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Abstract

Refractory period (RP) plays a central role in neural signaling. Because it lim-

its an excitable membrane’s recovery time from a previous excitation, it can

restrict information transmission. Classically, RP means the recovery time

from an action potential (spike), and its impact to encoding has been mostly

studied in spiking neurons. However, many sensory neurons do not commu-

nicate with spikes but convey information by graded potential changes. In

these systems, RP can arise as an intrinsic property of their quantal micro/

nanodomain sampling events, as recently revealed for quantum bumps (single

photon responses) in microvillar photoreceptors. Whilst RP is directly unob-

servable and hard to measure, masked by the graded macroscopic response

that integrates numerous quantal events, modeling can uncover its role in

encoding. Here, we investigate computationally how RP can affect encoding

of graded neural responses. Simulations in a simple stochastic process model

for a fly photoreceptor elucidate how RP can profoundly contribute to non-

linear gain control to achieve a large dynamic range.

Introduction

Refractory period (RP) determines an excitable mem-

brane’s recovery time (Hodgkin and Huxley 1952b).

During RP, the membrane patch cannot respond to exter-

nal stimuli, no matter how strong these are. Thus, RP can

restrict a neuron’s firing patterns (Adrian & Zotterman,

1926) and information transmission capacity; or, how
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many different stimulus patterns it can encode as differ-

ent in a unit of time (Juusola et al. 2007). But it remains

less clear whether or how RP exchanges this loss in capac-

ity to some other encoding benefits.

The neural encoding of sensory stimuli is most com-

monly investigated for action potential responses, using

either the classic “rate code” or “time code” concepts

(Gautrais and Thorpe 1998; van Rullen and Thorpe 2001;

Brette 2015), each of which considers the role of RP dif-

ferently. In the “rate code” (Adrian & Zotterman, 1926),

RP would limit a neuron’s average firing rate and, thus,

its encoding performance. Conversely, in the “time code,”

the precise spike timing relations convey the message, and

RP would affect spike timing reliability (Berry and Meis-

ter 1998; Avissar et al. 2013).

However, many sensory neurons, such as retinal pho-

toreceptors, crustacean stretch receptors and vertebrate

hair cells (Roberts and Bush 1981), use graded potentials

to encode fast and large stimulus changes. This requires

powerful adaptation, which continuously adjusts their

sensitivities to environmental changes. In fly photorecep-

tors, refractory quantal sampling of light changes facili-

tates encoding of salient stimuli over the full diurnal

range (Song et al. 2012; Juusola et al. 2015). And in all

neurons, graded signals further communicate quantal

transmitter release during synaptic transmission (Juusola

et al. 1996, 2007; Debanne et al. 2013). Refractoriness

could thus contribute importantly to adaptive regulation

of quantal events in small signaling compartments (Ste-

vens and Wang 1995; Hardie 2012). Meaning that, instead

of RP just adapting action potential firing patterns,

another type of RP may have already adapted the sub-

threshold signals that drive them.

In this study, we use a simplified fly photoreceptor

model to elucidate how RP can provide generic nonlinear

gain control to graded potential neurons. A fly photorecep-

tor is a classic graded potential system for studying neural

representation of environmental signals (Weckstrom 1989;

van Hateren 1997; Juusola and Hardie 2001a,b; Song et al.

2012). It can transduce vast environmental light intensity

changes (~10 log units; photons/sec per lm2) into graded

macroscopic responses within its limited (40–65 mV) out-

put range (Juusola and Hardie 2001a,b; Juusola et al.

2016), achieving a much larger dynamic range than man-

made sensors (Song et al. 2012; Song and Juusola 2017).

Owing to Drosophila genetics and accessibility of electro-

physiological experiments (Hardie and Juusola 2015),

much is known about phototransduction in microvillar

photoreceptors, enabling mechanistic investigations into

adaptation.

A detailed biophysical fly photoreceptor model can

accurately mimic how its real counterparts encode light

stimuli (Song et al. 2012; Song and Juusola 2014; Juusola

et al. 2016). A fly photoreceptor’s light sensor, the rhab-

domere, is composed of 30,000–90,000 microvilli (photon

sampling units), each of which absorbs photons stochasti-

cally. Each microvillus contains a full G-protein-coupled-

receptor (GPCR) signaling pathway, capable of adaptively

transducing absorbed photons into quantum bumps

(QBs: single photon responses). Because of local negative

feedbacks inside its GPCR signaling pathway, the

microvillus stays refractory (inactivated) for about

100 msec after producing a QB, during which it cannot

respond to new photons (Hardie 2012). Finally, QBs from

all microvilli sum up the macroscopic light-induced-cur-

rent (LIC) response. Thus, through the “stochastic adap-

tive quantal information sampling” scheme, the model

generates realistic neural responses to environmental light

changes. Simulations have shown that RP (1) can intrinsi-

cally arise from neural sampling of quantal events, and

(2) contributes to achieving a large dynamic range (Song

et al. 2012; Song and Juusola 2014; Juusola et al. 2015).

Here, we reduce the biophysical photoreceptor model into

a generic stochastic process model with only four parame-

ters, and derive some theoretical results from this mathe-

matical analysis.

Despite its simplicity, the new model makes a useful

tool for characterizing how RP affects neural sampling

and summation of quantal events at different light (stim-

ulus) conditions. Because photon arrival rate to an indi-

vidual microvillus changes proportionally with light

intensity, its average inter-photon-intervals can either be

longer or shorter than the average RP. In dim conditions,

RP cannot restrict encoding; as photons arrive sparsely,

the inter-photon-intervals are much longer than their

refractory periods and all photons are transduced to QBs

(100% quantum efficiency, QE). But with brightening,

more photons are lost to RPs and the QE reduces nonlin-

early. Thus, by reducing sensitivity in proportion to back-

ground light intensity, RP represents a fast automatic

adaptation mechanism, which enables fly photoreceptors

to maintain vision over a large dynamic range (see also:

Juusola et al. 2015; Song et al. 2012).

Our new results define the theoretical bounds for such

adaptation, and show how it depends on the statistical

RP properties. Because refractoriness is likely a ubiquitous

biophysical phenomenon, affecting different stages of neu-

ral signaling, from single channel dynamics to synaptic

transmission (Stevens and Wang 1995), these results also

shed new light on how it may contribute to adaptation in

other graded potential neurons.

Model

We constructed a simple stochastic process model of

microvillar phototransduction, having only four
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biophysical parameters. The model maps the light input, I

(t) (a dynamic influx of photons) into the graded macro-

scopic LIC, C(t) (Fig. 1A). Here, for simplicity, we focus

upon steady-state responses to light intensity steps of

known absorbed photon counts (#photons/sec).

In the model, incoming photons are stochastically dis-

tributed to 30,000–90,000 microvilli (photon sampling

units; Fig. 1B). With this many sampling units, each

microvillus will only absorb a photon sequence, which

can be approximated by a Poisson point process

(Fig. 1C). The absorbed photons in each microvillus are

transduced into a sequence of QBs (Fig. 1E). The QB

generation success depends upon whether the microvillus

is in a refractory state, as all the photons absorbed by

refractory microvilli will be lost. QBs from all the micro-

villi integrate the dynamic macroscopic LIC (Fig. 1F), as

governed by four biophysical parameters (Juusola and

Hardie 2001; Song et al. 2012): (1) the total number of

microvilli; (2) the sample size (QB waveform); (3) the

latency distribution (time delay from a photon absorption

to a QB emergence (Fig. 2)), and (4) the refractory per-

iod distribution (microvillus recovery time after a QB).

Next, we formulate these terms mathematically.

As light information is quantal, communicated by

stochastic photon arrivals, the phototransduction begins

with photon absorptions within the microvillus popula-

tion. We assume that all incoming photons are absorbed,

and all microvilli absorb their photons independently

with equal probabilities. Under this assumption, photon

absorptions by the nth microvillus are modeled as a Pois-

son point process (Eq. 1).

InðtÞ ¼
X1
k¼1

dnðt � tkÞ (1)

where tk, K = 1,2 . . . . are the successive photon arrival

instants, and d(t - tk) is Dirac’s delta function that is
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Figure 1. Fly phototransduction model schematic. (A) The phototransduction takes place in the rhabdomere, which transduces light input

(a dynamic flux of photons) into macroscopic output, light-induced current (LIC). (B) The rhabdomere contains 30,000 microvilli (blue bristles),

acting as photon sampling units. (C) Photons are randomly distributed over the 30,000 microvilli. Because of the large microvillus population,

each of them will only absorb a photon sequence, which can be approximated by a Poisson point process (each row of open circles indicate a

photon sequence absorbed by a single microvillus over time). (D) The light input (green trace) can be reconstructed by adding up all the

photons distributed across the 30,000 microvilli. (E) The successfully absorbed photons in each microvillus are transduced into QBs (a row of QB

events). In each microvillus, the success of transducing a photon into a QB depends upon whether the microvillus is in its refractory state. The

photons hitting a refractory microvillus cannot evoke QBs, but will be lost. (F) QBs from all the microvilli integrate the dynamic macroscopic LIC.
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zero, except at time tk.The event time ensemble {tk} is a

Poisson point process (Song et al. 2016).

Conversely, we assume that each microvillus transduces

its absorbed photons to QBs, independent of the other

microvilli. The QB sequence can be written as:

CnðtÞ ¼
X1
j¼1

hBnðt � bjÞ (2)

where B(t) is the QB waveform, in which maximum value

is normalized to one. For simplicity, we assume that every

QB has a uniform waveform, with a fixed amplitude h

and duration D. {bj} denotes the QB recurrence times,

with this ensemble exhibiting stochastic variations.

From Eqs 1–2, the transformation from {tk} to {bj} is a

key factor that determines the relationship between In(t) and

Cn(t). Two rules govern the transformation from {tk} to {bj}:

1 In a microvillus, a photon evokes a QB after a short

delay, L (latency), which represents the molecular pho-

totransduction cascade reaction time.

2 Following a QB, the microvillus is inactivated for a RP.

During this dead-time, R, another QB cannot be

evoked, even though the microvillus may absorb other

photons then. Hence, a photon can only trigger a QB

when the microvillus is not refractory.

To reflect the stochasticities, inherent to the photo-

transduction cascade, both the latencies and dead-time

are independent and identically distributed (i.i.d.) ran-

dom variables, defined by their own distributions. For

mathematical convenience, we assume that both L and R

follow gamma distributions. This is also suggested by the

experimentally derived latency distributions (Juusola &

Hardie, 2001a,b). In this way, {bj} is a stochastic renewal

process, rectified from the Poisson point process {tk} with

variables L and R. Cn(t) is then a shot noise process,

formed by convolving {bj} with B(t).

Lastly, summation of QBs from all the microvilli produces

the macroscopic LIC. Mathematically, this summation repre-

sents a superposition from many shot noise processes Cn (t):

CðtÞ ¼
XN
n¼1

CnðtÞ (3)

where N is the photoreceptor’s total microvillus count

(the number of sampling units).

Results

We define a photoreceptor’s input-output gain as the

ratio between the expected C(t) and I(t), denoted E(c) and

E(I), respectively, and ask how this ratio changes at differ-

ent light intensity levels. For analytical simplicity, we use

the quantum efficiency (QE) to approximate a normalized

version of this ratio at steady state. QE measures the pro-

portion of photons that are successfully transduced to

QBs (the total QB number, NQB, divided by the total

number of absorbed photons,Nph, over a time period of

Tt; Eq. 4). Because one photon can maximally evoke one

QB, the QE is always ≤1 and acts as a gain factor between

a photoreceptor’s light input and neural output.

Assuming that all microvilli absorb and transduce pho-

tons independently with equal probabilities, both the pho-

ton arrival and QB rates will be the same for every

microvillus. So we can approximate a photoreceptor’s QE

by that of its single microvillus, which is the ratio between

its QB rate (v) and its photon-absorption (k) rate. This

photon-absorption rate is the light intensity divided by the

number of microvilli, k ¼ EðIÞ
Nl

, while the average QB rate of

a microvillus is the reciprocal of its mean inter-QB-interval,

E(Tk). As the photon arrivals (absorption) are stochastic,

the inter-QB-interval is also a stochastic variable, in which

expectation can be calculated from its distribution.

QE ¼ NQB

Nph
¼ NQB=Tt

Nph=Tt
¼ NQB=Tt=Nl

Nph=Tt=Nl
¼ v

k
¼

1
EðTkÞ
EðIÞ
Nl

(4)

Bumps 

Photons 

L1 D1 R1 

I1 

S2 

H2 H1 
S1 

D2 R2 

I2 

L2 

         H < S H > S  (Event A) S = Lj + D + Rj

Figure 2. Schematic of photon sequence and QB sequence in a microvillus. H denotes the photon arrival intervals. L is the latency in

converting a photon to a QB and R is the refractory period after a QB. D is the bump duration and S the minimum inter-QB-intervals, i.e. any

photons that arrive during S will be lost. S can be calculated as the summation of L, D and R. I is the waiting time for the next photon arrival.

Depending the relationships between H and S, inter-QB-intervals, T, can be approximated by different quantities. If Hk>Sk, then Tk = Hk or Tk

Lk + Dk + Ik, otherwise, Tk = Sk+Ik.
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In Eq. 4, all the variables are known quantities, except

the inter-QB-interval expectation, E(Tk). Thus, we will

first derive Tk’s distribution. For analytical convenience,

we also define other relevant stochastic variables:

Hk denotes the successive photon arrival intervals

(Hk = tk + 1-tk). Because {tk} is a Poisson point process,

{Hk} are i.i.d. random variables with the same exponen-

tial probability density functions (p.d.f.) that are indepen-

dent of k (Miller 1965): fIkðtÞ ¼ ke�kt :

Tk denotes the inter-QB-intervals (Tk=bk-1-bk). We assume

that Tk are i.i.d random variables with the same p.d.f.

Lk is the latency (delay) between a photon arrival and

its QB emergence. We assume that Lk follows a gamma

distribution.

Dk is QB duration. In reality, Dk should be a stochastic

variable, but here we assume that Dk has a fixed value.

Rk is the refractory period after a QB. We assume that

Rk also follows a gamma distribution.

Sk is the minimum inter-QB-interval when the photons

arrive before the RP termination:Sk = Lk + Dk + Rk.

Ik is the waiting time until the next photon arrival.

Because {tk} is a Poisson point process, Ik has the same

exponential probability density function with Hk (Poisson

thinning property (Miller 1965)): fIkðtÞ ¼ ke�kt : A, repre-

sents the events when Hk > Sk.

The steady-state relationship between In(t) and Cn(t) can

be alternatively studied from {HK} and {TK}; similar to

{tk} and {bk}. Because here we are interested in the steady

state analysis, we ignore the transformation from t1 to b1.

Figure 2 illustrates the relationships between the

stochastic variables. Notably, the photon arrival intervals

can either be larger or smaller than the minimum inter-

QB-intervals. We use A to represent the event when the

photon arrival interval is larger than the minimum inter-

QB-interval (Hk > Sk). The inter-QB-interval values, Tk,

have to be calculated differently, depending on whether A

happens. When the event A is true (Hk > Sk), Tk can be

approximated by the photon intervals (Tk = Hk). Since

another QB cannot be excited during a QB, the effective

next photon arrivals must be after Lk+Dk (I2 starts directly

after D2). Because the Tk distribution is memoryless, Tk is

Lk + Dk + IK. Conversely, when the event �A is true

(Hk < Sk), photons that arrive during Sk cannot evoke

QBs and will be lost (Fig. 2, 2nd blue dot). Under these

circumstances, the next effective photon arrivals are after

Sk = Lk + Dk + Rk (I1 starts after R1), and Tk is the sum-

mation of Sk and Ik. Eq.5 formulates Tk:

Tk ¼ Lk þ Dk þ Ik
Lk þ Dk þ Rk þ Ik

�
;
if A : Hk [ Sk
if A Hk\Sk

(5)

We then further assume that Ik, Lk, Hk, Rk are statisti-

cally independent for 0 < k<∞, and their respective

p.d.f.s are all independent of k. Thus, fT(t), the p.d.f. of

TK, can be derived as:

fTðtÞ ¼ fLþDþIðtÞFðAÞ þ fSþIðtÞð1� FðAÞÞ (6)

where fs+I(t) is the p.d.f. for the sum of S and I. S + I

has the p.d.f.:

fSþIðtÞ ¼ fSðtÞ�fIðtÞ ¼
Z t

0

fSðt � sÞfIðsÞds (7)

which is a convolution between fS(t) and fI(t). fs(t) can be

calculated as the convolution between fL(t), fD(t) and fR(t):

fs(t)=fL(t)*fD(t)*fR(t). Likewise, fL+D+I(t) is the convolution

between fL(t), fD(t), and fI(t): fL+D+I(t)= fL(t)*fD(t)*fI(t).
For simplicity, we ignore the stochastic QB waveform varia-

tions by assuming that the QB waveform B(t) is invariable.

Then the p.d.f for D (QB duration) is the Dirac delta func-

tion that is zero except at value D: fD(t) = d(t - D)
Both H and I follow exponential distributions, with the

same p.d.f. (Poisson thinning properties): fH(t) =
fI(t) = ke�kt. We further assume that both L and R are

gamma-distributed, Γ(a, b), with the corresponding p.d.f.:

f ðt; a; bÞ ¼ bata�1e�bt

CðaÞ t; a; b[ 0 (8)

where a and b are the shape and rate parameters, respec-

tively. Eq. 8 defines a QB waveform, B(t). The parameters

for defining B(t), fL(t) and fR(t) (Table 1) were chosen to

be physiologically realistic for mimicking a Drosophila

photoreceptor’s QB dynamics (Song et al. 2012).

F(A) in Eq.6 is the probability for the event A, and it

can be calculated with Eq. 9:

FðAÞ ¼ FðH[ SÞ
¼

Z 1

0

Z 1

S

f ðH; SÞdHdS

¼
Z 1

0

Z 1

S

f ðHÞf ðSÞdHdS

¼
Z 1

0

f ðSÞdS
Z 1

S

f ðHÞdH

¼
Z 1

0

f ðSÞ½1� FHðSÞ�dS:

(9)

Table 1. Parameters for QB waveforms, Latency and Refractory

period (RP) distributions.

B(t) fL(t) fR(t)

a 9 9 9

b 1 3 8
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where FH(S) is the probability for event H ≤ S. H follows

an exponential distribution (fH(t) = ke-kt), FH(S) = 1 - e-

kS.

From Eqs 5-9, we can calculate the inter-QB-interval

distribution fT(t). To illustrate how fT(t) compares with

the other distributions in deriving fT(t), Figure 3A shows

the p.d.f.s for the different random variables at the light

intensity of 3 9 105 photons/sec per photoreceptor. It is

interesting to notice how the inter-QB-interval distribu-

tion (light grey line) emerges from the photon arrival

interval distribution (blue line).

Both the photon intervals, H, and the next photon arri-

val waiting times, I, follow exponential distributions. The

mean arrival rate, k, is calculated as the ratio between the

number of incoming photons and the rhabdomere’s

microvillus count (k = Nph/Nl)(Song et al. 2016).

L+D+I gives the inter-QB-interval without a refractory

period, but with a constraint that another QB cannot be

excited before the previous QB terminates (orange line).

Its distribution is convolved from an exponential distribu-

tion and a gamma distribution, where the long tail shows

the exponential distribution component.

S = L + D + R (red line) adds the QB generation con-

straints when the event �A is true; a second QB can only

be triggered after the first QB’s refractory period. S is the

inter-QB-interval when there are continuous photon

arrivals, thus it represents the lower bound of the inter-

QB-intervals under extreme brightness. In a Drosophila

photoreceptor, S is dominantly determined by R

(~100 msec), which is typically much longer than L and D.

For the photon arrival statistics at the brightest light

condition, S + I (black line) is the inter-QB-interval

distribution; with the exponential I distribution con-

tributing to the corresponding p.d.f.’s characteristic long

tail.

Finally, for the presumed normal case at intermediate

light conditions (Fig. 3A, light grey line), the p.d.f. of the

inter-QB-intervals, T, as the weighted sum of L + D + I

and S + I distributions, shows a hump at small inter-QB-

interval values.

Eq. 6 indicates that the inter-QB-interval distribution

adapts with brightening, as shaped by the light input

statistics and the refractory period, respectively. The

weighting parameters are determined by the event A

(H > S) probability, which changes with light conditions.

In dim conditions, the probability for A is nearly one

(100%), and the inter-QB-intervals predominantly reflect

the photon arrival intervals (Fig. 3B, dash and short-dash

lines), with minimal RP contributions. But with brighten-

ing, the probability of A decreases, reducing the light

input while increasing RP contributions so that the inter-

QB-interval distribution loses its exponential long tail,

approaching a gamma-distribution at full daylight

(Fig. 3B, short-dot line).

Using these inter-QB-interval distributions (Fig. 3B),

we calculated the inter-QB-interval expectations and QE

at different light intensities (Fig. 4A). Both decrease non-

linearly with brightening. In dim conditions, photon arri-

vals are so sparse that the mean photon arrival intervals

approach 10 sec, which is much longer than the mean

RPs (~100 msec). In these cases, the QE nears 100% (all

the absorbed photons are transduced to QBs), and the RP

does not affect encoding. With brightening, the inter-QB-

interval reduces roughly linearly until the intensity

A B

Figure 3. Inter-QB-interval distributions. (A) Probability distributions for different random variables defined. Both the photon intervals, H, and

the next photon arrival waiting time, I, follow exponential distributions (blue line). L + D + I is the inter-QB-interval without a refractory period,

but with a constraint that another QBcannot be excited before a QB termination (orange line). S = L + D + R adds the physical constraint in QB

generation; a second QB can only be triggered after the first QB’s refractory period (red line). If photon arrival statistics is considered, S + I is

the inter-QB-interval at bright light conditions (black line). Finally, the p.d.f. of inter-QB-intervals, T, is the weighted sum from the distributions

of L + D + I and S + I. Because of this weighted operation, a hump emerges in T’s p.d.f. at small inter-QB-intervals (light grey line). (B)

Adaptation takes place in inter-OB-interval distributions at different light intensities.
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matches the population QB rate (QB rate/microvillus x

#microvilli). For a Drosophila photoreceptor, the QE falls

sharply at this light intensity (3 9 105 photons/sec

~brightly illuminated room) as the RP starts to affect the

system’s gain considerably (contributing > 50%). With

further brightening, the inter-QB-interval approaches its

limit and the RP becomes the dominating factor (>90%).

The QE falls to 8% at the outdoor overcast light intensity

(3 x 106 photons/sec). When the light intensity is

1 9 108 photons/sec (bright day shade), the QE falls to

0.26%. Notice, however, that because of the intracellular

pupil mechanism and other photomechanical adaptations

(Juusola et al. 2016; Juusola and Song 2017), a Drosophila

photoreceptor would likely never directly face this intense

light. Nonetheless, these simulations are useful in defining

the bounds for how much the RP can limit the QB pro-

duction rate at daylight conditions, suggesting that a

~500-fold gain reduction would be possible. Thus, by los-

ing photons with brightening to refractory microviili, QE

is reduced automatically, enlarging the system’s dynamic

range.

Predictably, a photoreceptor’s gain regulation depends

upon the statistical refractory period properties. To show

this, we tuned parameter “b” for the RP gamma distribu-

tion, and kept “a” the same as in Table 1. With increas-

ing b, the mean of refractory period (mRP) increases, and

QE reduces quicker (Fig. 4B).

Finally, we mention that photons can be lost over two

periods: during a QB and in the following refractory per-

iod. To further quantify how these losses affect the steady

state response, we compared the simulated LICs with and

without RP to a 5 sec light step (Fig. 5A, bottom). In

dim light (Fig. 5A, middle), RP plays no role, and the

LICs with and without it have similar amplitudes. In

bright light (Fig. 5A, top), RP reduces the steady state

LIC response by half, tuning the system gain nonlinearly.

Thus, if all photons were transduced to a stereotyped QB,

the Intensity-LIC relationship would be linear (Fig. 5B

black). But with photons lost during the QB, the inten-

sity-LIC relationship reduces (Fig. 5B, blue), and with a

RP lasting over the QB, the gain reduces even more with

brightening (Fig. 5B, red).

Discussion

We tested by modeling how refractory period can impact

sampling and integration of quantal events in a prototypi-

cal graded potential neuron. The simulations were run by

a simple stochastic process model for the fly phototrans-

duction, which combined probabilistic photon-QB con-

versions with a RP after each QB. We then derived the

inter-QB-interval distributions and quantified the system’s

gain by calculating QE. Because the inter-QB-intervals

were calculated differently, depending on whether the

next photons arrived before or after the RP termination,

the role of RP in adaptation became clear. The results

quantified how RP provide an automatic gain control, the

strength of which depends upon both the light stimulus

and RP statistics.

Using physiologically realistic parameters for the rele-

vant stochastic variables, our results imply that RP cannot

affect encoding at dim light; with a fly photoreceptor

A B

Figure 4. Inter-QB-intervals and QE adapt with brightening. (A) With increased contribution from refractory period (grey), the inter-QB-interval

and QE reduces nonlinearly with brightening (blue and red). In dim light conditions, the mean photon arrival intervals can approach to 10 sec,

which is much longer than the mean RPs (~100 msec). In these cases, refractory period contributes minimal, and QE approaches 100%. As

light intensity increases, inter-QB-interval drops roughly linearly until an intensity that matches the population QB rate (QB rate/microvillus x

#microvilli). In this particular case for a Drosophila photoreceptor, this light intensity is 3 9 105 photons/sec, replicating living room day light

conditions. It is also at this light condition that RP start to play an important role in tuning the system’s gain (contributions over 50%), leading

a sharp drop in the QE. As it becomes brighter, inter-QB-interval approaches to its limit, where RP is the dominating factor (>90%). The QE

drops to 8% at the outdoor overcast light intensity (3 9 106 photons/sec). When the light intensity increases to 1 9 106 photons/sec (bright

daylight), the QE can even drop to 0.26%. (B) The reduction rate of QE versus brightening is highly dependent on the statistical properties of

refractory periods. We only tuned parameter b for the gamma distribution of refractory periods, and kept parameter “a” the same as shown in

Table 1. With increasing b, the mean of refractory periods (mRP) increases, and the rate of QE reduction goes up.
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maintaining 100% QE. But with brightening, RP reduces

the QE nonlinearly. Theoretically, the QE could fall to

0.26% at very bright light, meaning that RP would have

reduced the system’s gain by 500-fold. Thus, with the

refractory microvilli discarding excess photons, the sys-

tem’s dynamic range is enlarged automatically and exten-

sively (see also Song et al. 2012).

However, RP is not the only mechanism that helps to

extend a photoreceptor’s dynamic range. Other mecha-

nisms include the intracellular pupil; QB size adaptations;

variable QB latencies; nonlinear shunting by voltage-gated

conductances; and photo-mechanical rhabdomere con-

tractions (Juusola et al. 2016). These were ignored here,

as our aim was not to replicate photoreceptor responses

but to quantify how neural gain control can emerge from

RP.

The relationship between RP and scaling in neuronal

action potential encoding has been discussed in earlier

studies. For example, how RP affects action potential fir-

ing in the cat retinal ganglion cells (Teich et al. 1978)

and auditory nerve fibers (Li and Young 1993) has been

analyzed from the digital spike-code perspective. It was

suggested that the spike generator in the ganglion cells

could be the main retinal site where refractoriness

shapes encoding (Teich et al. 1978). Interestingly, how-

ever, our recent (Song et al. 2012; Song and Juusola

2014) and new results imply that RP can already shape

neural responses to visual stimuli at the first stage of

light information sampling and processing - well before

any spike-coding. Based on the profound benefits

stochastic refractoriness provides for encoding fast and

large stimulus changes, including amplitude normaliza-

tion and antialiasing (Song et al. 2012; Juusola et al.

2015, 2016), we speculate that it, in fact, might be a

generic biophysical sampling property for micro/

nanodomain quantal events. For instance, theoretically, a

large population of refractory mechanosensitive ion

channels can rapidly and reliably reproduce the electrical

behavior of a mechanoreceptor (Song et al. 2015). Thus,

RP may not only affect neural firing, but its impact on

encoding should also be considered in sub-threshold

signals.

Importantly, the refractory period in QB production

differs mechanistically from that of the spikes. In the

giant squid axon, the RP in action potential production

originates from the recovery phase K+-current (Hodgkin

and Huxley 1952a), whereas the fly photoreceptors’ RP is

an intrinsic property of their microvillar phototransduc-

tion cascades, driven by Ca2+ feedbacks (Song et al.

2012). Furthermore, in spiking neurons, one can distin-

guish the absolute and relative refractory period by their

different physiological properties. The absolute refractory

period typically refers to the Na+-channel inactivation

period, during which a new spike cannot be triggered by

any stimuli. But during the relative refractory period,

when the inward Na+-currents is shunted by opposing

K+-conductances, new spikes can be triggered by stronger

stimuli. Conversely, the refractory period after a QB is

always absolute; with QBs being all-or-none responses,

there is no concept of “relative” RP.

In spiking neurons, the concept of gain control is

characteristically viewed through Hodgkin-Huxley (HH)

formalism by modeling voltage-gated conductances on

the cell membrane. There, Shunting inhibition is consid-

ered the primary mechanism for adaptation (Blomfield

1974), with additional contributions from noise (Prescott

and de Koninck 2003; Dunn and Rieke 2006), dendritic

saturation (Prescott and de Koninck 2003) and synaptic

inputs (Chance et al. 2002). However, in graded potential

systems, many biophysical mechanisms shape the

A B

Figure 5. Comparison of steady state LIC, modeled with and without RP. (A) Simulated LIC with and without RP after QB. 5 sec light step was

the input (bottom), and the mean steady state LIC the output. In dim light (middle), RP plays no role, and the LICs with and without RP have

similar amplitudes. In bright light (top), RP reduces the steady state response by half, tuning the system gain nonlinearly. (B) If all photons were

converted to a stereotyped QB, the Intensity-LIC relationship would be linear (black). However, with photons lost during the QB, the intensity-

LIC relationship reduces at bright conditions (blue). With a further RP after QB, the gain reduces more with brightening (red).
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elementary quantal events adaptively (their shape, RP

and stochasticity) (Song et al. 2012, 2015, 2016; Song

and Juusola 2014; Juusola et al. 2015). These mechanisms

are governed by biochemical networks upstream of spike

production, and thus are concealed from HH-models.

More detailed biophysical approaches, both for computa-

tional simulations and theoretical analysis, are required

to assess how adaptive quantal event dynamics affect the

systems level gain control. We hope that our results

could be valuable also for understanding adaptive

dynamics in synaptic transmission and in network func-

tions (Carrillo-Medina and Latorre 2015). After all, signal

integration from a large population of refractory synapses

or refractory neurons is conceptually similar to the large

microvillus population.
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