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Obtaining Effective Rate Coefficients to Describe the Decomposition 

Kinetics of the Corannulene Oxyradical at High Temperatures 

H. M. Wang,ab  X. Q. You,ab*  M. A. Blitz,c  M. J. Pillingc and S. H. Robertsond* 

Unimolecular reactions play an important role in combustion kinetics. An important task of reaction kinetic analysis is to 

obtain the phenomenological rate coefficients for unimolecular reactions based on the master equation approach. In most 

cases, the eigenvalues of the transition matrix describing collisional internal energy relaxation are of much larger magnitude 

than and well separated from the chemically significant eigenvalues, so that phenomenological rate coefficients may be 

unequivocally derived for incorporation in combustion mechanisms. However, when dealing with unimolecular reactions 

for a large molecule, especially at high temperatures, the large densities of states of the reactant cause the majority of the 

population distribution to lie at very high energy levels where the microcanonical reaction rate constants are large and the 

relaxation and chemical eigenvalues overlap, so that well-defined phenomenological rate coefficients cannot be 

determined. This work attempts to analyze the effect of overlapping eigenvalues on the high-temperature kinetics of a large 

oxyradical, based on microcanonical reaction rates and population distributions as well as the eigenvalue spectrum of the 

transition matrix from the master equation. The aim is to provide a pragmatic method for obtaining the most effective rate 

coefficients for competing elimination, dissociation, and bimolecular reactions for incorporation in combustion mechanisms. 

Our approach is demonstrated with a representative example, thermal decomposition and H addition reactions of the 

corannulene oxyradical.  

1. Introduction 

Unimolecular reactions play a major role in combustion. 

Relatively few rate coefficients have been determined 

experimentally,1-5 and an important task in combustion kinetics 

studies is to obtain the reaction rate coefficients for such 

reactions by coupling electronic structure calculations and 

RRKM theory with the master equation (ME) approach, to 

determine the rate coefficients as a function of temperature 

and pressure. This theoretical approach has been shown to be 

accurate and effective.6-13  

 A ME model is constructed by dividing the vibration/rotation 

states of each participating molecule into a set of contiguous 

grains and describes the time evolution of the populations of 

these grains as a result of collisional energy transfer between 

the grains and microcanonical dissociation from them. One 

solution methodology uses a matrix approach, and the grain 

populations can be expressed using the eigenvalues and 

eigenvectors of the transition matrix which contains the first-

order energy dependent collisional and reaction rate constants 

and operates on the grain population vector; the number of 

eigenpairs equals the number of energy grains. For a simple 

unimolecular dissociation (i.e., RėP), there is generally a single 

chemically significant eigenvalue (CSE) describing the chemical 

change; the rest of the eigenvalues are termed internal energy 

relaxation eigenvalues (IEREs) and they describe the relaxation 

of the population distribution to a pressure dependent steady 

state distribution. The IEREs are usually of much greater 

magnitude than the CSE, and this is a necessary condition for a 

phenomenological description of the chemical reaction in terms 

of the macroscopic rate law and the corresponding 

phenomenological rate coefficient k(p,T),8 as shown in Eq. 1. 

 

 ݀ሾܲሿ݀ݐ ൌ െ ݀ሾܴሿ݀ݐ ൌ ݇ሺǡ ܶሻሾܴሿ (1) 

 

For a simple unimolecular dissociation, k(p,T) is equal to the 

modulus of the CSE, |1|, provided the CSE and IEREs are well 

separated. Miller et al.12 in a comment on a paper by Barker et al., 

13 ĚĞĨŝŶĞĚ Ă ƉŚĞŶŽŵĞŶŽůŽŐŝĐĂů ƌĞĂĐƚŝŽŶ ĂƐ ͞ĂŶ ĞůĞŵĞŶƚĂƌǇ ƌĞĂĐƚŝŽŶ 
ǁŝƚŚ ͙͘its rate constant [that is] time-independent and [does] not 

depend on initial conditions over a very wide range of conditions͙͟ 
For more complex reactions with multiple wells, the number of 

CSEs is equal to the number of wells plus the number of source 

terms. When using an eigenpair decomposition of the ME 

transition matrix, it is straightforward to obtain 

phenomenological rate coefficients for the component 
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reactions if the CSEs are well separated from the IEREs.8, 9 In this 

paper we consider reactions of large-molecules, which have 

large densities of states which cause the majority of population 

distributions to lie at very high energies,14-23 especially at high 

temperatures, which gives rise to some unusual, but very 

interesting kinetic behavior. Firstly, the microcanonical reaction 

rate constants are so large that chemical reaction rates 

compete with, or even exceed, the rate of collisional relaxation. 

As a result, reaction, e.g. isomerisation or decomposition, can 

take place at a very early stage, independently of pressure. This 

effect can be detected by observing the relative magnitude of 

IEREs and CSEs, and by examining the population distributions 

and the microcanonical reaction rates. When eigenvalues 

overlap, it is impossible to obtain phenomenological rate 

coefficients as defined above. Specifically, for elimination or 

dissociation reactions without significant accumulation of 

intermediates, because several eigenmodes besides the CSE 

contribute to the time dependence of the reaction, the decays 

of the reactant are necessarily broader than a single 

exponential. As discussed above, the phenomenological rate 

coefficients cease to exist under this condition. Instead, we seek 

to determine what we will define as effective rate coefficients 

that can be used in combustion models. Inevitably, given the 

non-exponential time dependence, incorporation of such 

effective rate coefficients in combustion models carries a 

degree of approximation, as will be discussed below. Secondly, 

when other competing reactions are involved, because the 

evolution of the reactant cannot be fully represented by an 

effective rate coefficient, it is difficult to estimate correctly the 

branching ratios of the competing reactions using a 

conventional phenomenological model. It is therefore 

necessary to investigate the uncertainty of branching ratios 

caused by the use of effective rate coefficients. 

 This work attempts to perform a theoretical analysis on the 

time dependence of species concentrations at high 

temperatures for reactants with large densities of states, on the 

basis of microcanonical reaction rates, population distributions 

as well as the eigenvalue spectrum of transition matrix from the 

master equation, and provide a pragmatic method of obtaining 

the most effective rate coefficients for elimination or 

dissociation reactions. The modelling is aimed at a description 

of polycyclic aromatic hydrocarbon (PAH) and soot surface 

chemistry, where large molecules are involved at temperatures 

of 1500 ʹ 2500 K. Our approach is demonstrated with a 

representative example, thermal decomposition and H addition 

reactions of the corannulene oxyradical. Firstly, the thermal 

decomposition kinetics of the corannulene oxyradical are 

studied by solving the master equation, with a focus on the 

effect of overlapping eigenvalues on the kinetic behavior. A 

number of ways of determining the effective rate coefficients 

are compared, and the accuracy of using thermodynamics to 

determine the reverse rate coefficients is examined and 

discussed. Secondly, the two competing reactions, thermal 

decomposition and H addition, of the corannulene oxyradical 

are studied using the master equation approach to examine the 

interactions between these two reactions under conditions of 

eigenvalue overlap. Species concentration time profiles from 

the master equation modelling are compared with those from 

kinetic modelling with the effective rate coefficients.  

2. Methodology 

Based on the quantum-chemical results from our previous 

study,22 the species concentration time evolution of the 

corannulene oxyradical reaction system was calculated for 

temperatures ranging from 1500 to 2500 K and pressures from 

0.01-1000 atm by solving the master equation. The master 

equation code MESMER10 was used for the calculations. 

MESMER10 uses matrix techniques to formulate and solve the 

master equations for unimolecular systems composed of an 

arbitrary number of wells, transition states, sinks, and 

reactants. Microcanonical rate coefficients were computed 

using RRKM theory. Argon was chosen as the bath gas collider. 

The exponential-down model with a constant ۃοୢۄܧ୭୵୬=260 cm-

1 was used based on previous studies.14-16, 18-20, 23 The Lennard-

Jones parameters were estimated from an empirical correlation 

proposed by Wang and Frenklach.24  A grain size of 100 cm-1 was 

chosen for the sake of both computational cost and accuracy.  

 The method of solution used in MESMER is based on the 

analysis of eigenpairs of the matrix describing reaction from and 

collisional energy transfer between the energy grains of the 

system. The phenomenological rate constants may be 

determined from the eigenvectors and eigenvalues obtained 

from the solution of the ME using an approach first discussed 

by Bartis and Widom,25 and extended by Miller and 

Klippenstein8, 9 and Robertson et al..26  However, this approach 

only works when the IEREs are all well-separated in magnitude 

from the CSEs.8, 9, 11 If this is not the case, then one approach is 

to fit the time-dependent species concentrations obtained from 

the ME to a phenomenological model and extract rate 

coefficients.27 In the case of the oxyradical considered here, the 

CSEs are well separated from the IEREs only at lower (~1500 K) 

Figure 1 Potential energy surface of the decomposition and H addition reactions of 

corannulene oxyradical f at the B3LYP/6-311G(d,p) level at 0 K (units: kcal/mol) 
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but not at higher (~2500 K) temperatures as will be discussed 

later.  

3. Results and discussion 

3.1 Potential energy surface 

Based on the chemical similarity approximation, corannulene 

may be taken to represent a graphene edge with a five-

membered ring completely embedded in the edge, and the 

corannulene oxyradical is an intermediate in the oxidation 

process. Previous studies on soot surface chemistry14-22, 28, 29 

especially the kinetic Monte Carlo simulation studies by Singh 

et al. 29 revealed that there are two competing pathways of an 

oxyradical originating from soot surface oxidation. Fig. 1 

presents the potential energy surface of two competing 

reaction pathways of the corannulene oxyradical at the 

B3LYP/6-311g (d,p) level. Note that, to be consistent, we have 

used a similar notation of molecules, radicals and transition 

states to that in our previous work.23 As shown in Fig. 1, one 

pathway is the thermal decomposition of the corannulene 

oxyradical f, and the other is a barrierless hydrogen addition 

reaction to form intermediate f6, which may subsequently react 

with another H atom to produce the corannulenyl radical f7 and 

H2O through TS6-7. The latter path regenerates the 

corannulenyl radical, instead of oxidizing it, therefore it will be 

referred to as the regeneration path.  

 

3.2 Reaction kinetics 

3.2.1 Species time profiles 

The decomposition of corannulene oxyradicals f can be treated 

as a separate unimolecular reaction system, and we may obtain 

the species profiles, including only this path, using a master 

equation model. The master equation was initiated with a 

Boltzmann population of f, as f is an important intermediate 

formed by oxidation reactions of OH or O2 with the corannulene 

molecule; the Boltzmann population distribution in the reactant 

is likely to be retained in the product, given their molecular size. 

The bulk of the internal energy in the oxyradical resides in the 

vibrations associated with the ring structure and so will be little 

affected by any residual deviations from a Boltzmann 

distribution in the immediate vicinity of the newly formed 

oxyradical centre. It is important to stress, though, that this is 

an assumption, and the effective rate coefficients derived 

below are dependent on it.  The results at 1 atm over the range 

1500-2500 K are shown in Fig. 2, and those at other pressures 

can be found in Fig. S1 of the supporting information (SI). At 

1500 K, almost all of the reactant (f) converts to product f4 on 

the timescale 10-5 ʹ 10-2 s; at 2000 and 2500 K, f decays initially 

on a much shorter timescale (10-11 ʹ 10-10 s) to form 

intermediate f5. The concentrations of f and f5 remain almost 

constant until f4 is produced. The maximum concentration of f5 

increases as temperature is increased, while there is no 

significant accumulation of intermediate f3 at all conditions; it 

reacts quickly by dissociation because of its shallow well. While 

reaction always proceeds via f5, its concentration at 1500 K is 

minimal, as noted above.  
To examine the pressure dependence of the conversion 

from f to f5, the concentration ratios of f5 to f at 2500 K over 

0.1-1000 atm are plotted in Fig. 3, and those at 2000 K are 

provided in Fig. S2 in the SI. The results reveal that there are 

apparently two reaction stages. In the first stage, f and f5 

approach a steady state on a very short time scale (~10-10 s) with 

no pressure dependence. In the second stage, at pressures 

above ~100 atm, the concentration ratio of f5 to f increases with 

time and approaches a constant value, which corresponds to 

the equilibrium ratio. At lower pressures, the ratio decreases 

with time before becoming steady. To explain the results, the 

Boltzmann populations of f and f5 at 2500 K together with the 

microcanonical rate coefficients kf-f5(E) and kf5-f(E), are plotted 
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Figure 2 Species concentration profiles from the master equation modelling of 

corannulene oxyradical f decomposition at 0.1 atm, Ͷ 1500 K, --- 2000 K, ͼͶ 2500 K. 

Figure 3 Concentration ratios of f5 and f from the master equation modelling of 

corannulene oxyradical f decomposition at 2500 K over 0.1 ʹ 1000 atm 
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in Fig. 4. The master equation was initiated with a Boltzmann 

population distribution for f. Fig. 4 shows that the maximum 

population lies at ~300 kcal/mol and the fraction of the 

population below the potential energy of the transition states 

TS1-5 and TS5-3 is minimal. As kf-f5(E) and kf5-f(E) at the peaks of 

the Boltzmann distributions of f and f5 are larger than 1010 s-1, f 

and f5 isomerize rapidly and the collision frequency is too small 

at these short time scales to produce significant relaxation. It is 

noteworthy that, although f5 has a higher potential energy than 

f, the equilibrium concentration of f5 is substantial, due to its 

smaller vibrational frequencies. To explain the trends of the 

second stage in Fig. 3, Fig. 4 presents the populations of f and f5 

and the energy-dependent concentration ratios of f5 to f at two 

extreme pressures, 0.1 and 1000 atm, at a typical time scale of 

the second stage of reaction of 10-5 s. We can see that the 

concentration ratio (red lines) does not depend on pressure; the 

two red lines are indistinguishable, but increase with energy, 

which indicates that, at every energy level, these two species 

ƌĞĂĐŚ ͞ŵŝĐƌŽĐĂŶŽŶŝĐĂů ĞƋƵŝůŝďƌŝƵŵ͟ ƌĂƉŝĚůǇ ƌĞŐĂƌĚůĞƐƐ ŽĨ ƚŚĞ 
pressure. However, at lower pressures, the majority of the 

distributions of f5 and f shift towards lower energy states due 

to the more extensive reactive depletion of f5 and f (which 

behave almost as a single reactant) at higher energies. Because 

[f5(E)]/[f(E)] is smaller at these lower energies, the ratio of the 

overall species concentration approaches a steady state smaller 

than the canonical equilibrium ratio. The canonical equilibrium 

can only be reached at very high pressures where collisional 

energy transfer is sufficient to suppress the shift of 

distributions, while at lower pressures, where the collision 

frequency is insufficient to repopulate f (and therefore f5) at 

higher energy levels, these levels have negligible population 

since the depletion is faster than the collisional relaxation.  

 

3.2.2 Eigenvalue spectrum 

The fast isomerization between f and f5 at high temperatures 

can be examined not only from the population distributions and 

the microcanonical reaction rates, but also from the behavior of 

the IEREs and CSEs. Figure 5 shows the pressure dependence of 

a band of eigenvalues at 2500 K spanning the range 104 ʹ 1012 s-

1, along with the inelastic collision frequency calculated by 

MESMER, which is conventionally assumed to be the same as 

that experienced by molecules subject to a Lennard-Jones 

potential. At low pressures the eigenvalues of largest 

magnitude (1010 ʹ 1012 s-1) are independent of pressure, but 

become pressure dependent at higher pressures. As we know, 

IEREs depend linearly on the collision frequency. The low-

pressure eigenvalues in this range are, therefore, not IEREs, but 

relate to the microcanonical reversible isomerization between f 

and f5. Each pair of isoenergetic grains between the two 

isomers equilibrates, but evolves independently of those at 
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Figure 4 Boltzmann distribution of f and f5 at 2500 K; microcanonical rate coefficients of 

f and f5 isomerization; concentration distributions of f5, f, and their ratios over energy 

from the master equation modelling of corannulene oxyradical f decomposition at 10 -5 

s, 2500 K and at 0.1 and 1000 atm. 

Figure 6 The eigenvalue spectrum and the effective rate coefficients obtained by 

optimal fitting method from the master equation modelling of the reduced system of 

ĐŽƌĂŶŶƵůĞŶĞ ŽǆǇƌĂĚŝĐĂů Ĩ͛ ĚĞĐŽŵƉŽƐŝƚŝŽŶ Ăƚ Ϭ͘ϭ Ăƚŵ ŽǀĞƌ ϭϱϬϬ-2500 K. 

Figure 5 The eigenvalue spectrum and collision frequency from the master equation 

modelling of corannulene oxyradical f decomposition as functions of pressure at 2500 K. 
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other energies. As discussed in appendix A, the eigenvalues of a 

pair of grains are zero and ʹ(kf-f5(E)+ kf5-f(E)) and so there are as 

many reactive eigenvalues as there are grain pairs contributing 

to the isomerization. The time dependence of the overall 

isomerization is, therefore, non-exponential as shown in Fig. S3 

in the SI. As the pressure increases, the IEREs begin to overlap 

with these reactive eigenvalues and the process becomes more 

complex, with partial collisional relaxation in the two isomers 

competing with isomerization. Consequently, the concentration 

ratio of f5 to f increases with time and becomes constant at 

pressures above 100 atm at 2500 K as shown in Fig. 3. However, 

at lower temperatures, say 2000 K, this process occurs at lower 

pressures (10 atm, see Fig. S2 in the SI), and both the 

contribution of f5 to the overall process and its equilibrium 

concentration fall as the temperature is reduced.  

 This type of behaviour, with the largest magnitude 

eigenvalues showing pressure independence at low pressures, 

was discussed many years ago by Pritchard30 for model systems. 

It occurs in all master equation calculations which include high 

energy grains with large microcanonical rate coefficients. In 

most cases, the behaviour has no practical significance because 

the population of those grains is negligible. The difference in the 

present case arises because of substantial population of the 

high energy grains with large microcanonical rate coefficients. 

It is expected that both the high temperature and the large 

densities of states resulting from the size of radicals, coupled 

with the low threshold energy for isomerization, have an effect 

on this type of eigenvalue behaviour. The SI shows a comparison 

of the Boltzmann distributions and microcanonical rate 

coefficients at 1500 - 2500 K for another two radicals which are 

different in size, phenoxy 19 and a large condensed ring 

oxyradical, g, derived from our earlier work. 23 This series of 

calculations, discussed in greater detail in the SI, shows the 

effect of molecular size and temperature on kinetic behaviour. 

 The short timescales on which this complex process of local 

equilibration and collisional relaxation occurs mean that it is 

unlikely to be overlapped by, or in competition with, reactive 

processes of importance in combustion. It is not necessary, 

therefore, to attempt to represent the kinetics of the process in 

a combustion model. Miller and Klippenstein11 proposed a 

general species reduction method to handle the situation when 

a CSE merges with the IEREs by combining the two species that 

are equilibrated through the chemical reaction eigenmode into 

a single species.  Similar to this methodology, as demonstrated 

in these calculations, we can represent f and f5 as a single 

ƐƉĞĐŝĞƐ Ĩ͛ ĐŽŶƚĂŝŶŝŶŐ ŐƌĂŝŶƐ ǁŝƚŚ ŶƵŵďĞƌƐ ŽĨ ƐƚĂƚĞƐ ŝŶ Ă ŐƌĂŝŶ 
equal to the sum of states of the two species. Reaction to form 

f3 has microcanonical rate constant expressions containing the 

sum of states already calculated for kf5-f3 and an appropriate 

density of states, as discussed in the SI. Figure S1 in the SI shows 

the species profiles determined from master equation 

modelling of the reduced system after the species reduction 

(referred to as the reduced system hereafter), which shows the 

ĨŽƌŵĂƚŝŽŶ ŽĨ Ĩϰ ĂŶĚ CO ŵŝƌƌŽƌƐ ƚŚĞ ĚĞĐĂǇ ŽĨ ƌĞĂĐƚĂŶƚ Ĩ͛ ŝŶ ƚŚĞ 
reduced system and the formation of intermediate f3 is 

negligible due to its very shallow well. The reduced system well 

reproduces the species time evolution at longer time scales 

compared to the complete system.  

 Note that in this representation, the reduced system is, in 

effect, a simple dissociation reaction. Figure 6 shows the 

eigenvalue spectrum (black lines) as a function of temperature 

at 0.1 atm. It is generally accepted that, for a dissociation 

reaction with a CSE well-separated from the IEREs, the rate 

coefficient for formation of CO is equal to the modulus of the 

smallest magnitude eigenvalue, as in the case of 1500 K. 

However this is not the case at higher temperatures where 

overlap is significant and the smallest eigenvalues are 

insufficient to describe the reactive step even when f and f5 are 

combined. Because several eigenmodes contribute, the decay 

of the reactant and the production of CO extend over several 

decades in time, indicating that the process is non-exponential 

and a simple first order rate coefficient cannot be assigned. This 

is confirmed by Fig. S4 in the SI which shows a ln(Ĩ͛) vs. time 

plot and demonstrates considerable curvature i.e. non-

exponential behaviour, so that a direct determination of the 

rate coefficient is problematic.  

Figure 7 CŽŵƉĂƌŝƐŽŶ ŽĨ ƐƉĞĐŝĞƐ ĐŽŶĐĞŶƚƌĂƚŝŽŶ ƉƌŽĨŝůĞƐ ŽĨ Ĩ͛ Ăƚ Ϭ͘ϭ Ăƚŵ ĨƌŽŵ ƚŚĞ ŵĂƐƚĞƌ ĞƋƵĂƚŝŽŶ ŵŽĚĞůůŝŶŐ ŽĨ ƚŚĞ ƌĞĚƵĐĞĚ ƐǇƐƚĞŵ ŽĨ corannulene oxyradical Ĩ͛ 
decomposition with those from the fitting formula exp(-kt) where k is the effective rate constant derived from three different methods. Ͷ master equation modelling, --

- 1/e method, ͼͶ fitting method, ͼͼͼͼͼeigenvalue method. 
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3.2.3 Effective rate coefficients 

As discussed in the last section, the phenomenological rate 

coefficient cannot be obtained from the eigenvalue of the 

smallest magnitude except at 1500 K. In this section, we shall 

discuss a few ways to determine the effective rate coefficients 

from the species time profiles to which several eigenmodes 

contribute. The aim is to provide an appropriate parameter that 

will provide the best representation of the dissociation kinetics 

in a combustion mechanism. The first one is called the optimal 

fitting method: the effective rate coefficient is equated to the 

ƐůŽƉĞ ĨƌŽŵ ĨŝƚƚŝŶŐ ůŶ;Ĩ͛Ϳ ǀƐ͘ ƚŝŵĞ͕ ǁŚĞƌĞ Ĩ͛ ŝƐ ƚŚĞ ĐŽŶĐĞŶƚƌĂƚŝŽn 

of the reactant in the reduced system. By varying the 

concentration or time range for fitting, we may minimize the 

sum of squares of deviations σ ሺሾfǯሿȂ ሾfǯሿ୧୲୲ୣୢሻଶ୲୧୫ୣ  and obtain 

the optimal concentration or time ranges. The second one is 

called the eigenvalue method, which uses the absolute value of 

the lowest magnitude eigenvalue as the rate coefficient. The 

third one is called the 1/e time method, which equates the rate 

ĐŽĞĨĨŝĐŝĞŶƚ ƚŽ ƚŚĞ ƌĞĐŝƉƌŽĐĂů ŽĨ ƚŝŵĞ Ăƚ ǁŚŝĐŚ Ĩ͛ ŝƐ ĞƋƵĂů ƚŽ ϭͬĞ͘ 
Figure 7 shows the comparison of concentration profiles of 

the reactant from the master equation modelling with those 

from the fitting formula ࢚ିࢋ, using the three different methods 

to calculate k over the range 1500-2500 K at 0.1 atm, where k is 

the effective rate coefficient. As can be seen, at 1500 K, the 

species profiles from the fitting formula ࢚ିࢋ  are almost 

identical to those from the master equation modelling, while 

they differ from each other at 2000 and 2500 K. Among the 

three methods, both the optimal fitting and the 1/e time 

methods produce concentration profiles closer to the master 

equation modelling results than the eigenvalue method, and 

the optimal fitting method is the best. Figure 7 demonstrates 

the highly non-exponential decays at the higher temperatures 

and shows that the effective rate coefficients generate decays 

that necessarily overĞƐƚŝŵĂƚĞ Ĩ͛ Ăƚ ƐŚŽƌƚ ƚŝŵĞƐ ĂŶĚ 
underestimate it at long times. The comparison of the effective 

rate coefficients obtained by the optimal fitting method with 

the eigenvalue spectrum at 0.1 atm can be seen in Fig. 6. The 

comparison at other pressures can be found in Fig. S6 in the SI. 

It is noted that the effective rate coefficient is identical to the 

numerically smallest eigenvalue at low temperatures, 

consistent with previous observations. However, at high 

temperatures the effective rate coefficient is much larger than 

the eigenvalue of smallest magnitude, and falls well within the 

IERE continuum. Under these high temperature conditions, as is 

clear from Fig. 7, several eigenmodes contribute to the decay of 

reactant and the separation of the eigenvalue spectrum into 

IERE and CSE terms is no longer meaningful. It is also 

noteworthy that the temperature at which the effective rate 

coefficient differs from the smallest eigenvalue increases with 

pressure as shown in Fig. S6. 

 Figure 8 shows the temperature dependence of the 

effective rate coefficients generated by the three different 

methods at 0.1 atm. The comparisons at other pressures can be 

found in Fig. S5 in the SI.  It is worth noting that the effective 

rate coefficients show different temperature and pressure 

dependences. For the eigenvalue method, the pressure 

dependence of rate coefficients is more significant as 

temperature is increased; however, for the 1/e time and the 

optimal fitting methods, the most significant pressure 

dependence occurs around 2000 K (see Fig. S5). This is 

apparently due to the increasingly non-exponential character of 

the time dependence of the concentration profiles at higher 

temperatures. Using the lowest magnitude eigenvalue as the 

effective rate coefficients would severely underestimate the 

fast decay of the concentration profiles due to the mixing of 

eigenmodes whose corresponding eigenvalues extend the loss 

ŽĨ Ĩ͛ ƚŽ ƐŝŐŶŝĨŝĐĂŶƚůǇ Ɛhorter times. 

 It is important to emphasize that this problem of CSE / IERE 

overlap cannot be accommodated by combining species to 

eliminate the overlap, as was possible for the isomerization 

reaction discussed above, and as was examined in detail by 

Miller and Klippenstein.11 Dissociation is the sole remaining 

process in the reaction, which is now a single species system. 

The highly non-exponential behavior cannot be eliminated; we 

have chosen to provide a necessarily approximate description 

for incorporation in combustion models, in which an 

exponential decay, with an associated time independent rate 
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Figure 8 Temperature dependence of the rate coefficients of the reduced system of 

corannulene oxyradical Ĩ͛ ĚĞĐŽŵƉŽƐŝƚŝŽŶ ŽǀĞƌ ϭϱϬϬ-2500 K at 0.1 atm. --- 1/e method, 

ͼͶ ĨŝƚƚŝŶŐ ŵĞƚŚŽĚ͕ ͼͼͼͼͼĞŝŐĞŶǀĂůƵĞ ŵĞƚŚŽĚ͘ 

Table 1 Comparison of the forward and reverse rate coefficients of the reduced system 

of corannulene oxyradical Ĩ͛ ĚĞĐŽŵƉŽƐŝƚŝŽŶ obtained by different methods. 
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coefficients, has been determined to represent this 

multiexponential decay. The associated inaccuracy raises 

questions about the validity of the determination of the reverse 

rate coefficients and the kinetic representation when the 

reaction competes with, or is associated with, other reactions. 

This question is examined in the following sections. 

 

3.3 Reverse rate coefficients  

As discussed above, the effective ƌĂƚĞ ĐŽĞĨĨŝĐŝĞŶƚƐ ĨŽƌ Ĩ͛ 
dissociation are only representative of the non-exponential 

ĚĞĐĂǇ ŽĨ Ĩ͕͛ ǁŚŝĐŚ ĂƌĞ ĐŽŵƉƌŽŵŝƐĞĚ ďǇ ƚŚĞ ŽǀĞƌůĂƉ ďĞƚǁĞĞŶ 
IEREs and CSEs, especially at higher temperatures. Thus the use 

of thermodynamics to determine the reverse rate coefficient 

based on these decomposition effective forward rate 

coefficients is questionable and needs to be examined because 

of the complex nature of the decomposition reaction and the 

contribution of several eigenmodes to it. In the following we 

shall discuss two different ways of determining the reverse rate 

coefficients, and then test them by examining the master 

equation under reversible conditions. We will compare the 

ĐŽŶĐĞŶƚƌĂƚŝŽŶ ƉƌŽĨŝůĞƐ ŽďƚĂŝŶĞĚ ĨƌŽŵ ŬŝŶĞƚŝĐ ŵŽĚĞůůŝŶŐ ŽĨ Ĩ͛ ֖ f4 + CO using effective forward and reverse rate coefficients 

derived by different methods. In the present case, master 

equation modelling under reversible conditions means that the 

final step forming CO is made reversible with a fixed 

concentration of CO. For a well-behaved system, this results in 

two CSEs, one of which is zero. 

 The effective forward and reverse rate coefficients for 

kinetic modelling were derived in two different ways. One is by 

use of thermodynamics; in other words, the non-reversible 

master equation was solved and the optimal fitting method was 

used to determine the forward effective rate coefficient kf, and 

the reverse rate coefficient kr was determined from kf divided 

by equilibrium constant Kc. The other uses the relaxation time 

constant by performing the reversible master equation 

modelling with different CO concentrations and deriving the 

reciprocal of time for each run, at which (Ĩ͛-Ĩ͛eq])/(1-Ĩ͛eq]) 

ĞƋƵĂůƐ ϭͬĞ͕ ǁŚĞƌĞ Ĩ͛eq] ŝƐ ƚŚĞ ĐŽŶĐĞŶƚƌĂƚŝŽŶ ĨƌĂĐƚŝŽŶ ŽĨ Ĩ͛ Ăƚ 
equilibrium, and equating this to krel. krel is called the relaxation 

time constant, which is formally equal to kf +kr[CO]. A plot of the 

linear relationship of kf+kr[CO] vs. [CO] was used to determine 

kf and kr. A total of 18 runs was carried out with different CO 

concentrations that vary from 1014 to 1017 molecule/cm3. Table 

1 compares kf and kr obtained by the relaxation time constant 

method (Method II) and those from the thermodynamics 

method (Method I). The two methods produce almost identical 

results of kf and kr at 1500 and 2000 K. However, because of the 

stronger overlap of CSEs and IEREs, kr calculated by the 

relaxation time constant method is around 35% larger than that 

of the thermodynamics method at 2500 K, and thus both Kc and 

the equilibrium concentration of f4, [f4eq], are also 

underestimated.  
 One of the problems in this analysis is that the concentration 

ŽĨ Ĩ͛ Ăƚ ĞƋƵŝůŝďƌŝƵŵ ŝƐ ǀĞƌǇ ƐŵĂůů͗ Ăƚ ĂĐĐĞƐƐŝďůĞ CO͕ ƚŚĞ ƌĞĂĐƚŝŽŶ 
is essentially irreversible. Using an extremely large CO 

concentration, [CO] = 1017 molecule/cm3, we compared the 

species profiles from the master equation modelling with those 

from the kinetic modelling in which the rate coefficients were 

computed from the thermodynamics method. As shown in Fig. 

9, the ME and kinetic modelling give almost identical 

concentration profiles at 1500 K, which is reasonable since the 

IEREs and CSEs do not overlap badly. By contrast, above 2000 K, 

the kinetic modelling underestimates the changing rate of 

species concentration predicted by the master equation 

modelling at shorter times, but overestimates it at longer times.  

As noted above, the equilibrium constant is such that, even 

with an inaccessible [CO] = 1019 molecule cm-3, the equilibrium 

is well over to f4+CO at temperature above 2000 K and the 

effective pseudo first order rate constant for the reverse 

reaction is much smaller than that for the forward reaction. To 

test the effects of non-exponential approach to equilibrium 

more fully, a model system was examined in which the product 

energy was increased by 25 kcal mol-1. The results are presented 

in the SI. They show that the two approaches for determining 

the reverse rate coefficient differ by nearly 40% at 2500 K. As 

expected, the thermodynamics method reproduces the final 

yields obtained from the master equation more closely than 

does the relaxation method (see Fig. S7 in the SI). Since the 

relaxation method underestimates the yields, we have also 

Figure 9 Species profiles of the reduced system of corannulene oxyradical Ĩ͛ ĚĞĐŽŵƉŽƐŝƚŝŽŶ over 1500-2500 K at 0.1 atm, [CO] = 1017 molecule cm-3   Ͷ reversible master equation 

modelling, --- kinetic modelling based on the thermodynamics method. 
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performed a combined method for determining kf and kr from 

krel. At a given concentration of [CO], kf and kr are obtained by 

maintaining the ratio of kf and kr at the value determined by Kc. 

This combined method generates slightly larger kf than the two 

methods mentioned above as shown in the SI. 

 These calculations demonstrate that, although accuracy is 

impaired at the 2500 K, using thermodynamics to calculate the 

reverse from the forward rate constant provides satisfactory 

results, within the obvious constraints of the non-exponential 

behaviour discussed in the previous section. 

 

3.4 Competing reactions 

The overlap of the eigenvalues not only complicates the 

determination of effective forward and reverse rate 

coefficients, but also potentially affects the competition among 

reaction pathways of corannulene oxyradicals. Master equation 

modelling was performed for the two-pathway system shown 

in Fig. 1, assuming the mole fraction of H to be 0.01 at 1 atm. 

The reaction f + H  f6, hydrogen addition to the corannulene 

oxyradical, is a barrierless reaction, for which the inverse 

Laplace transform (ILT) method was utilized to obtain the 

microcanonical reaction rate constants. The canonical rate 

coefficient provided for ILT was estimated to be the same as 

that of the analogous reaction of phenanthrene oxyradicals, 

around 4×10-10 cm3molecule-1 s-1 at 1500-2500 K, based on the 

study of Edwards et al.21,22  The reaction f6 ՞ f + H, was treated 

as a reversible dissociation reaction where the partitioning of 

energy between the dissociated products f and H is assumed to 

be statistical, that is the energy distribution of species f, on 

dissociation of f6 is the prior distribution.31, 32 Here the 

probability of species f formed with energy E, ࡼሺࡱȁ࢞ࡱሻ, is given 

by Eq. 2: 

 

ሻ࢞ࡱȁࡱሺࡼ  ൌ ࢞ࡱሺ࢚࣋ሻࡱሺࢌ࣋ െ ሻ࢞ࡱሺ࢚۪࣋ࢌ࣋ሻࡱ  (2) 

 

where ࢞ࡱ  is the energy available to the dissociated products f 

and H. ࢌ࣋  is the ro-vibrational density of states of f; ࢚࣋  is the 

relative translational density of states of the f and H fragments 

and is modelled using a classical expression i.e., ࢚࣋ ן ඥ࢚ࡱ , 

where ࢚ࡱ  is the relative translational energy, and ሾ࢚۪࣋ࢌ࣋ሿ 

represents a convolution. It is clear that detailed dynamical 

calculations are required in order to investigate the general 

form of the product energy distribution. However, as the bulk 

of the internal energy in the oxyradical resides in the vibrations 

associated with the ring structure, statistical partitioning is 

assumed here as a first approximation. The distribution of f is 

also affected by dissociation via f5, as discussed above, and the 

influence of both of these processes (dissociation of f6 to form 

f and dissociation of f via f5) are accommodated within the 

formulation of the master equation. Dissociation of f6 to form 

the products involves addition of H followed by dissociative loss 

of H2O to regenerate corannulene, i.e. f6 + H ė f7 + H2O. Thus 

the distribution of f6 is determined by its nascent distribution, 

following association of f and H, by collisional relaxation and by 

reaction with H. The reaction with H proceeds via a well-defined 

transition state and the product was treated as a bimolecular 

sink in the ME modelling, using the method discussed in 

Ref.[33], with microcanonical rate constants determined using 

RRKM theory.  Under the conditions studied, this reaction 

occurs rapidly with the products effectively formed directly 

from f with no accumulation of f6. The species profiles from 

master equation modelling at 1500-2500 K and 0.1-10 atm are 

shown in Fig. 10. The eigenvalues and reciprocal characteristic 

times of product formation at 2000 and 2500 K are compared in 

Table 2. At lower temperatures, the regeneration pathway is 

dominant over the thermal decomposition pathway, while, at 

high temperatures, the latter becomes more competitive. As 

pressure is increased, the dominance of the decomposition 

pathway increases, and this dominance becomes even more 

significant at higher temperatures. The temperature and 

pressure dependence is a result of thermal decomposition 

being a higher activation-energy process than regeneration, and 

very frequent collisions with the bath gas are required to 

maintain the population of the high energy states needed for 

dissociation at the higher temperatures.  
 Finally, the competition between the decomposition and 

regeneration pathways for the reduced system was examined 

using a kinetic model with two phenomenological reactions, 

Ĩ̵ ї Ĩϰн CO and Ĩ̵ нHሱሮ Ĩϲ
нHሱሮ Ĩϳн HϮO and the species profiles from 

the kinetic modelling were compared with those from the 

master equation solutions for the two-pathway system. Note 

that to reveal the influence of the time dependence of the rates 

on the competition between the decomposition and 

regeneration pathways, the phenomenological rate coefficients 

of the two pathways were obtained separately from the master 

equation modelling with the individual pathways. In other 

words, the effective rate coefficient of the decomposition 

reaction, Ĩ̵ ї Ĩϰн CO͕ ǁĂƐ ŽďƚĂŝŶĞĚ ďǇ ŽƉƚŝŵĂů ĨŝƚƚŝŶŐ ŽĨ ƚŚĞ Ĩ͛ 
decay profile computed by the master equation modelling with 

only the decomposition pathway (reduced system). The 

regeneration reaction Ԣ ା۶ሱሮ  ା۶ሱሮ ૠ  ۶۽ was treated as a 

pseudo first-order reaction Ԣ ା۶ሱۛ ሮ ૠ   ۶۽, with rate kf-f6[H], 

Table 2 The ten lowest magnitude eigenvalues from master equation modelling of the 

two-pathway system in Fig. 1 and the reciprocal characteristic times of product formation 

(the time when the mole fractions of products reach the half of their maximum values). 
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since the concentration of f6 is in steady state. The rate 

coefficients were obtained by linear fitting of [f] from the 

master equation modelling with only the regeneration pathway 

system. As shown in Fig. 10, compared to the master equation 

modelling results of the two-pathway system, the 

concentration profiles from the kinetic modelling are almost 

identical at 1500 K, however, as temperature is increased, the 

branching ratios of the decomposition reaction and the 

characteristic time of product formation (f4 + CO) predicted by 

the kinetic modelling are underestimated by as much as 30 % at 

2500 K, 0.1 atm. The underestimation is suppressed at higher 

pressures, say 10 atm. As discussed earlier, the majority of the 

corannulene oxyradical population lies at very high energy 

levels above the transition states initially, but the depletion of f 

to produce f4 makes the distribution shift to lower energy levels 

at longer times as a result of insufficient repopulation, which 

causes the decomposition reaction rates to decrease with time. 

At high temperatures and low pressures, the decomposition 

pathway at short time scales is more significantly 

underestimated by the phenomenological model. Hence, to 

reduce the uncertainty, the effective rate coefficients should be 

derived from the decay of f͛ and the product yields computed 

by master equation modelling with the two-pathway system 

rather than the two single pathway systems. 

4. Summary 

In this work, we performed a theoretical analysis of the (i) 

isomerization and (ii) decomposition of the corannulene 

oxyradical at high temperatures, on the basis of microcanonical 

reaction rates, population distributions and the eigenvalue 

spectrum of the transition matrix from the master equation, 

and provided a pragmatic method for obtaining the most 

effective rate coefficients for decomposition. The reaction 

system shows interesting properties that derive from the size of 

the reactant and the high temperature.  

(i) The distribution of the initial reactant was assumed 

Boltzmann which results in the bulk of the reactants having 

energies well in excess of the isomerization threshold. As a 

result, most of the microcanonical rate coefficients exceed the 

collision frequency at all but the highest pressures and 

isomerization occurs without collisional relaxation; the largest 

magnitude eigenvalues relate to microcanonical isomerization 

and exceed the internal energy relaxation eigenvalues. 

Comparison with the behavior of other radicals in the SI shows 

that this effect is a result of the size of the reactant, the high 

temperature, and the low isomerization threshold. The problem 

of representing this process in a kinetic model was overcome by 

merging the states of the two isomers in a species reduction 

process. 

 (ii) There is considerable overlap between the IEREs and the 

chemically significant eigenvalue for dissociation. As a result the 

decay of the reactant and the formation of the products are 

highly non-exponential. This effect was again shown to be a 

consequence of the high temperature and is exacerbated by the 

size of the reactant. The problem cannot be resolved by species 

reduction, since this is the sole remaining reaction. We 

discussed three ways to determine the effective rate 

coefficients for dissociation based on an analysis of the time 

profiles of the reduced system. We found that the optimal 

fitting method produced concentration profiles closest to the 

master equation modelling. The effective rate coefficients 

obtained from different methods also demonstrate significantly 

different pressure dependences. We used the thermodynamics 

method and the relaxation time constant method to determine 

the reverse rate coefficients, and examined the influence of the 

time dependence on the reverse rate coefficients so obtained. 

The results show that the two methods give almost identical 

results at 1500 and 2000 K. However, at 2500 K, due to the 

strong overlap of the CSEs and IEREs, the reverse rate 

coefficients calculated by the relaxation time constant method 

are around 35% larger than that of the reversible method, 

leading to a lower apparent equilibrium constant. Finally, 

species time evolutions were examined for two competitive 

pathways, and the results show a maximum 30% difference 

between the master equation modelling results of a two-

pathway system and those of the kinetic modelling with 

phenomenological rate coefficients obtained from master 

equation modeling of two single pathway systems. We also note 

Figure 10  Comparison of the master equation modelling of the two-pathway system in Fig. 1 with the kinetic modelling results in which the phenomenological rate coefficients were 

obtained from master equation modeling of two single-pathway systems separately over 1500-2500 K and 0.1-10 atm. Ͷ ME modelling at 0.1 atm,  - Ͷ ME modelling at 10 atm, --- 

kinetic modelling at 0.1 atm. 
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that the overlap of eigenvalues and hence the time-dependence 

of rate coefficients are sensitive to the energy transfer model 

applied in the master equation modelling. In the current case, 

specifically, applying a larger value of ۃѐEۄdown, the time 

dependence of rate coefficients becomes weaker. Further 

investigation of the energy transfer parameters of large PAHs 

colliding with bath gases will be reported in a future publication. 

 It is important to emphasize that the non-exponential 

character of the time profiles in these reactions is intrinsic to 

the system and stems from the high temperatures and the very 

high densities of states and depends on the initial Boltzmann 

distribution which in turn leads to high microcanonical rate 

coefficients in regions of high population and to the magnitudes 

of the eigenvalues associated with reaction exceeding or 

overlapping with the IEREs. Indeed, at high temperatures there 

is a manifold contribution of terms to the decay and the 

distinction between IERE and CSE eigen terms is no longer 

meaningful. While the problems of large microcanonical rate 

constants for isomerization could be overcome by species 

reduction, the effects of eigenvalue overlap on dissociation 

cannot be mitigated by the combining of species that has 

proved effective elsewhere:11 dissociation of the reduced 

system based on the combination of f and f5 still generates non-

exponential kinetics at high temperatures.   

  It is also noteworthy that our work is largely at an 

exploratory stage of studying the non-exponential 

decomposition behaviour of these large molecules, but the 

representational methodology would work for any simple 

decomposition reactions where CSEs and IEREs overlap, and 

where the effects cannot be mitigated by species reduction. The 

problem of assessing the impact of the representation of the 

kinetics of such a system on the modelling of interacting 

chemical reactions needs further investigation. We have made 

a preliminary analysis for simple reversible and coupled 

reactions in the latter part of this paper. Further analysis, 

including the investigation of a more formal description, is 

required. 
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Appendix 

In this appendix the extreme low pressure limit of the 

eigenvalue spectrum of the ME transition matrix is examined. 

First, consider the case of a simple dissociation reaction, the 

transition matrix for such a system is: 

 

 
(1) 

where ߱ is the collision frequency, ࡼ is the collision transition 

probability matrix, ࡵ is the identiy matrix and ࡷ is a diagonal 

matrix with the grain microcanonical rate coefficients on the 

diagonal. As the pressure declines ߱ ՜ Ͳ so that ࡹ ՜ െࡷ. As ࡷ  is already diagonal then it follows directly that the 

eigenvalues of ࡹ, at low pressure,  are zero below the threshold  

and equal to the grain microcanonical rates above the 

threshold. This was observed by Pritchard.28  These eigenvalues 

will start to appear as ߱ becomes less than the individual ሺࡷሻ 
elements (i.e. not at the same pressure). 

 For isomerization the situation is a little more complex. 

Consider the reaction ܣ ֖ ܤ  In this case we can write the 

transition matrix as, 

 

 

(2) 

Again as the pressure drops ߱ ՜ ߱ ՜ Ͳ and the transition 

matrix takes on the form: 

 

 

(3) 

 To make progress here it is noted that the eigenvalues of the 

transition matrix are not affected by a permutation of the rows 

and columns. In this way we can gather together all terms 

associated with a pair of iso-energetic grains, and when we do 

this we end with a block diagonal matrix, each block being a 

two-by-two matrix. These two-by-two matrices govern the 

exchange between iso-energetic states (grains) of the isomers, 

they can be individually diagonalized and each gives a zero 

eigenvalue (which follows from detailed balance) and a 

eigenvalue which is the negated sum of the forward and reverse 

microcanonical rate coefficients. From this it follows that there 

will be a set of eigenvalues that will start to appear when  ߱ ൏ࡷ and ߱ ൏ ࡷ , and that their number will be the number 

of grains above the threshold. 

 In this region the system is reaching a microcanonical 

͞ĞƋƵŝůŝďƌŝƵŵ͟ ƚŚƌŽƵŐŚ ǀŝďƌĂƚŝŽŶĂů ĞŶĞƌŐǇ ƌĞĚŝƐƚƌŝďƵƚŝŽŶ͕ ďƵƚ͕ 
because it is decoupled from the collisional heat bath, it does 

not reĂĐŚ Ă ĐĂŶŽŶŝĐĂů ͞ĞƋƵŝůŝďƌŝƵŵ͘͟ FŽƌ ƚŚŝƐ ƌĞĂƐŽŶ ƚŚĞ 
definition of a canonical rate coefficient is problematic under 

these circumstances.  
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