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ABSTRACT

We investigate two popular trajectory-based algorithms from biol-

ogy and physics to answer a question of general signi�cance: when

is it bene�cial to reject improvements? A distinguishing factor of

SSWM (Strong Selection Weak Mutation), a popular model from

population genetics, compared to the Metropolis algorithm (MA),

is that the former can reject improvements, while the la�er always

accepts them. We investigate when one strategy outperforms the

other. Since we prove that both algorithms converge to the same

stationary distribution, we concentrate on identifying a class of

functions inducing large mixing times, where the algorithms will

outperform each other over a long period of time. �e outcome of

the analysis is the de�nition of a function where SSWM is e�cient,

while Metropolis requires at least exponential time.
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1 INTRODUCTION

�e Strong Selection Weak Mutation (SSWM) algorithm is a recent

randomised search heuristic inspired by the popular model of bio-

logical evolution in the ‘strong selection, weak mutation regime’

[13]. �e regime applies when mutations are rare and selection is

strong enough such that new genotypes either replace the parent

population or are lost completely before further mutations occur

[5, 7].

�e SSWM algorithm belongs to the class of trajectory-based

search heuristics that evolve a single lineage rather than using a pop-

ulation. Amongst single trajectory algorithms, well-known ones

are (randomised) local search, simulated annealing, the Metropolis

algorithm (MA)—simulated annealing with �xed temperature—and

simple classes of evolutionary algorithms such as the well-studied

(1+1) EA and the (1+λ) EA. �e main di�erences between SSWM

and the (1+1) EA is that the la�er only accepts new solutions if

they are at least as good as the previous ones, while SSWM can

reject improvements and it may also accept non-improving solu-

tions with some probability. �is characteristic may allow SSWM

to escape local optima by gradually descending the slope leading
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to the optimum rather than relying on large, but rare, mutations to

a point of high �tness far away.

A recent study has rigorously analysed the performance of

SSWM in comparison with the (1+1) EA for escaping local op-

tima [10]. �e study only allowed SSWM to use local mutations

such that the algorithm had to rely exclusively on its non-elitism

to escape local optima, hence to highlight the di�erences between

elitist and non-elitist strategies. A vast class of �tness functions,

called �tness valleys, was considered. �ese valleys consist of paths

between consecutive local optima where the mutation probability

of going forward on the path is the same as going backwards. How-

ever, the valleys may have arbitrary length and arbitrary depth,

where the length is measured by the hamming distance while the

depth is the maximal �tness di�erence that has to be overcome.

�e analysis revealed that the expected time of the (1+1) EA to

cross the valley (i.e. escape the local optimum) is exponential in

the length of the valley while the expected time for SSWM can be

exponential in the depth of the valley.

�e analysis revealed that other non-elitist trajectory-based al-

gorithms such as the well-known Metropolis algorithm have the

same asymptotic runtime as SSWM on �tness valleys, independent

of lengths and depths. While it may not be surprising that both

algorithms rely on non-elitism to descend the valleys, it is not nec-

essarily obvious that the algorithms should have the same runtime

on the valleys, because they di�er signi�cantly in the probability

of accepting improving solutions. While Metropolis always accepts

improvements, SSWM may reject an improving solution with a

probability that depends on the di�erence between the quality of

the new and the previous solution.

In this paper we investigate SSWM and Metropolis with the goal

of identifying function characteristics for which the two algorithms

perform di�erently. Given that the main di�erence between the

two is that SSWM may reject improvements, we aim to identify

a class of functions where it is bene�cial to do so and, as a result,

identify an example where SSWM outperforms Metropolis.

�e roadmap is as follows. A�er introducing the algorithms

precisely in the Preliminaries section, we show in Section 3 that

our task is not trivial by proving that both algorithms converge to

the same stationary distribution for equivalent parameters. While

this result seems to have been known in evolutionary biology [15]

we are not aware of a previous proof in the literature. In Section 4

we de�ne a simple �tness function (i.e. 3 State Model) where two

possible choices may be made from the initial point; one leading

to a much larger �tness than the other. �e idea is that, while

Metropolis should be indi�erent to the choice, SSWM should pick

one choice more o�en than the other. Although this intuition

is true, it turns out that, due to Metropolis’ ability of escaping

local optima, the mixing time for the 3 State Model is small and
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a�erwards the two algorithms behave equivalently as proven in

the previous section. In Section 5 we extend the �tness function

(i.e. 5 State Model) by adding two more states of extremely high

�tness such that, once the algorithms have made their choice, the

probability of escaping the local optima is very low. By tuning these

high �tness points we can either reward or penalise a strategy that

rejects small improvements. We capitalise on this by concatenating

several 5 State models together and by de�ning a step function that

requires that a high number of correct choices are made by the

algorithm. Finally, we show that for appropriate �tness values of the

di�erent states, SSWM achieves the target and Metropolis doesn’t

with overwhelming probability. Along the way we complement our

theoretical �ndings with experiments which help to understand

the complete picture.

2 PRELIMINARIES

As mentioned in the introduction, we will be considering trajectory

based heuristics. �e following general scheme considers algo-

rithms with local mutations i.e. only search points that di�er in

one bit can be sampled. However, the new individual will be ac-

cepted or rejected according to a probability function known as the

acceptance probability pacc.

Algorithm 1 General Trajectory Based Algorithm

Initialise x ∈ {0, 1}n

repeat

y ← �ip uniformly at random one bit from x

∆f = f (y) − f (x)

Choose r ∈ [0, 1] uniformly at random

if r ≤ pacc(∆f ) then

x ← y

end if

until stop

Two important characteristics of the acceptance probability are

how detrimental and bene�cial moves are dealt with. Elitist algo-

rithms such as RLS will directly reject any worsening move and

accept any improving search point. Hence, an elitist trajectory

based algorithm will not be able to escape local optima.

To avoid this weakness, the algorithm must relax its selection

strength. �is is the case of the Metropolis [9] algorithm where

detrimental moves are allowed with some probability, depending

on the temperature 1/α . However, improvements will always be

accepted regardless of their magnitude:

pMA
acc (∆f ) =

{
1 if ∆f ≥ 0

eα∆f if ∆f < 0
(1)

To investigate the other main characteristic of non-elitism, allowing

the rejection of improvements, we will study a recently introduced

algorithm [10, 13, 14] based on the so called SSWM evolutionary

regime from Population Genetics (PG). Within this regime a new

genotype will eventually take over of a population of size N ∈ N+

or become extinct according to the following expression, which

depends on the �tness di�erence and a scaling factor β ∈ R+ [7].

To cast this regime as an algorithm we simple use the following

acceptance probability in Algorithm 1.

pSSWM
acc (∆f ) = p�x(∆f ) =

1 − e−2β∆f

1 − e−2N β∆f
(2)

�e following �gure presents an example of these two acceptance

probabilities. We observe how both algorithms treat worsening

moves similarly. �e main di�erence arises when dealing with

improvements. Unlike Metropolis, SSWM will prefer to keep the

current search point against a small improvement (until p�x ≥ 1/2).

However when the �tness di�erence is big enough the algorithm

will be satis�ed to move to the new solution. �is is the crucial

feature that we will be exploiting in the following sections.

∆f
−1−2−3

1

0

pacc

1 2 3

1/N

SSWMMetropolis

Figure 1: Acceptance probability for Metropolis (red solid

line) and SSWM (green dashed line).

3 A COMMON STATIONARY DISTRIBUTION

We �rst show that SSWM and Metropolis have the same station-

ary distribution, starting by brie�y recapping the foundations of

Markov chain theory andmixing times (see, e. g. [1, 6, 8]). AMarkov

chain is called irreducible if every state can be reached from every

other state. It is called periodic if certain states can only be visited

at certain times; otherwise the chain is aperiodic. Markov chains

that are both irreducible and aperiodic are called ergodic and they

converge to a unique stationary distribution π .

Theorem 3.1. Consider SSWM and Metropolis with local mu-

tations over a Markov chain with states x ∈ {0, 1}n and a �tness

function f : {0, 1}n → R. �en the stationary distribution of such

process will be

π (x) =
eγ f (x )

Z

where Z =
∑
x ∈{0,1}n e

γ f (x ) and γ = 2(N − 1)β in the case of SSWM

and γ = α for Metropolis.

Proof. First note that the acceptance probability of Metropolis

has the following property pacc(∆f )/pacc(−∆f ) = eγ∆f , this rela-

tion is also true for SSWM with γ = 2β(N − 1) (Lemma 2 in [13]).

�e stationary condition for a distribution π (x) can be wri�en as

(cf. Proposition 1.19 in [8])

π (x) · p(x → y) = π (y) · p(y → x), for all x ,y ∈ {0, 1}n

where p(x → y) is the probability of moving to state y given that

the current state is x . �erefore

π (x) · p(x → y)

=

eγ f (x )

Z
·
1

n
· pacc(f (y) − f (x))
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=

eγ f (x )

Z
·
1

n
·
pacc(f (y) − f (x))

pacc(f (x) − f (y))
· pacc(f (x) − f (y)),

since pacc(∆f )/pacc(−∆f ) = eγ∆f we obtain

π (x) · p(x → y) =
eγ f (x )

Z
·
1

n
· eγ (f (y)−f (x )) · pacc(f (x) − f (y))

=

eγ f (y)

Z
·
1

n
· pacc(f (x) − f (y))

= π (y) · p(y → x).

�

�e distance between the current distribution and the stationary

distribution is measured as follows by the total variation distance.

For two distributions µ and ν on a state space Ω it is de�ned as

| |µ − ν | | =
1

2

∑

x ∈Ω

|µ(x) − ν (x)| = max
A⊆Ω
|µ(A) − ν (A)|.

Now the mixing time is de�ned as the �rst point in time where the

total variation distance decreases below 1/(2e) (the constant 1/(2e)

being a somewhat arbitrary choice in [18]).

De�nition 3.2 (Mixing time [18]). Consider an ergodic Markov

chain starting in x with stationary distribution π . Let p
(t )
x denote

the distribution of the Markov chain a�er t steps. Let tx (ε) be

the time until the total variation distance between the current

distribution and the stationary distribution has decreased to ε :

tx (ε) = min{t : | |p
(t )
x − π | | ≤ ε}. Let t(ε) := maxx ∈Ω tx (ε) be

the worst-case time until this happens.

�e mixing time tmix of the Markov chain is then de�ned as

tmix := t(1/(2e)).

A�er the mixing time, both algorithms will be close to the sta-

tionary distribution, hence any di�ering behaviour can only be

shown before the mixing time. In the following, we aim to con-

struct problems where the mixing time is large, such that SSWM

and Metropolis show di�erent performance over a long period

of time. In particular, we seek to identify a problem where the

expected �rst hi�ing time of SSWM is less than the mixing time.

4 A 3 STATE MODEL

We �rst introduce a �tness function de�ned on 2 bits. We will

analyse the behaviour of SSWM and Metropolis on this function,

before proceeding (in Section 5.1) to concatenate n copies of the

�tness function to create a new function where SSWM drastically

outperforms Metropolis.

�e idea is simple: we start in a search point of low �tness, and

are faced with two improving moves, one with a higher �tness than

the other. �is construction requires 3 search points, encoded on 2

bits; the 4th possible bitstring will have a �tness of −∞, making it

inaccessible for both Metropolis and SSWM.

Considering the 3 relevant nodes of the Markov Chain, they

form a valley structure tunable through two parameters a and b

representing the �tness di�erence between the minimum and the

local and global optimum respectively. �is model is inspired by the

Muller Dobzshansky incompatibilities [12] in population genetics.

De�nition 4.1 (3 State Model). For any b > a > 0 and a bit-pair

{0, 1}2 the 3 state model f a,b3 assigns �tness as follows:

f
a,b
3 (01) = a, (state 1)

f
a,b
3 (00) = 0, (state 2)

f
a,b
3 (10) = b, (state 3)

and f
a,b
3 (11) = −∞.

00

2

10

3

01

1

p2

q3

p1

q2

s2

s1 s3

Figure 2: Accessible states of the 3 StateModel by SSWM and

Metropolis.

�e main idea behind this construction is that Metropolis is

indi�erent to the choice of the local optimum (�tness a > 0) and

the global optimum (�tness b > a), hence it will make either choice

from state 00 with probability 1/2. SSWM, on the other hand,

when parameterised accordingly, may reject a small improvement

of �tness a more o�en than it would reject a larger improvement

of b > a. Hence we expect SSWM to reach the global optimum with

a probability larger than 1/2 in just a relevant step (an iteration

excluding self-loops). We make this rigorous in the following.

Since the analysis has similarities with the classical Gambler’s

Ruin problem (see e.g. [3]) we introduce similar concepts to the

ruin probability and the expected duration of the game.

De�nition 4.2 (Notation). Consider a Markov Chain with only

local probabilities

P(Xt+1 = i | Xt = j) =




qi if j = i − 1

si = 1 − qi − pi if j = i

pi if j = i + 1

0 if j < {i − 1, i, i + 1}.

�en, we de�ne absorbing probabilities ρi as the probability of

hi�ing state k before state 1 starting from i . Equivalently, we de�ne

expected absorbing times E (Tk∨1 | i) as the expected hi�ing time

for either state 1 or k starting from i .

Note that this de�nition may di�er from the standard use of

absorbing within Markovian processes. In our case the state k

has an absorbing probability, but the state itself is not absorbing

since the process may move to other states. �e following lemma

derives a closed form for the just de�ned absorbing probability,

both for the general scheme 1 and for two speci�c algorithms. �e

obtained expression of ρ2 = p2/(p2 + q2) is simply the conditional

probability of moving to the global optimum p2 given that the

process has moved, hence the factor 1 − s2 in the denominator.

Theorem 4.3. Consider any trajectory based algorithm that �ts

in Algorithm 1 on f
a,b
3 starting from state 2. �en the absorbing

probability of state 3 is

ρ2 =
p2

p2 + q2
.
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And for Metropolis and SSWM (N ≥ 2) it is

ρMA
2 =

1

2
ρSSWM
2 =

p�x(b)

p�x(b) + p�x(a)
>

1

2
.

Proof. Let us start expressing the absorbing probability with a

recurrence relation: ρ2 = p2ρ3 + q2ρ1 + (1 − p2 − q2)ρ2. Using the

boundary conditions ρ3 = 1 and ρ1 = 0 we can solve the previous

equation yielding ρ2 = p2/(p2 + q2).

�e result for Metropolis follows from introducing p2 = q2 since

both probabilities lead to a �tness improvement. For SSWM the

mutational component of p2 and q2 cancels out, yielding only the

acceptance probabilities. Finally the lower bound of 1/2 is due to

state 3 having a �tness b > a. �

Note that SSWM’s ability to reject improvements resembles a

strategy of steepest ascent [16]: since the probability of accepting

a large improvement is larger than the probability of accepting

a small improvement, SSWM tends to favour the largest uphill

gradient. Metropolis, on the other hand, follows the �rst slope it

�nds, resembling a �rst (or greedy) ascent strategy.

However, despite these di�erent behaviours, we know from

�eorem 3.1 that both algorithms will eventually reach the same

state. �is seems surprising in the light of �eorem 4.3 where the

probabilities of reaching the local versus global optimum from the

minimum are potentially very di�erent.

�is seeming contradiction can be explained by the fact that Me-

tropolis is able to undo bad decisions by leaving the local optimum

and going back to the starting point. Furthermore, leaving the local

optimum has a much higher probability than leaving the global op-

timum. In the light of the previous discussion, Metropolis’ strategy

in local optima resembles that of a shallowest descent: it tends to

favour the smallest downhill gradient. �is allows Metropolis to

also converge to the stationary distribution by leaving local optimal

states.

We show that the mixing time is asymptotically equal to the prob-

ability of accepting a move leaving the local optimum, state 1. Note

that asymptotic notation is used with respect to said probability, as

the problem size is �xed to 2 bits. To be able to bound the mixing

time using �eorem 1.1 in [2], we consider lazy versions of SSWM

and Metropolis: algorithms that with probability 1/2 execute a step

of SSWM or MA, respectively, and otherwise produce an idle step.

�is behaviour can also be achieved for the original algorithms by

appending two irrelevant bits to the encoding of f a,b3 .

Another assumption is that the algorithm parameters are chosen

such that π (3) ≥ 1/2. �is is a natural assumption as state 3 has

the highest �tness, and it is only violated in case the temperature

is extremely high.

Theorem 4.4. �e mixing time of lazy SSWM and lazy Metropolis

on f
a,b
3 is Θ(1/pacc(−a)), provided b > a > 0 are chosen such that

π (3) ≥ 1/2.

Proof. We use the transition probabilities from Figure �. Ac-

cording to �eorem 1.1 in [2], if π (3) ≥ 1/2 then the mixing time

of the lazy algorithms is of order Θ(t) where

t =
1

p1
+

π (1) + π (2)

π (2)p2

As p1 = 1/2 · pacc(−a) this proves a lower bound Ω(1/pacc(−a)).

For the upper bound, we bound t from above as follows, using

π (1)p1 = π (2)q2 (the stationary distribution is reversible):

t =
1

p1
+

π (1) + π (2)

π (2)p2

=

1

p1
+

π (1)

π (2)p2
+

1

p2

=

1

p1
+

q2

p2
·
1

p1
+

1

p2
≤

3

p1

as q2/p2 = pacc(a)/pacc(b) ≤ 1 and p2 ≥ p1. Recalling that p1 =

1/2 · pacc(−a) completes the proof. �

4.1 Experiments

We performed experiments to see the analysed dynamics more

clearly. In the case of SSWM we considered di�erent population

sizes N = (10, 100) and scaling parameter values β = (0.01, 0.1).

For Metropolis we choose a temperature of 1/α , such that α =

2(N − 1)β . �is choice was made according to �eorem 3.1 such

that both algorithms have the same stationary distribution. �e

algorithms are run for 10000 iterations. �e �tness values for states

representing local and global optimum are chosen as a = 1 and

b = 10 respectively. We record the average and standard deviations

of the number of components in the local and global optimum for

50 runs.

�e experimental results show that in general SSWM outper-

forms Metropolis in considered se�ings (Figure 3 (le�)). However,

this e�ect decreases with the capability of Metropolis to accept

negative improvements. For example as seen in Figure 3 (right) the

two algorithms are similar in performance when the temperature

is high for Metropolis.

Figure 3: Performance of SSWMwith N = 100 and β = 0.1 (le�) and

N = 10 and β = 0.01 (right) on the 3 State Model. For Metropolis the

temperature was chosen such that α = 2(N − 1)β in both cases. �e

average number of components (± one standard deviation) in the

global and local optimum are plotted for SSWM and for Metropolis

with colours red, green, purple and cyan respectively.

�is coincides with our theoretical observation that the mixing

time is inversely proportional to pacc(−a), which in turn depends

on a and the parameters of SSWM and Metropolis. If the temper-

ature is low (large α ), the algorithms show a di�erent behaviour

before the mixing time, whereas if the temperature is high (small α ),

the algorithms quickly reach the same stationary distribution.
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5 A 5 STATE MODEL

We saw in the previous section how two algorithms with di�erent

selection operators displayed the same limit behaviour. Moreover

the mixing time was small for both algorithms despite the asym-

metric valley structure of the function. �is asymmetry favoured

moving towards the steepest slope, landscape feature from which

SSWM bene�ts and Metropolis is indi�erent. However this feature

also implied that it was easier climbing down from the shallowest

slope, and Metropolis successfully exploits this feature to recover

from wrong decisions.

Making use of this results we build a new function where the

previous local optimum will now be a transition point between the

valley and the new local optimum. We will assign an extremely

large �tness to this new search point, this way we lock in bad

decisions made by any of the two algorithms. In the same way, if

the algorithm moved to the previous global optimum we o�er a

new search point with the highest �tness.

De�nition 5.1 (5 State Model). For any M ′ > M ≫ b > a > 0

and a search point x ∈ {0, 1}3 the 5 state model f M,a,b,M ′

5 assigns

�tness as follows

f
M,a,b,M ′

5 (011) = M, (state 1)

f
M,a,b,M ′

5 (001) = a, (state 2)

f
M,a,b,M ′

5 (000) = 0, (state 3)

f
M,a,b,M ′

5 (100) = b, (state 4)

f
M,a,b,M ′

5 (110) = M ′ (state 5)

and f
M,a,b,M ′

5 (010) = f
M,a,b,M ′

5 (101) = f
M,a,b,M ′

5 (111) = −∞.

000

3

100

4

001

2

110

5

011

1
p3

q3

s3

p2

q2

s2

p1

s1

p4

q4

s4

q5

s5

Figure 4: Accessible states of the 5 StateModel by SSWM and

Metropolis.

Let us consider the Markov chain with respect to the above

model. For simplicity we refer to states with the numbers 1-5 as in

the above description.

Again, we will compute the absorbing probability for the global

optimum (state 5 or 110 of the Markov Chain). Note that by choos-

ing very large values ofM andM ′, we can make the mixing time

arbitrarily large, as then the expected time to leave state 1 or state 5

becomes very large, and so does the mixing time.

For simplicity we introduce the following conditional transition

probabilities Qi and Pi for each state i as

Pi :=
pi

pi + qi
Qi :=

qi

pi + qi
. (3)

By using this notation the following lemma derives a neat expres-

sion for the absorption probability ρ3 = P3P4/(Q2Q3 + P3P4). �is

formula can be understood in terms of events that can occur in 2 it-

erations starting from state 3. SinceQ and P are conditioning on the

absence of self-loops there will be only 4 events a�er 2 iterations,

whose probabilities will be {Q3Q2,Q3P2, P2Q4, P3P4}. �erefore the

expression ρ3 = P3P4/(Q2Q3 + P3P4) is just the success probability

over the probability space.

Lemma 5.2. Consider any trajectory based algorithm that �ts in Al-

gorithm 1 on f
M,a,b,M ′

5 starting from the node 3. �en the absorbing

probability for state 5 is

ρ3 =
P3P4

Q2Q3 + P3P4
.

Proof. Firstly we compute the absorbing probabilities,

ρ1 = 0

ρ2 = p2ρ3 + q2ρ1 + (1 − p2 − q2)ρ2

ρ3 = p3ρ4 + q3ρ2 + (1 − p3 − q3)ρ3

ρ4 = p4ρ5 + q4ρ3 + (1 − p4 − q4)ρ4

ρ5 = 1

which can be rewri�en using Pi and Qi from equation (3) and the

two boundary conditions as

ρ2 = P2ρ3

ρ3 = P3ρ4 +Q3ρ2

ρ4 = P4 +Q4ρ3.

Solving the previous system for ρ3 yields ρ3 = P3 · (P4 +Q4ρ3) +

Q3P2ρ3 which a�er solving for ρ3 leads to

ρ3 =
P3P4

1 −Q3P2 − P3Q4

introducing Q3 = 1 − P3, P2 = 1 − Q2 and Q4 = 1 − P4 in the

denominator yields the claimed statement. �

Now we apply the previous general result for the two studied

heuristics. First, for Metropolis one would expect the absorbing

probability to be 1/2 since it does not distinguish between im-

proving moves of di�erent magnitudes. However it comes at as a

surprise that this probability will always be greater than 1/2. �e

reason is again due to the �tness dependant acceptance probability

of detrimental moves.

Theorem 5.3. Consider MA starting from state 3 on f
M,a,b,M ′

5 ,

then the absorbing probability for state 5 is

ρMA
3 =

1 + e−αa

2 + e−αa + e−αb
≥

1

2
.

Proof. First let us compute the two conditional probabilities

Q2 =
1

1 + e−αa
, P4 =

1

1 + e−αb
.

Nowwe invoke Lemma 5.2 but with P3 = Q3 = 1/2 sinceMetropolis

does not distinguish slope gradients, hence

ρ3 =
P4

Q2 + P4

=

1/
(
1 + e−αb

)

1/(1 + e−αa ) + 1/
(
1 + e−αb

)

=

1 + e−αa

2 + e−αa + e−αb
.

Finally, using ∆f 23 ≤ ∆f 43 , it follows that ρ
MA
3 ≥ 1/2. �
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Finally, for SSWM we were able to reduce the complexity of the

absorbing probability to just the two intermediate points (states

2 and 4) between the valley (state 3) and the two optima (states 1

and 5). �e obtained expression is reminiscent of the absorbing

probability on the 3 State Model (�eorem 4.3). However, it is

important to note that a and b were the �tness of the optima in

f
a,b
3 and now they refer to the transition nodes between the valley

and the optima.

Theorem 5.4. Consider SSWM (N ≥ 2) starting from state 3 on

f
M,a,b,M ′

5 , then the absorbing probability of state 5 is

ρSSWM
3 ≥

p�x(b)

p�x(b) + p�x(a)
>

1

2
.

Proof. Let us start computing the probabilities required by

Lemma 5.2.

P4 =
1

1 + p�x(−b)/p�x(M
′ − b)

Q2 =
1

1 + p�x(−a)/p�x(M − a)

P3 =
1

1 + p�x(a)/p�x(b)
Q3 =

1

1 + p�x(b)/p�x(a)

Let us now focus on the term Q2Q3/(P3P4):

Q2Q3

P3P4
=

(
1 +

p�x(−b)
p�x(M ′−b)

)

(
1 +

p�x(−a)
p�x(M−a)

) ·

(
1 +

p�x(a)
p�x(b)

)

(
1 +

p�x(b)
p�x(a)

)

the last term is of the form (1 + x)/(1 + 1/x) = x , hence it can be

highly simpli�ed to just p�x(a)/p�x(b), yielding

Q2Q3

P3P4
=

(
1 +

p�x(−b)
p�x(M ′−b)

)

(
1 +

p�x(−a)
p�x(M−a)

) ·
p�x(a)

p�x(b)

since 0 < p�x(−b) < p�x(−a) < p�x(M − a) < p�x(M
′ − b) < 1, we

can bound p�x(−b)/p�x(M
′ − b) ≤ p�x(−a)/p�x(M − a) to obtain

Q2Q3

P3P4
≤

(
1 +

p�x(−a)
p�x(M−a)

)

(
1 +

p�x(−a)
p�x(M−a)

) ·
p�x(a)

p�x(b)
=

p�x(a)

p�x(b)
.

Introducing this in Lemma 5.2 leads to

ρ3 =
1

1 +Q2Q3/(P3P4)
≥

1

1 + p�x(a)/p�x(b)
=

p�x(b)

p�x(b) + p�x(a)
.

Finally, using b > a we obtain the lower bound of 1/2. �

5.1 An Example Where SSWM Outperforms
Metropolis

Wenow consider a smaller family of problems f M,1,10,M ′

5 and create

an example where SSWM outperforms Metropolis. In this simpler

yet general scenario we can compute the optimal temperature for

Metropolis that will maximise the absorbing probability ρMA
3 .

Lemma 5.5. Consider Metropolis on f
M,1,10,M ′

5 starting from state

3. �en for any parameter α ∈ R+ the absorbing probability ρMA
3 of

state 5 can be bounded as

ρMA
3 (α) ≤ ρMA

3 (α
∗) < 0.63

where α∗ = 0.312 . . . is the optimal value of α .

Proof. Introducing the problem se�ings (a = 1 and b = 10) in

the absorbing probability from �eorem 5.3 yields

ρMA
3 (α) =

1 + e−α

2 + e−α + e−10α

whose derivative is

dρMA
3 (α)

dα
=

e9α (10e
α−e10α+9)

(
e9α + 2e10α + 1

)2 .

By solving numerically this equation for d(ρMA
3 (α))/dα = 0 with

α > 0 we obtain an optimal value of α∗ = 0.312071 . . . which yields

the maximum value of ρMA
3 (α

∗) = 0.623881 . . .

ρMA
3

α

0.63

0.5

0.312 1 2

Figure 5: Absorbing probability of Metropolis on the 5-state

model. �

Now that we have shown the optimal parameter for Metropolis,

we will �nd parameters such that SSWM outperforms Metropolis.

To obtain this we must make use of SSWM’s ability of rejecting

improvements. We wish to identify a parameter se�ing such that

small improvements (∆f = a = 1) are accepted with small prob-

abilities, while large improvements (∆f = b = 10) are accepted

with a considerably higher probability. �e following graph shows

p�x for di�erent values of β . While for large β , p�x(1) and p�x(10)

are similar, for smaller values of β there is a signi�cant di�erence.

Furthermore we can see that p�x(1) ≤ 1/2 i.e. the algorithm will

prefer to stay in the current point, rather than moving to the local

optimum.

p�x

∆f

1

0.5

0 a = 1 2.5 5 7.5 b = 10

Figure 6: Acceptance probability of SSWM with N = 20 and

β = (0.2 , 2 , 5) for the (green, blue, red) curves.

In the following lemma we identify a range of parameters for

which the desired e�ect occurs. �e results hold for arbitrary popu-

lation size, apart from the limit case N = 1 where SSWM becomes

a pure random walk. �e scaling factor β is the crucial parameter;

only small values up to 0.33 will give a be�er performance than

Metropolis.
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Lemma 5.6. Consider SSWM on f
M,1,10,M ′

5 starting from state 3.

�en for β ∈ (0, 0.33] and N ≥ 2 the absorbing probability ρSSWM
3 of

state 5 is at least 0.64.

Proof. Using the bound on ρSSWM
3 from�eorem 5.4 with a = 1

and b = 10 we obtain

ρSSWM
3 ≥

p�x(10)

p�x(1) + p�x(10)
=

1

1 + p�x(1)/p�x(10)

We want to show that ρSSWM
3 ≥ 0.64, which is equivalent to

p�x(1)/p�x(10) ≤ 1/0.64 − 1 = 9/16. Using the bounds p�x(1) ≤

2β/(1−e−2N β ) andp�x(10) ≥ 20β/(1+20β) (see Lemma 1 from [13])

we obtain

p�x(1)

p�x(10)
≤

2β

1 − e−2N β
·
1 + 20β

20β

=

1 + 20β

10
(
1 − e−2N β

)

≤
1 + 20β

10
(
1 − e−4β

)

where in the last step we have used N ≥ 2. �e obtained expression

is always increasing with β > 0, hence we just need to �nd the value

β∗ for when it crosses our threshold value of 9/16. Solving this

numerically we found that β∗ = 0.332423 . . . then the statement

will be true for β values up to this cut o� point. �

Now that we have derived parameter values for which SSWM

has a higher absorbing probability on the 5 State Model than Me-

tropolis for any temperature se�ing 1/α (Lemma 5.5), we are ready

to construct a function where SSWM considerably outperforms

Metropolis. We �rst de�ne a concatenated function

f (X ) =

n∑

i=1

f
M,a,b,M ′

5 (xi )

consisting of n copies of the 5 State Model (i.e. n components) xi
with 1 ≤ i ≤ n, such that the concatenated function f (x) returns

the sum of the �tnesses of the individual components. Note that

3n bits are used in total. To ensure that the algorithms take long

expected times to escape from each local optimum we set M = n

andM ′ = 2n for each component xi , apart from keeping a = 1 and

b = 10, for which the absorbing probabilities from Lemmata 5.5

and 5.6 hold. Furthermore, we assume 2β(N − 1) = Ω(1) to ensure

that SSWM remains in states 1 or 5 for a long time.

Theorem 5.7. �e expected time for SSWM andMetropolis to reach

either the local or global optimum of all the components of f (x) is

O(n logn). With overwhelming probability 1 − e−Ω(n), SSWM with

positive constant β < 0.33 and N ≥ 2 has optimised correctly at least

(639/1000)n components while Metropolis with optimal parameter

α = 0.312 . . . has optimised correctly at most (631/1000)n compo-

nents. �e expected time for either algorithm to increase (or decrease)

further the number of correctly optimised components by one is at

least eΩ(n).

Proof. �e expected time to reach either of the states 5 or 1

on the single-component 5 State Model is a constant c for both

algorithms. Hence, the �rst statement follows from an application

of the coupon collector where each coupon has to be collected

c times [11]. �e second statement follows by straightforward

applications of Cherno� bounds using that each component is

independent and, pessimistically, that SSWM optimises each one

correctly with probability 640/1000 (i.e., Lemma 5.6) andMetropolis

with probability 630/1000 (i.e., Lemma 5.5). �e �nal statement

follows because both algorithms with parameters Ω(1) accept a

new solution, that is Ω(n) worse, only with exponentially small

probability. �

As the absorbing probabilities of SSWM and Metropolis are both

constants, with that of SSWM being higher than that of MA, we

expect SSWM to achieve a higher �tness. We can amplify these

potentially small di�erences by transforming our �tness function f

with a step function д(f (X )) returning 1 if at least a certain number

of components are optimised correctly (i.e. state 110 is found) and

0 otherwise:

д(f (X )) :=

{
0 if f (X ) ≤ 1.635n2

1 otherwise

We use this to compose a function h where with overwhelming

probability SSWM is e�cient while Metropolis is not:

h(X ) = f (X ) · (1 − д(f (X ))) + 2nM ′ · д(f (X ))

Note that h(X ) = f (X ) while the step function д(X ) returns 0, and

h a�ains a global optimum if and only if д(X ) = 1. Our analysis

transfers to the former case.

Corollary 5.8. In the se�ing described in �eorem 5.7, SSWM

�nds an optimum on h(X ) in expected time O(n logn), while Metrop-

olis requires eΩ(n) steps with overwhelming probability.

Obviously, by swapping the values ofM andM ′ in f , the function

would change into one where preferring improvements of higher

�tness is deceiving. As a result, SSWM would, with overwhelming

probability, optimise at least 63.9% of the components incorrectly.

Although Metropolis would optimise more components correctly

than SSWM, it would still be ine�cient on h.

5.2 Experiments

We performed experiments to study the performance of SSWM and

Metropolis on the 5 State Model under several parameter se�ings.

�e experimental se�ing is similar to that of the 3 State Model. For

all the considered scenarios SSWMhad at least 70 of the components

in global optimum while Metropolis had 50 on average. Results for

two sample parameter se�ings are shown in Figure 7.

We also plot the step function д(f (X )) as this is the most crucial

term in h(X ). �e respective plots for д(f (X )) function suggest that

SSWM outperforms Metropolis on the 5 State Model (see Figure 8).

For SSWM it has value 1 for both parameter se�ings at most a�er

4000 iterations while Metropolis has 0 throughout the considered

time span of 5000 iterations.
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Figure 7: Performance of SSWM with N = 100 and β = 0.1

(le�) and N = 10 and β = 0.01 (right) on the 5-state model.

For Metropolis the temperature was chosen such that α =

2(N − 1)β in both cases. �e average number of components

(± one standard deviation) in the global and local optimum

are plotted for SSWM and for Metropolis with colours red,

green, purple and cyan respectively.
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Figure 8: SSWM with N = 10 and β = 0.01 (in blue) and N =

100 and β = 0.1 (in green) and Metropolis with α = 2(N − 1)β

(purple) on д(f (X )).

6 CONCLUSIONS AND FUTUREWORK

We have presented a rigorous comparison of the non-elitist SSWM

and Metropolis algorithms. �eir main di�erence is that SSWM

may reject improving solutions while Metropolis always accepts

them. Nevertheless, we prove that both algorithms have the same

stationary distribution, and they may only have considerably dif-

ferent performance on optimisation functions where the mixing

time is large.

Our analysis on a 3 State Model highlights that a simple function

with a local optimum of low �tness and a global optimum of high

�tness does not allow the required large mixing times. �e reason

is that, although Metropolis initially chooses the local optimum

more o�en than SSWM, it still escapes quickly. As a result we

designed a 5 State Model which “locks” the algorithms to their

initial choices. By amplifying the function to contain several copies

of the 5 State Model we achieve our goal of de�ning a step function

where SSWM is e�cient while Metropolis requires exponential time

with overwhelming probability, independent from its temperature

parameter.

Given the similarities between SSWM and other particularly

selective strategies such as steepest ascent, in future work we will

analyse when these algorithms have di�erent behaviours. �is also

relates to previous work where the choice of the pivot rule was

investigated in local search and memetic algorithms [4, 17, 19].
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