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Abstract—In this paper, we present a novel thermodynamic
framework for graphs that can be used to analyze time evolving
networks, relating the thermodynamics variables to macroscopic
changes in network topology, and linking major structural
transition to phase changes in the thermodynamic picture. We
start from a recent quantum-mechanical characterization of the
structure of a network relating the graph Laplacian to a density
operator and resulting in a characterization of the network’s
entropy. Then we adopt a Schrodinger picture of the dynamics of
the network, resulting in an estimation of a hidden time-varying
Hamiltonian from the data, from which we derive a measure of
Energy exchange. From these variables, using the thermodynamic
identity, we obtain temperature under the assumption of constant
volume of the system. Evaluation of real-world data shows that
the thermodynamic variables thus extracted are effective in
detecting critical events occurring during network evolution.

I. INTRODUCTION

Networks arise naturally in several fields as a character-
ization of complex phenomena. Examples can be found in
biology, ecology, epidemiology, social sciences, to name a few,
with notable examples such as the World Wide Web, metabolic
reaction networks, financial market stock correlations, sci-
entific collaboration, coauthorship and citation relations, and
social interactions [1].

For such reason, investigating the properties of these net-
works has become increasingly crucial. In particular, the study
of their evolution mechanisms plays an increasingly crucial
role in science. This follows a recent shift in focus of network
analysis from a rather unrealistic static view of the networks
to the characterization of the dynamics of the system, in an
attempt to understand, describe and predict their behavior and
the behavior of the processes that act over the networks.
Whereas in the past the effort has been focused on the
representation problem, i.e. the characterization of network
structure, now, the main focus has shifted to how the structure
affects the network performance and how the network evolves
with time to respond to such needs [2].

Statistical physics and thermodynamics offer an excellent
framework for the analysis of complex networks, relating the
behavior of microscopic particles to the macroscopic proper-
ties of a system [3], [4], [5]. Specifically, thermodynamics
casts these macroscopic properties in terms of variables -
that are subject to constraints imposed by the four laws of
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thermodynamics. For instance, in the case of graph repre-
sentation of complex networks, Escolano et al. [6] provide
a thermodynamic characterization based on the variation of
local histories over graphs.

In this paper, we present a novel quantum thermodynamic
framework for graphs where the graph Laplacian of each
time slice is seen as a quantum mixed state undergoing
free evolution through the Schrodinger equation under an
unknown time-dependent Hamiltonian representing the change
in potential due to external factors, and entropy and energy
changing direct interaction with the environment. From the
evolution of the network we estimate the Hamiltonian and the
Energy-exchange at each time interval, as well as the variation
in entropy of the underlying structure. From these we derive
all the thermodynamic variables of networks, including the
free energy and temperature.

The resulting characterization is applied to the character-
ization of two real-world time-varying networks: the price
correlation of selected stocks in the New York Stock Exchange
(NYSE) [7], and the gene expression of the life cycle of the
the Drosophila melanogaster (fruit fly) [8] [9].

II. QUANTUM THERMODYNAMICS OF THE NETWORK

Let G(V, E) be an undirected graph with node set V and
edges set £ C V' xV and let A = a;; be the adjacency matrix,
where
, Ui~ Uy,

Q5 = { 0 .
, otherwise.

The degree d of a node is the number of edges incident to
the node and it can be represented through the degree matrix
D = (d;;) which is a diagonal matrix with d;; = >, a;j.
The graph Laplacian is then defined as L = D — A, and it
can be interpreted as a combinatorial analogue of the discrete
Laplace-Beltrami operator. The normalized Laplacian matrix
L is defined as

L= DY*(D - A)D'? (1)

If we divide the normalized Laplacian by the number of ver-
tices in the graph we obtain a unit-trace positive semidefinite
matrix that Passerini and Severini [10] suggest can be seen as
a density matrix in a quantum system representing a quantum
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superposition of the transition steps of quantum walk over the
graph.

The continuous-time quantum walk is the quantum counter-
part of the continuous-time random walk, and it is similarly
defined as a dynamical process over the vertices of the
graph [11]. Here the classical state vector is replaced by a
vector of complex amplitudes over V, and a general state of
the walk is a complex linear combination of the basis states
|[v),v € V, such that the state of the walk at time ¢ is defined

as
o) = 37 au(t) fu) @)
ueV

where the amplitude o, (t) € C and |¢;) € CVI are
both complex. Moreover, we have that «,,(t)a(t) gives the
probability that at time ¢ the walker is at the vertex w, and
thus D oy au(t)ag (t) = 1 and oy (t)ag(t) € [0, 1], for all

ueV,teRT.
The evolution of the walk is then given by the Schrodinger
equation, where we denote the time-independent Hamiltonian

as H. P
a |¢t> =—iH W/t> . 3)

Given an initial state |¢p), we can solve Equation (3) to
determine the state vector at time ¢

ey = e [4o) (4)

The density operator (or density matrix) is introduced in
quantum mechanics to describe a system whose state is an
ensemble of pure quantum states |1);), each with probability
p;. The density operator of such a system is a positive unit-
trace matrix defined as

p=> pilti) (Wil . 5)

The von Neumann entropy [12] Hy of a mixed state is
defined in terms of the trace and logarithm of the density
operator p

Hy = —Tr(plogp) = Zfz In ¢; (6)
where &1, ..., &, are the eigenvalues of p. The von Neumann
entropy is related to the distiguishability of the states, ie.,
the amount of information that can be extracted from an
observation on the mixed state

The observation process for a quantum system is defined in
terms of projections onto orthogonal subspaces associated with
operators on the quantum state-space called observables. Let
O be an observable of the system, with spectral decomposition

O = ZaiPi (7)

where the a; are the (distinct) eigenvalues of O and the P;
the orthogonal projectors onto the corresponding eigenspaces.
The outcome of an observation, or projective measurement, of
a quantum state |t) is one of the eigenvalues a; of O, with
probability

P(a;) = (Y| P [¢) ®)

After the measurement, the state of the quantum systems
becomes

_Pily)
[12: 1) 11

where || |¢) || = v/(¢ | 1) is the norm of the vector |1)).

Density operators play an important role in the quantum
observation process. The observation probability of a; is
P(a;) = Tr(pP;), with the mixed state being projected by
the observation process onto the state represented by the
modified density matrix p’ = ) . P;pP;. The expectation of
the measurement is (O) = Tr (pO). The projective properties
of quantum observation means that an observation actively
modifies the system, both by altering its entropy and forcing
an energy exchange between quantum system and observer.

Thermodynamics describes the behavior of a composite
system in terms of macroscopic variables such as energy,
entropy and temperature. These are linked together by the
thermodynamic identity

[v) = )

dU =TdS — PdV (10)

where U is the internal energy, S the entropy, V' the volume,
T the temperature, and P the pressure.

Following Passerini and Severini [10] in their use of the
normalized Laplacian matrix as a density operator defining the
current state of the network, we derive the network entropy in
terms of the von Neumann entropy

Vi ¢ ¥

ZIVI A

With this we can measure dS the change in entropy as the
network evolves. Previous work used similar entropic measure
to define thermodynamic variables on networks, but linked
energy to the number of edges in the graph [13] or derived it
through the Boltzmann partition function of the network [14].
However, in these approaches the structure of the graph has
the dual function of state (determining the density operator)
and operator. Here we opt for an different approach that does
away with this duality, assuming that the energy operator is
unknown and estimated from the evolution. We assume that
the dynamics of the network is governed by a free evolution
following the Schrodinger equation under an unkown time-
varying Hamitonian H;, and an interaction with the outside
world which acts as an observer. The free evolution does not
change the thermodynamic variables, while the cause of the
variation in Entropy has to be sought from the interaction
process which also causes an energy exchange.

To measure the energy exchange we need to recover the
potential term expressed by the unknown Hamiltonian. In
fact, the Hamiltonian acts as an energy operator, resulting the
following expression for the change in energy between state

pt and piyq

(1)

dU = TI‘(Htpt+1) — TI‘(Ht,Ot) (12)
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We estimate the Hamiltonian 7; as the one that minimizes
the exchange of energy through the interaction with the envi-
ronment. To this end we assume that the interaction intervenes
at the end of the free evolution, where p; is transformed by
the Schrodinger equation into

Pry1 = exp(—iHy)ps exp(iHy) (13)
The exchange of energy in the interaction is then
Ht = argbr{nin T‘I'(Hpt+1) — T‘I'(HpAt+1> (14)

arg;nin Tr (H (pi41 — exp(—iH)py exp(iH)))

Let p; = ®;A;®] be the spectral decomposition of the
state of the network at time ¢, equation (14) can be solved
by noting that the minimum energy exchange intervenes
when the interaction changes the eigenvalues of the density
matrices, and with them the entropy, but does not change the
corresponding eigenspaces. In other words, the Hamiltonian is
the cause of the eigenvector rotation and can be recovered by
1t:

H; ~ ilog(®; 1 ®T) (15)

It is worth noting that we have computed a lower bound of
the Hamiltonian, since we cannot observe components on the
null spaces of ps. Furthermore, we have

T T -
Dy 1Dy po PPy = Pry1, (16)
—_— =
u u

where U = ®,1®] is the unitary evolution matrix. The final
change in internal energy is then

dU = Tr(Hiper1) — Tr(Hept) (17)

The thermodynamic temperature 7' can then be recovered
through the fundamental thermodynamic relation dU = T'dS—
PdV but where we assume that the volume is constant, i.e.,
dV = 0 (isochoric process). As a result, the reciprocal of the
temperature 7' is the rate of change of internal energy with

entropy

U
T="
ds

This definition can be applied to evolving complex networks
which do not change the number of nodes during their
evolution.

(18)

III. EXPERIMENTS AND EVALUATIONS

In this Section we assess the ability of the proposed ther-
modynamic characterization to identify important topological
transitions from two real-world time-evolving networks: stock
price correlation of the New York Stock Exchange (NYSE) and
gene expression of the Drosophila melanogaster (fruit fly).
NYSE: The dataset is extracted from a database consisting
of the daily prices of 3799 stocks traded on the New York
Stock Exchange (NYSE). To construct the dynamic network,
347 stocks with historical data from May 1987 to February
2011 are selected [7]. In order to build an evolving network, a

time window of 28 days is used and it is moved along time to
obtain a sequence (from day 29 to day 6004); in this way, each
temporal window contains a time-series of the daily return
stock values over a 28 day period. Afterward, trades among the
different stocks are set as a network. For each time window, we
compute the cross correlation coefficients between the time-
series for each pair of stocks and create connections between
them if the absolute value of the correlation coefficient exceeds
a threshold. The result is a stock market network which
changes over the time, with a fixed number of 347 nodes and
varying edge structure for each of trading days.

Drosophila: The dataset comes from the biology field and
it concerns the interactions among genes of Drosophila
melanogaster - better known as fruit fly - during its life
cycle. The data is sampled at 66 sequential developmental
time points. The fruit fly life cycle is divided into four stages,
namely the embryonic (samples 1-30), larval (samples 31-
40) and pupal (samples 41-58) periods together with the first
30 days of adulthood (samples 59- 66). Early embryos are
sampled hourly and adults are sampled at multiday inter-
vals, according to the speed of the morphological changes.
To represent this data using a time evolving network, the

NYSE - Difference of Energy vs Difference of Entropy

Linear Regression Relation Between Difference of Energy and Difference of Entropy
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Fig. 1: Scatter plot of the difference of energy vs difference of
entropy, as alternative representation of the network tempera-
ture. The red line highlights the common trend of the tempera-
ture. Significant events result as outliers (Black Monday (19th
October 1987), Friday the 13th Mini-Crash Middle (October
1989), Asian Financial Crisis Middle (July 1997 — October
1997) , Financial Crisis of 2007-2008 Begin and End (March
2007 - October 2008))
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Fig. 2: The von Neumann Entropy (logio) versus time (May 1987 - February 2011), for the dynamic stock correlation network.
The vertical colored lines signal important events. Up-bottom: Black Monday (19th October 1987), Friday the 13th Mini-Crash (13rd
October 1989), Persian Gulf War (2nd August 1990 - 17th January 1991), Asian Financial Crisis (July 1997 — October 1997), Russian
Financial Crisis — Ruble devaluation (17th August 1998), Dot-com bubble - climax (10th March 2003), September 11 attacks, Downturn
of 2002-2003, Financial Crisis of 2007-2008 (February 2007 - October 2008), Bankruptcy of Lehman Brothers (15th September 2008)

following steps are followed [9]. At each developmental point
the 588 genes that are known to play an important role in
the development of the Drosophila are selected. These genes
are the nodes of the network, and edges are established based
on the microarray gene expression measurements reported in
[8]. In addition, any self-loop in the obtained undirect graph
- at each time - has been removed to make more tractable
the normalized Laplacian. This dataset yields a time-evolving
network with a fixed number of 588 nodes, sampled at 66
developmental time points.

We aim at investigating how the thermodynamic variables
characterize the evolution of the networks and whether it
can be used to detect the critical events in the network
evolution (e.g.financial crises or crashes in the stock market
and transcription changes in the fruit fly life cycle).

We commenced by computing the normalized Laplacian of
the network at each time step and the three main thermody-
namic variables: that is entropy, energy, and temperature, as
shown in equations (6), (17), (18) respectively.

Fig. 2 shows the variation of the entropy of the network
throughout the time series. We can see that the entropy drops
down rapidly in proximity of some major events in the early
time period characterized by low volatility. However, as the
network becomes more volatile, the signal gets drown rapidly
in the overall noise. Indeed, we can see in the bottom chart
(June 2002 — February 2011), that the trend appears rather
confused.

In Fig. 1 we show a scatter plot of the variation in energy dU

Preprint submitted to 23rd Internationa

over the variation in entropy dS. Here an interesting feature of
the networks emerges: there emerges an underlying operating
temperature of the structure (depicted by the slope of the
red line). However, there are outliers exhibiting substantial
changes from the underlying modes of operation. These out-
liers correspond to major events in the stock market, like the
Black Monday or September 11.

To identify this deviation from the fundamental operating
slope, in Fig. 3 we plot the ratio of the exponentiated ther-
moFlypamical qu.antities iii((zg)) . This quantity enhances.the
variations, allowing us to mark the phase changes on the time

series.

For instance, during the last period (bottom chart — from June
2002 to February 2011) pinpointing the two crises is easier,
thanks to the peaks of the variations (always within the bound-
aries of each crisis). Consequently, the remaining important
events, which really perturb the system, e.g. September 11
attacks or the Black Monday, are identified clearly.

Fig.4 shows the L, distance between p; and p;, (see equa-
tion 13). We can see that key events have a large difference
between the two densities, indicating that there is a huge
interaction with the environment, resulting in consistent energy
exchange and large variations in entropy.

We now turn our attention to the Drosophila melanogaster
dataset. Fig.6 displays the scatter plot of energy over entropy
(dU Vs. dS). Again, an underlying operating temperature of
the network emerges from the plot and some events strike
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Fig. 4: The mean error deriving from the comparison of the actual p and the recostructed one, versus time. The vertical lines state

principal incidents which may corrupt the network structure.

out as outliers. Indeed those events represent fundamental
landmarks in the evolution of the Drosophila: they belong
to the early moments of the embryonic stage, the middle
time of the larval transaction and the final days of the pupal
step. According to [8] they are three out four of the major
morphological changes in terms of transcript levels of genes
(actually they are the beginning and end of embryogenesis,
the larval-pupal transition and the end of the pupal period).

In order to verify the magnitude of such moments, we com-
puted the temperature, the ratio between exponential of dU

Preprint submitted to 23rd International

and exponential of dS and finally the entropy (Fig.5). In this
case the entropy does not provide clear information about
this increasing/decreasing transcript level, whereas both the
temperature and the exponential transformation exhibit peaks
in correspondence of major evolution events.

IV. CONCLUSIONS

In this paper, we adopt a thermodynamic representation of
network structure in order to visualize and understand the
evolution of time-varying networks. We provide expressions
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Drosophila - Temperature, Ratio between Exponential of dU and Exponential of dS and Entropy
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Fig. 6: Scatter plot of the difference of energy vs difference of
entropy, as alternative representation of the network tempera-
ture. The red line fits the trend of the temperature. Outliers are
moments where the transcript levels of genes changed.

for thermodynamic variables on networks, including the en-
tropy, internal energy and temperature. This analysis is based
on quantum thermodynamics and connects to recent work on
the von Neumann entropy of networks. The internal energy
and the temperature are derived by estimating an unknown
Hamiltonian operator governing the free evolution through
the Schrodinger equation. We have evaluated the method
experimentally using data representing real world complex
systems taken from the financial and biological domains. The
experimental results demonstrate that the thermodynamic vari-
ables are efficient in analyzing the evolutionary properties of
dynamic networks, including the detection of abrupt changes
and phase transitions in structure or other distinctive periods
in the evolution of time-varying complex networks.
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