atom, we will vary the

strength of the harmonic confinement via the frequency ω, and

for the heliumlike atoms we will vary the nuclear charge Z.

Solving the Kohn-Sham equations for the model systems

In order to be able to apply our metrics to quantities in

the exact Kohn-Sham picture, we must be able to solve the

Kohn-Sham equations exactly. Since the exact Kohn-Sham

equations must reproduce the density from the many-body

picture, we can use the exact density to reverse engineer the

Kohn-Sham equations.

For our model systems, the ground state is a spin singlet.

Therefore, in the Kohn-Sham picture, both electrons are

described by the same Kohn-Sham orbital and, thus, are

expressed in terms of the exact density as [17]

φKS =
√

ρ(r)

2
. (33)

The Kohn-Sham potential follows as [17]

vKS(r) = ǫKS +
1

2

∇2φKS

φKS

. (34)

062509-4
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In order to obtain vKS(r) from Eq. (34), we require the value of

the Kohn-Sham eigenvalue, ǫKS . Reference [15] demonstrated

that, provided vxc(r) → 0 as r → ∞, the eigenvalue of the

highest occupied Kohn-Sham state is equal to the ionization

energy of the system.

For our model systems, only one Kohn-Sham state is

occupied, and thus the eigenvalues for both electrons are equal

to the ionization energy. For Hooke’s atom, when decomposed

into center-of-mass and relative-motion components [18], the

center-of-mass energy is identical to that of a one-electron

harmonic oscillator of frequency 2ω, so the ionization energy

is clearly equal to the relative motion energy [16,17]. Ionizing

an electron from any entry in the helium isoelectronic series

results in a hydrogenic atom with energy −Z2/2 hartrees.

Therefore, the ionization energy is found from the difference

between the helium and the hydrogen ground-state energies.

In order to apply our metrics to Kohn-Sham quantities,

we need to consider the Hamiltonian of the whole N -particle

Kohn-Sham system. The corresponding Schrödinger equation

is simply the sum of the Kohn-Sham equations for each

electron, so the wave function is formed by taking the Slater

determinant of the Kohn-Sham orbitals:

ψKS(r1,r2) =
∣

∣

∣

∣

φKS(r1) ↑1 φKS(r2) ↑2

φKS(r1) ↓1 φKS(r2) ↓2

∣

∣

∣

∣

,

= φKS(r1)φKS(r2)(↑1↓2 − ↓1↑2). (35)

We consider only the orbital part of the wave function in

this paper, so the two-electron Kohn-Sham wave function

simplifies to

ψKS(r1,r2) = φKS(r1)φKS(r2)

=
1

2

√

ρ(r1)ρ(r2). (36)

The potential for the two Kohn-Sham electrons’ Hamiltonian is

given by the sum of the single-particle Kohn-Sham potentials,

VKS(r1,r2) = vKS(r1) + vKS(r2). (37)

We will apply our metrics to these two-electron Kohn-Sham

quantities. Equation (36) shows that for a Kohn-Sham system

the metrics Dv1
and Dv2

will, in general, take on different

values.

V. COMPARISON OF METRICS FOR CHARACTERIZING

QUANTUM SYSTEMS

Within the metric-space approach to quantum mechanics,

we now have metrics for wave functions, densities, and

potentials. For systems subject only to scalar potentials and

with a given many-body interaction, these quantities, taken

together, fully characterize a many-body system. We are then,

in principle, in the position of quantitatively answering the

following questions. Are two many-body systems close to each

other in the Hilbert space? Could two many-body systems be

close to each other with respect to some of these quantities but

far away for others? We will address these questions, at least for

the systems at hand and with a focus on DFT, in the rest of the

paper: Apart from the general interest, these questions have

practical implications, for example when considering how

closely quantum information processes reproduce the desired

result [22] or assessing the effectiveness of convergence loops

in codes aiming to determine numerically accurate properties

of systems, such as DFT codes.

When considering ground states, thanks to the Hohenberg-

Kohn theorem, any among the density, wave function, and

external potential are equally appropriate for characterizing

quantum systems subject to external scalar potentials. There-

fore, it is worthwhile to make a comparison between the

information given by each of the corresponding metrics.

Figure 1 shows the values of the wave function, density, and

both potential metrics plotted against the parameter values for

both of our model systems and considering both many-body

(top panels) and Kohn-Sham (bottom panels) quantities. The

distances are calculated with respect to a reference state,

Z = 50.0 for the heliumlike atoms and ω = 0.5 for Hooke’s

atom, and are all scaled to have a maximum value of 2

for ease of comparison. We can immediately observe that

all of the metrics follow broadly the same trend, increasing

monotonically from the reference to their maximum value.

The curves for both increasing and decreasing values of

the parameters incorporate a region of rapidly increasing

distance for parameter values close to the reference, a region

where the distance asymptotically approaches its maximum for

parameter values far from the reference, along with a transition

region in between, where the largest differences between

metrics are observed. The crucial difference between the four

metrics, however, is how the metrics converge to the maximum

value. Figure 1 shows that, as we depart from the reference, the

potential metric Dv1
is the fastest to converge to its maximum,

followed by the wave function metric, with the density metric

being the slowest to converge. The behavior of the metric

Dv2
is different for the two systems that we study. We first

note the metric Dv2
takes on different values for many-body

and Kohn-Sham systems because, although they share the

same density, many-body and related Kohn-Sham systems

have different energies in general. For heliumlike atoms,

this metric strongly follows the trend of the density metric

for both many-body and Kohn-Sham quantities. However,

when considering Hooke’s atom, the potential metric Dv2
is

similar in value to the wave-function metric, albeit slightly

greater for frequencies greater than the reference. These results

suggest that, when comparing systems that are significantly

different from one another, the density metric is the most

useful tool for analysis, as it is capable of providing nontrivial

information over a wider range of parameter space than the

metrics for wave functions and potentials. When comparing

systems that are relatively close to one another, all four metrics

provide useful information to quantitatively characterize the

differences between the systems.

With regard to practical calculations, the density metric Dρ ,

along with the potential metric Dv2
, has another significant

advantage in that, in general, it is considerably easier to

calculate than the metrics Dψ and Dv1
. The metrics Dρ

and Dv2
, in fact, need only be integrated over three degrees

of freedom, compared to 3N degrees of freedom for the

other two metrics. Also we can calculate the density metric

from both the many-body and Kohn-Sham systems, since,

unlike for wave functions and potentials, the Kohn-Sham

system will, in principle, provide the exact many-body

density.
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FIG. 1. The wave function, density, and potential distances for many-body systems (a),(b) and Kohn-Sham systems (c),(d) are plotted

against the nuclear charge for heliumlike atoms (left) and against the confinement frequency for Hooke’s atom (right). For heliumlike atoms

the reference state is Z = 50.0, and for Hooke’s atom the reference state is ω = 0.5. All of the metrics are scaled such that their maximum

value is 2.

VI. MAPPINGS RELEVANT TO THE HOHENBERG-KOHN

THEOREM

In Ref. [4] it was shown that the mapping between

wave functions and densities in the Hohenberg-Kohn theorem

[Eq. (1)] is a mapping between metric spaces; by examining it

in this light several features were found. In this paper, we have

shown that all of the relationships in Eq. (1) are mappings

between metric spaces: Using various families of states for

each of our model systems, we will now look at the other

relationships within the Hohenberg-Kohn theorem. We choose

a reference state for each family of systems. We then calculate

the distance between each member of the family and the

reference state, for densities, wave functions, and potentials.

In Fig. 2 we plot the potential metrics Dv1
and Dv2

,

respectively, against the wave function (left-hand panels) and

density (right-hand panels) metrics for both interacting sys-

tems and their related Kohn-Sham systems and for increasing

and decreasing parameters. In this way we compare for each

plot eight different families of states as well as the behavior

of the many-body systems with respect to the noninteracting

Kohn-Sham systems. The rescaling of the metrics has been

chosen such that the dependence on the particle number is

removed and that these figures are directly comparable to Fig. 2

of Ref. [4], where corresponding plots for Dψ versus Dρ for

heliumlike and Hooke’s atoms were considered.

Considering our plots, we observe many features in com-

mon with the relationship between wave function and density

metrics of Ref. [4]: The relationships between the potential

distances and the other distances are monotonic, with nearby

wave functions and nearby densities mapped onto nearby

potentials and distant wave functions and distant densities

mapped onto distant potentials. The curves for increasing

parameters and decreasing parameters within each of the

four systems (Hooke’s many-body, Hooke’s Kohn-Sham, he-

liumlike many-body, heliumlike Kohn-Sham) are also seen to

overlap, or almost overlap, with one another. Finally, all curves

have an extended region (up to and including intermediate

potential distances) where the relationship between potential

and the other distances is linear or almost linear. Interestingly,

depending on the potential distance and the system considered,

we observe that this linear region can cover the entire parameter

range; see Figs. 2(a), 2(c), and 2(d). With the exception of

Fig. 2(c), we notice that the curves have opposite convexity

at large distances with respect to Fig. 2 of Ref. [4], which

suggests that, in general, the potential distance is more likely to

converge to its maximum faster than wave function or density
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FIG. 2. Plots of rescaled potential distance 2Dv1
/[N (E1 + E2)] (top) and 2Dv2

/[N (E1 + E2)] (bottom) against rescaled wave function

distance Dψ/
√

N (a),(c) and against rescaled density distance Dρ/N (b),(d). We have plotted both the many-body and related Kohn-

Sham systems for heliumlike atoms and Hooke’s atom. In each panel we consider families of systems characterized by increasing and

decreasing parameters starting from the reference state (Z = 50.0 for heliumlike atoms, ω = 0.5 for Hooke’s atom). The parameter ranges are

1.0 < Z < 2000.0 for heliumlike atoms and 2.6 × 10−8 < ω < 1000.0 for Hooke’s atom.

distances; hence, in general, it is less effective in distinguishing

far-away systems (compare also with Fig. 1).

In Ref. [4] a hint to universality was observed for the

mapping between wave function and density distances; when

looking at the potential versus wave function or density

distances we note that the mapping from each many-body

system is very close to the one from the corresponding exact

Kohn-Sham system. This mapping is closer for heliumlike

atoms compared to Hooke’s atom; this is because we are

always in a weak-correlation regime for heliumlike atoms,

while we consider both strong- and weak-correlation regimes

for Hooke’s atom (see Fig. 3). However, the mapping is

less close when comparing the behavior of Hooke’s with

respect to heliumlike atoms, and particularly so for the Dv2

distance, for which the convexity of the corresponding curves

at large distances may be opposite [compare curves for the two

Kohn-Sham systems in Fig. 2(c)].

VII. QUANTITATIVE ANALYSIS OF THE KOHN-SHAM

SCHEME

We will now consider the distance between wave functions

and potentials of many-body systems, and the ones used to

describe the corresponding Kohn-Sham systems [23], and

study how these distances change throughout the parameter

range. This allows us to provide a quantitative description

of the differences between the many-body and exact Kohn-

Sham descriptions of quantum systems. Although there is no

promise from DFT for the many-body wave function to be

reproduced by the Kohn-Sham ground-state wave function,

the latter is commonly used as an approximation to the former

in various contexts, such as linear response calculations in

time-dependent DFT and some magnetic-system calculations,

even if the regime of validity of this approximation has not been

properly established. It is therefore of interest to quantitatively

determine how good this approximation is.

In Fig. 3, the distances between many-body and Kohn-Sham

wave functions and potentials are plotted for a range of

parameter values. For potentials, we use here the metric Dv1
,

since Eq. (24) shows that, in this case, the metric Dv2
will

yield only the difference in the energy of the two systems. We

first observe that the wave function and potential distances,

when rescaled to the same maximum value, always take

approximately the same value throughout the parameter range

explored for both systems. This demonstrates that the two

metrics provide a consistent measure of how the many-body
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FIG. 3. For (a) heliumlike atoms and (b) Hooke’s atom, the

distances between many-body and Kohn-Sham wave functions, and

between many-body and Kohn-Sham potentials, are plotted against

the parameter values. In addition, the ratio of the expectation of

the electron-electron interaction to the many-body external potential

energy is plotted and shown to follow a similar trend to the metrics.

In the inset, we focus on Hooke’s atom in the regime of distances

covered by the heliumlike atoms.

description differs from the Kohn-Sham description of our

systems.

For both systems we have also plotted the ratio of the

Coulomb energy to the external potential energy for the many-

body systems. This ratio can be seen to follow broadly the the

same trend as the metrics. This is an important observation

as it provides further confirmation that the metrics derived

from the metric-space approach to quantum mechanics provide

a physically relevant comparison of quantum mechanical

functions. It also shows that, alongside the two metrics and at

least for the systems considered, this ratio is a useful indicator

of how much the many-body and Kohn-Sham descriptions of

the system differ from one another.

If we consider as a good performance indicator that

the distance between the many-body and Kohn-Sham wave

functions is up to 10% of the maximum distance [i.e.,

Dψ (ψMB,ψKS) < 0.2], then we see that for all families of

systems the Kohn-Sham wave function is indeed a good

approximation for a relatively large range of parameters, for

Z > 1.5 for the helium isoelectronic series and ω > 1.25 for

Hooke’s atom.

For heliumlike atoms, even at Z = 1, the maximum

difference between the many-body and Kohn-Sham systems

is just 17.5%. For these systems, the external potential

always dominates over the Coulomb interaction between the

electrons, and we observe that the distance between the

potentials is always larger than the distance between the

wave functions. For Hooke’s atom, for small and large values

of ω, we observe that the value of the potential metric is

greater than that of the wave function metric, while, in the

region where the ratio 〈U 〉/〈V 〉 is approximately unity, the

wave function metric takes a larger value than the potential

metric.

In the inset of Fig. 3, we show the large ω behavior

of our metrics for Hooke’s atom, which can be seen for

heliumlike atoms in Fig. 3(a). In this regime, both metrics

and the ratio 〈U 〉/〈V 〉 all tend to zero. This behavior can

be understood by considering the limit of the quantities of

interest in the regime where the external potential strongly

dominates over the Coulomb interaction. The Kohn-Sham

external potential is the sum of the external potential used to

describe the many-body system, the Hartree potential, and the

exchange-correlation potential; in this regime, VKS ≈ Vext,

and hence Dv1
(VKS,Vext) ≈ 0. Likewise, the many-body

wave function approaches a noninteracting wave function

which coincides with the Kohn-Sham wave function; hence,

Dψ (ψMB,ψKS) ≈ 0.

Physically, the wave function and potential distances be-

tween many-body and Kohn-Sham systems can be interpreted

as a measure of specific electron-electron interaction effects.

The Kohn-Sham wave function is the product of single-

particle states; hence, the wave-function distance can be

interpreted as a measure of the features of the many-body

wave function that go beyond single-particle approximations.

In this respect this distance is a measure of correlation effects,

which cannot be captured by mean-field-type approxima-

tions. For potentials, the value of the metric Dv1
(Vext,VKS)

can be interpreted as measuring the contribution of the

Hartree and exchange-correlation potentials to the Kohn-Sham

potential.

VIII. CONCLUSION

The aim of this paper was to derive a metric for

external potentials, which is motivated by their role in the

Hohenberg-Kohn theorem, and more generally the crucial

role external potentials play in modeling quantum systems.

This metric complements the density and wave-function

metrics, providing us with metrics for each of the fundamental

quantities of DFT. The tools we now have at our disposal

have enabled us to take our metric analysis in other directions,

such as the quantitative analysis of the Kohn-Sham scheme.

In particular, since the density of Kohn-Sham and many-body

interacting systems are the same, the potential metric is able

to provide a meaningful insight into the Kohn-Sham scheme

that the density metric cannot.

By considering the conservation of energy and applying the

metric-space approach to quantum mechanics to it, we have

derived two “natural” metrics for external potentials. These
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metrics can be applied to electronic systems subject to any

physical scalar potential (including unbounded potentials such

as Coulomb interactions), in eigenstates or out of equilibrium.

We also showed how to extend our analysis to derive the

potential metrics for systems incorporating both electronic

and nuclear effects. This analysis can be straightforwardly

extended to even more complex systems. We have also

considered the effects of the gauge freedom of potentials

and shown which conditions the metrics should satisfy to

remain well defined when the preservation of relative energy

differences are important to the problem considered. As

for all metrics derived within the metric-space approach to

quantum mechanics, our potential metrics are characterized

by well-defined maximum values, which makes it possible

to compare quantitatively the behaviors of very different

systems.

Physical systems subject to scalar potentials are defined

through their external potentials, densities and wave functions:

Here we have analyzed in detail eight families of systems, all

in their ground states, so that these quantities are subject to a

one-to-one mapping through the Hohenberg-Kohn theorem,

the pillar of density-functional theory. These families are

defined by increasing and decreasing parameters with respect

to reference systems for the interacting helium isoelectronic

series, the interacting Hooke’s atom with varying confinement

strength, and the two corresponding families of noninteracting

exact Kohn-Sham systems. When comparing the performances

of the metrics, we found that they converged onto their

maximum values at different rates, with the potential metric

Dv1
converging first, followed by the wave-function metric,

and finally by the density metric, with the behavior of the

potential metric Dv2
depending on the system studied. This

strengthens the findings in Ref. [4] that the density is the best

quantity to differentiate between distant systems. Importantly,

however, we find that, in general, two systems close to (or

distant from) each other with respect to the metric for one

physical quantity remain so with respect to the metrics for all

physical quantities.

In the context of the Hohenberg-Kohn theorem, in Ref. [4]

it was found that in metric spaces the mapping between

wave functions and densities was monotonic, and incorpo-

rated a (quasi) linear mapping between small and between

intermediate distances. When examining in metric-space the

relationships of the external potential with wave functions and

densities in the Hohenberg-Kohn theorem, we find once more

surprisingly simple mappings and with a similar behavior, with

some curves showing an even greater range of linearity than

the wave-function-density mapping. These results are evidence

of the deep connection between the quantities involved in

the Hohenberg-Kohn theorem. However, while the interacting

and related exact Kohn-Sham systems have almost identical

behavior, there are differences, especially at intermediate

to large distance regions between Hooke’s and heliumlike

families, as opposed to Ref. [4].

We looked at the distance between many-body and Kohn-

Sham quantities for both wave functions and external po-

tentials, gaining quantitative insight into when, and by how

much, the many-body and Kohn-Sham systems differ from one

another. We showed that, when rescaled to the same maximum

distance, wave functions and potentials provide a consistent

picture, since they yield approximately the same distance

values throughout all the parameter ranges considered. We also

found that the two metrics followed the same qualitative trend

as the ratio of Coulomb to external potential energies. The

Kohn-Sham wave function has been used as an approximation

to the many-body wave function, even if there is no promise

of good behavior, in this respect, from density-functional

theory. Our metrics allowed us to explore this approximation

quantitatively, at least for the systems at hand. For these

systems we prove that the Kohn-Sham wave function indeed

represents a well-behaved approximation which provides good

quantitative results (10% maximum error) for a relatively large

range of the parameters explored.
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APPENDIX: EXTERNAL POTENTIAL METRICS FOR

SYSTEMS COMPRISING ELECTRONS AND NUCLEI

In this appendix we will generalize the external potential

metrics Dv1
and Dv2

to systems comprising both electrons and

nuclei. We define the sum of the electrons and nuclei numbers

Ne + Nn ≡ N , and consider the Hamiltonian

Ĥ = −
N
∑

i=1

1

2
∇2

i +
N
∑

j<i

U (ri,rj ) +
Ne
∑

i=1

ve(ri) +
Nn
∑

i=1

vn(ri),

(A1)

where V =
∑Ne

i=1 ve(ri) +
∑Nn

i=1 vn(ri) is the external potential

acting on the electrons and nuclei (e.g., from an applied electric

field) and
∑N

j<i U (ri,rj ) is a shorthand for

Ne+Nn
∑

j<i

U (ri,rj ) ≡
Ne
∑

j<i

Ue(ri,rj ) +
Ne+Nn
∑

i=Ne+1,

j<i

Un(ri,rj )

+
Ne
∑

i=1

Ne+Nn
∑

j=Ne+1

Ue−n(ri,rj ) (A2)

and contains the electron-electron, nuclear-nuclear, and

electron-nuclear interactions, respectively. The system state

is ψ(r1, . . . ,rNe
,rNe+1, . . . ,rNe+Nn

), where we have followed

Ref. [4], and normalized the many-body wave function to

the total particle number N ≡ Ne + Nn. Without loss of

generality, we have positioned the electron coordinates before

the nuclear coordinates.
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1. Generalization of Dv1
to an electron-nuclear system

The Hamiltonian expectation value is

∫

· · ·
∫

ψ∗(r1, . . . ,rNe
,rNe+1, . . . ,rNe+Nn

)

Ĥψ
(

r1, . . . ,rNe
,rNe+1, . . . ,rNe+Nn

)

dr1, . . . ,drNe+Nn

=
∫

· · ·
∫

⎧

⎨

⎩

−
N
∑

i=1

1

2
ψ∗∇2

i ψ +

⎡

⎣

Ne
∑

j<i

Ue(ri,rj ) +
Ne+Nn
∑

i=Ne+1,j<i

Un(ri,rj )

⎤

⎦|ψ |2

+
Ne
∑

i=1

Ne+Nn
∑

j=Ne+1

Ue−n(ri,rj )|ψ |2 +

[

Ne
∑

i=1

ve(ri) +
Nn
∑

i=1

vn(ri)

]

|ψ |2
⎫

⎬

⎭

dr1, . . . ,drNe+Nn
= E(Ne + Nn) = EN. (A3)

Following a procedure similar to the one used to derive Eq. (14) we can write

∫

· · ·
∫

[

F (r1, . . . ,rN ) +
N
∑

i=1

c|ψ |2
]

dr1, . . . ,drN = (E + c)N, (A4)

where F (r1, . . . ,rN ) is the integrand of (A3) and c is the positive constant from the gauge transformation ve(n)(r) → ve(n)(r) + c.

While the kinetic term [after applying Eq. (13)] and the terms containing the electron-electron and the nuclear-nuclear interactions

are positive definite, this gauge transformation is necessary to ensure the the sum of the electron-nuclear and external potential

terms in (A3) is also positive definite. By using that ψ =
∑

i diψi with {ψi} the set of orthogonal eigenstates such that

Hψi = Eiψi , Eq. (A4) can be rewritten as

∫

· · ·
∫

∑

i

(Ei + c)|di |2|ψi |2dr1, . . . ,drN = (E + c)N. (A5)

As was the case with Eq. (25), this equation proves that, provided that |Ei | < ∞ for all i, it is possible to find a value of c such

that the integrand of (A6) becomes positive definite. With this choice of c we can write

∫

· · ·
∫

∣

∣

∣

∣

∣

F (r1, . . . ,rN ) +
N
∑

i=1

c|ψ |2
∣

∣

∣

∣

∣

dr1, . . . ,drN = |(E + c)N |, (A6)

which is the analog of Eq. (14) for the Hamiltonian (A1) and represents a well-defined L1 norm when extended to the appropriate

set [5]. From this, following the metric-space approach to quantum mechanics [5], we derive the generalization of Dv1
to the

external potential
∑Ne

i=1 v(ri) +
∑Nn

i=1 v(ri), which reads

Dv1,e−n =
∫

· · ·
∫

∣

∣

∣

∣

∣

F1(r1, . . . ,rN ) +
N
∑

i=1

c|ψ1|2 −F2(r1, . . . ,rN ) −
N
∑

i=1

c|ψ2|2
∣

∣

∣

∣

∣

dr1, . . . ,drN , (A7)

=
∫

· · ·
∫

∣

∣f1,e−n − f2,e−n

∣

∣dr1, . . . ,drN , (A8)

where

fi,e−n(r1, . . . ,rN ) = Fi(r1, . . . ,rN ) +
N
∑

j=1

c|ψi |2. (A9)

In a similar way, the metric Dv1
can be generalized to measure the distance between systems containing an arbitrary number of

sets of different particles pa,pb, . . . ,pm (e.g., systems which include electrons and various ionic species), as long as the number

of corresponding particles is identical for both systems, i.e., Na1
≡ Na2

,Nb1
≡ Nb2

, etc.

2. Generalization of Dv2
to an electron-nuclear system

The system wave function ψ(r1, . . . ,rNe
,rNe+1, . . . ,rNe+Nn

) is antisymmetric with respect to electron-electron exchange and

either symmetric or antisymmetric with respect to nuclear-nuclear exchange depending on whether the nuclei are bosons or
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fermions, respectively. By using these properties we can rewrite Eq. (A3) as

N

{∫

V

dre

〈

τe

(

re; rNe+1, . . . ,rNe+Nn

)〉

n
+

∫

V

drn

〈

τn

(

rn; r1, . . . ,rNe

)〉

e
+

∫

V

dre1

1

2

∫

V

dre2
Ue

(

re1
,re2

)

×
〈

ge

(

re1
,re2

; rNe+1, . . . ,rNe+Nn

)〉

n
+

∫

V

drn1

1

2

∫

V

drn2
Un

(

rn1
,rn2

)〈

gn

(

rn1
,rn2

; r1, . . . ,rNe

)〉

e

+
∫

V

dre

∫

V

drnUe−n(re,rn)ge−n(re,rn) +
∫

V

dreve(re)
〈

ρe

(

re; rNe+1, . . . ,rNe+Nn

)〉

n

+
∫

V

drnvn(rn)
〈

ρn

(

rn; r1, . . . ,rNe

)〉

e

}

= EN, (A10)

where

〈

τe

(

re; rNe+1, . . . ,rNe+Nn

)〉

n
≡

∫

drNe+1, . . . ,drNe+Nn

[

Ne

2N

∫

|∇ψ |2dr2, . . . ,drNe

]

, (A11)

〈

ge

(

re1
,re2

; rNe+1, . . . ,rNe+Nn

)〉

n
≡

∫

drNe+1, . . . ,drNe+Nn

[

Ne(Ne − 1)

N

∫

|ψ |2dr3, . . . ,drNe

]

, (A12)

〈

ρe

(

re; rNe+1, . . . ,rNe+Nn

)〉

n
≡

∫

drNe+1, . . . ,drNe+Nn

[

Ne

N

∫

|ψ |2dr2, . . . ,drNe

]

. (A13)

It can be seen that the terms in square brackets in Eqs. (A9)–(A11) correspond to the definitions of the analogous quantities

for electron-only systems in Eqs. (10)–(12). The corresponding nuclear functions are obtained by interchanging in the three

equations above the sets of electron and nuclear coordinates and the “e” and “n” indices, and

ge−n(re,rn) ≡
NeNn

N

∫

dr2, . . . ,drNe

∫

|ψ |2drNe+2, . . . ,drNe+Nn
. (A14)

We then note that (i) all integrations in (A10) are over the same volume, (ii) the integrands of the first four terms are positive

definite, (iii) the integrand of the fifth term is negative, and (iv) the integrands of the sixth and seventh terms have no defined

sign. By using (i) and a gauge transformation for ve(r) and vn(r), we can write (A10) as
∫

V

N
{〈

τe

(

r; rNe+1, . . . ,rNe+Nn

)〉

n
+

〈

τn

(

r; r1, . . . ,rNe

)〉

e

+
1

2

∫

V

dr′[Ue(r,r′)
〈

ge

(

r,r′; rNe+1, . . . ,rNe+Nn

)〉

n
+ Un(r,r′)

〈

gn

(

r,r′; r1, . . . ,rNe

)〉

e

]

+
∫

V

dr′Ue−n(r,r′)ge−n(r,r′) + (ve(r) + c)
〈

ρe

(

r; rNe+1, . . . ,rNe+Nn

)〉

n

+ (vn(r) + c)
〈

ρn

(

r; r1, . . . ,rNe

)〉

e

}

dr = (E + c)N, (A15)

where c � 0 is chosen such that the sum of the last three terms of the overall integrand is always positive. In this way the overall

integrand in (A15) is positive definite and, following the metric-space approach to quantum mechanics [5], we can write the L1

norm
∫

V

N
∣

∣

〈

τe

(

r; rNe+1, . . . ,rNe+Nn

)〉

n
+

〈

τn

(

r; r1, . . . ,rNe

)〉

e
.

+
1

2

∫

V

dr′[Ue(r,r′)
〈

ge

(

r,r′; rNe+1, . . . ,rNe+Nn

)〉

n
.

+ Un(r,r′)
〈

gn

(

r,r′; r1, . . . ,rNe

)〉

e

]

+
∫

V

dr′Ue−n(r,r′)ge−n(r,r′)

+ (ve(r) + c)
〈

ρe

(

r; rNe+1, . . . ,rNe+Nn

)〉

n
+ (vn(r) + c)

〈

ρn

(

r; r1, . . . ,rNe

)〉

e
|dr = |(E + c)N |, (A16)

which is the analog of Eq. (15) for the Hamiltonian (A1) and the generalization of Dv2
to the external potential

∑Ne

i=1 v(ri) +
∑Nn

i=1 v(ri) is

Dv2,e−n =
∫

|h1,e−n(r) − h2,e−n(r)|dr, (A17)

where hi,e−n(r) corresponds to the integrand of Eq. (A15) for system i. As was the case for Dv1
, the metric Dv2

can be generalized

to measure the distance between systems containing an arbitrary number of sets of different particles pa,pb, . . . ,pm (e.g., systems
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which include electrons and various ionic species). In this case, however, it is not required that corresponding ensembles of

particles in different systems have the same size.
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