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Chapter 9 

Symmetries and explanatory dependencies 

 

Steven French and Juha Saatsi 

 

1. Introduction 

 

In this essay we will investigate explanations that turn on symmetries in physics. What kinds 

of explanations can symmetries provide? How do symmetries function as an explanans? 

What philosophical account of explanation can naturally capture commonplace symmetry-

based explanations in physics? In the face of the importance and prevalence of such 

explanations and symmetry-based reasoning in physics, it is striking how little has been 

written about these issues.
1
 It is high time to start examining these hitherto largely ignored 

questions. 

 

In this paper we will argue that various symmetry explanations can be naturally captured in 

terms of a counterfactual-dependence account in the spirit of Woodward (2003), liberalized 

from its causal trappings. From the perspective of this account symmetries can function in 

explanatory arguments by playing a role (roughly) comparable to a contingent initial or 

boundary condition in causal explanations: a symmetry fact (in conjunction with an 

appropriate connection between that fact and the explanandum) can contribute to provision of 

what-if-things-had-been-different information, showing how an explanandum depends on the 

symmetry. That is, symmetries can explain by providing modal information about an 

explanatory dependence, by showing how the explanandum would have been different, had 

the facts about the symmetry been different. 

 

Explanatory dependencies of this sort need not be causal. Although the counterfactual-

dependence view of explanation is best developed in connection with causal dependence, in 

                                                

1
 Lange’s work on symmetry principles and conservation laws is a notable exception (e.g. Lange 2007, 

2012). 



recent years this view has been extended to various kinds of non-causal dependencies (e.g. 

Jansson and Saatsi forthcoming, Reutlinger 2016, Saatsi 2016, Saatsi and Pexton 2013). Our 

discussion of symmetry explanations is more grist to this mill: many (but not all) symmetry 

explanations are naturally construed as being non-causal, as we will see. But even if 

symmetry is not a cause of an explanandum, we may nevertheless be able to regard the 

explanandum as something that depends in an explanatory way on the symmetry in question. 

Or so we will argue.  

 

There are alternative accounts of explanation that compete with our counterfactual-

dependence perspective, especially in the context of non-causal explanations that are highly 

abstract or mathematical (Pincock 2007, Pincock 2014, Lange 2013; cf. Jansson and Saatsi 

forthcoming for discussion). One alternative is to operate in the unificationist tradition of 

Friedman (1974) and Kitcher (1981, 1989). However, this faces well-known problems, not 

the least of which concerns the heterogeneity of unificatory practices (see e.g. Redhead 

1984). In the case of symmetries in physics in particular, although their unificatory force is 

obviously connected to their heuristic role (as evidenced through the construction of the so-

called Standard Model of particle physics) it is unclear how to cash out the unificatory force 

beyond that role. Of more current interest is a new approach to non-causal explanations 

developed by Lange (2007, 2012, 2013), who puts the explanatory weight on the 

independence of the explanandum from particular laws of nature. Interestingly, Lange has 

also applied this approach to some central issues concerning symmetry explanations. We will 

discuss Lange’s views in as far as it runs contrary to our counterfactual-dependence account, 

but we will not attempt a broader assessment of these alternative viewpoints. We shall mainly 

endeavour to show that a counterfactual-dependence account can naturally deal with various 

symmetry-based explanations, thereby further supporting the now popular idea that 

explanations – causal and non-causal alike – provide information about worldly dependence 

relations that show what is responsible for the explanandum at stake. We will also discuss the 

extent to which this analysis of symmetry explanations requires us to relinquish the notion 

that all explanatory dependencies in science are causal. (cf. Skow 2014)  

 

The first order of business is to introduce the key notion, symmetry, and its connection to 

explanation (§2). The rest of the essay is divided between issues concerning the two basic 

kinds of symmetries found in science: discrete (§3) and continuous (§4).   

 



2. Symmetry and explanation: a toy example 

 

What is symmetry, then? In very informal and general terms, the notion of symmetry involves 

sameness (or equivalence) in one respect of X, in relation to a change (or transformation) in 

another respect of X. What ‘sameness in relation to change’ exactly consists in is determined 

by the nature of X, the kind of transformation at stake, and in what respect I stays the same in 

relation to that transformation. Most familiar examples involve geometrical figures, spatial 

transformations (e.g. rotations), and the sameness of the figure (e.g. with respect to its shape) 

under those transformations. For instance, an equilateral triangle is thus symmetrical with 

respect to 120 degree turns. It is also symmetrical in relation to a transformation that reflects 

or flips the figure with respect to one of the three axes of symmetry.  

 

[Picture 1 here – equilateral triangle] 

 

 

More interesting objects of symmetry can involve things like laws of nature (or their 

mathematical expressions), which can retain their content (or form) under transformations of 

frames of reference (or coordinate systems). Regardless of the subject matter, symmetry can 

usually be made precise via the mathematical terms of group theory, where it is naturally 

defined as invariance under a specified group of transformations.  The group theoretic 

framework makes precise the intuitive notion of ‘sameness in relation to change’ by showing 

how a symmetry group partitions the object of symmetry into equivalence classes, the 

elements of which are related to one another by symmetry transformations.
2
 

 

With this notion of symmetry in mind, let’s look at a simple toy example of a symmetry, and 

a related explanation. Consider a balance (a see-saw, say), in a state of equilibrium. Assume 

the balance remains in the state of equilibrium when particular forces are applied on its two 

arms. Why does the balance remain in balance? How do we explain this? The standard 

answer is to appeal to the (bilateral) symmetry of the situation: there is an appropriate 

equivalence between the forces on the two arms, so that the torque applied from each side to 

the pivot point is equal – viz. the net torque vanishes. Given this equivalence there are no 

                                                

2
 For details, see e.g. Olver (1995). 



grounds for the balance to move and hence it remains in equilibrium. Brading and Castellani 

(2003) call this a ‘symmetry argument’, and note that the lack of grounds can be understood 

as an application of the Principle of Sufficient Reason. Our interest lies in, first, the 

explanatory nature of the argument and secondly, and more importantly, in the role of 

symmetry as part of the explanans.  

 

 

[Picture 2 here – balance] 

 

Let’s see how the symmetry argument could be accommodated in the counterfactual-

dependence framework, which has at its core the idea that an explanation shows how the 

explanandum depends on the explanans.  Can we find in the case of the balance an 

explanatory (asymmetric) dependence, associated with counterfactual information that 

answers what-if-things-had-been-different questions?  

 

The answer is yes: the toy example fits the counterfactual-dependence account of causal 

explanation. The relevant physics is exceedingly simple, of course. The balance stays in a 

state of equilibrium if and only if the net torque on the pivot point is zero. This law-like 

connection between the (non-)equilibrium state of the balance and the forces involved 

obviously allows us to run the argument in both ways. On the one hand, from vanishing net 

torque we can deduce the state of equilibrium (assuming the balance was initially at rest). On 

the other hand, we can also deduce from a state of equilibrium the vanishing net torque. 

There is no asymmetry inherent in the law we employ in the explanation. (An attempt to 

capture the explanatory symmetry argument in the DN-model thus immediately runs into 

familiar problems regarding explanatory asymmetry.)  

 

Nevertheless, intuitively there is an obvious explanatory asymmetry to be found: we can 

change the net torque (by intervening on the forces involved) so as to thereby change the 

(non-)equilibrium state of the balance, but not the other way around. That is, we cannot 

change the net torque through somehow acting on the (non-)equilibrium state of the balance, 

without intervening on the forces involved. That is why is the vanishing net torque is not 

explained by the equilibrium state of the balance; it is only explained in terms of the forces 

that ‘sum up’ to zero. The counterfactual-dependence account of explanation, as developed 

by Woodward (2003), capitalizes on this explanatory asymmetry. In this case the 



counterfactual dependence involved has a natural interventionist-causal interpretation, of 

course. The explanation provides (high-level) information about the causes acting on the 

balance, and what would happen (vis-à-vis equilibrium) if the forces were different in the 

relevant ways.     

 

What role does symmetry play in the explanation then? Although we are dealing with a causal 

explanation, there is clearly a sense in which the explanandum depends on a symmetry 

exhibited by the system. Since any non-zero net torque would move the balance to a non-

equilibrium state, we can take as the relevant explanans a high-level feature of the system 

that abstracts away from lower-level information regarding the specific forces applied: all 

that matters for the explanation is whether or not there is a bilaterally equivalent, symmetrical 

distribution of forces. There is thus a natural sense in which the equilibrium depends on 

symmetry. Now of course, in this case, there are forces involved, so what we have is a 

symmetry of such causal factors. Nevertheless, we will next argue that this example of 

symmetry explanation is not that different from other examples of symmetry based 

explanations where the existence of such fundamental causal factors is either questionable, at 

best, or entirely lacking. 

 

3. Discrete symmetries  

 

The bilateral symmetry in the toy example above is an example of discrete symmetry. These 

are symmetries represented by groups involving discrete sets of elements (where these 

elements are typically enumerated by the positive integers). They frequently arise within 

physics, and include the well-known examples of Permutation Invariance and Charge-Parity-

Time symmetry. 

 

Let’s begin with Permutation Invariance.
3
 To get an idea of what it involves, consider the 

standard example of two balls distributed over two boxes. Classically, we obtain four 

possible arrangements, but in quantum mechanics only three arise: both balls in the left hand 

box (say), both in the right hand box, or one ball in each. The crucial point is that a 

permutation of balls between the boxes is not counted as giving rise to a new arrangement, 

                                                

3
 See French and Rickles (2003), and French and Krause (2006), for details. 



and it is upon this exemplification of Permutation Invariance that all of quantum statistics 

rests. In most textbooks on the subject this is taken to come in just two forms. Bose-Einstein 

statistics, which – in terms of our simple example – allows for both balls (or particles) to be 

in the same box (or state), applies to photons, for example. The alternative, Fermi-Dirac 

statistics, which applies to electrons, for example, prohibits two particles from occupying the 

same state. These two possibilities are encoded in what is generally taken to be a fundamental 

symmetry of quantum mechanics, captured by the ‘Symmetrization Postulate’, which says 

that the relevant wave or state function must be either symmetric – corresponding to Bose-

Einstein statistics – or anti-symmetric – generating the Fermi-Dirac form. However, as is 

well-known, the mathematics of group theory allows for other possibilities, including the 

statistics of so-called ‘paraparticles’.
4
 These further possibilities are encoded in a broader 

principle, known as Permutation Invariance, which, when applied to a particular system, 

dictates that the relevant Hamiltonian of the system must commute with the group theoretic 

particle permutation operator (French and Rickles op. cit.; French and Krause op. cit.).
5
 

Although parastatistics do not appear in nature (as far as we know)
6
 Permutation Invariance 

is generally regarded as the more fundamental symmetry principle (Greenberg and Messiah 

1964).
7
  

 

Now, consider the following as an example of the role of Permutation Invariance in an 

explanation. Those stars that develop into red giants but have masses less than four times that 

of the sun (which thus includes the sun itself) will in due course undergo a collapse, until 

they form a so-called ‘white dwarf’. (White dwarves’ average diameter is of the order of the 

Earth’s diameter, and they have correspondingly massive density.) The explanation of the 

collapse has to do with the fact that such stars do not have sufficient energy to initiate the 

                                                

4 ‘Infinite’ statistics are also allowed (Greenberg 1990) and in spaces of less than three dimensions one obtains 

‘braid’ statistics and anyons. 

5
 Permutation Invariance thereby divides Hilbert space up into superselection sectors corresponding to the 

possible types of permutation symmetry associated with the different kinds of particles (bosons, fermions, 

para-bosons, para-fermions and so on). 

6
 Although it was suggested in the mid-1960s that quarks might be paraparticles of a certain statistical 

type, this was subsequently abandoned in favour of a description in terms of the property that became 

known as ‘colour’, leading to the development of quantum chromodynamics (French 1995). 

7
 It also grounds the well-known discussions of particle indistinguishability in quantum physics; see 

French and Krause op. cit.. 



fusion of carbon (their hydrogen having been used up) and thus the balance between the 

gravitational attraction and the outward thermal pressure is disturbed, in favour of the former.  

However, there is a further phenomenon that demands explanation: why, at a certain point, 

does this collapse halt? The answer, given in the physics textbooks, is that this has to do with 

‘electron degeneracy’, understood in this case as the result of the application to stellar 

statistical physics of Pauli’s Exclusion Principle (PEP). The central idea is that according to 

PEP, no two electrons can be in the same state, and hence as the star contracts, all the lower 

energy levels come to be filled, so the electrons are forced to occupy higher and higher 

levels, which creates an ‘effective pressure’ that eventually balances the gravitational 

attraction.  

 

The explanation of the halting of the white dwarf collapse thus critically turns on PEP. We 

regard it as a symmetry-based explanation since PEP, furthermore, drops out of the 

Symmetrization Postulate, which, we recall, requires the wave functions of all known types 

of particle to be either symmetric, yielding bosons, or anti-symmetric, corresponding to 

fermions, which behave according to Fermi-Dirac statistics. It is the latter anti-symmetry that 

gives rise to PEP. This distinction corresponds to perhaps the most fundamental natural kind 

distinction there is as fermions make up what we might call the ‘material’ particles, whereas 

bosons are the ‘force carriers’.
8
  

 

It has been suggested that this represents an example of a non-causal explanation of a 

physical phenomenon, given that Pauli’s Principle puts a global constraint on possible states 

of the system.
9
 How should this explanation be understood? A number of philosophers have 

fretted over this question. Lewis, for example, talks of PEP as representing ‘negative 

information’ about causation:  

 

                                                

8
 But as we also noted, the restriction to only symmetric and anti-symmetric wave-functions is in fact a 

contingent feature of the world and other symmetry types are theoretically possible, corresponding to para-

particle statistics, as permitted by the broader requirement of Permutation Invariance. 

9
 Interestingly, physicists never call Pauli’s Principle a ‘law’. If considered as such, PEP is a law of co-

existence, as opposed to a law of succession. The former restrict positions in the state-space, while the 

latter restrict trajectories in (through) the state-space. (See van Fraassen 1991, 29.) It is also a global 

constraint that concerns the universe as a whole, not some subsystem of it.  



“A star has been collapsing, but the collapse stops. Why? Because it’s gone as far as it 

can go. Any more collapsed state would violate the Pauli Exclusion Principle. It’s not 

that anything caused it to stop—there was no countervailing pressure, or anything like 

that. There was nothing to keep it out of a more collapsed state. Rather, there just was 

no such state for it to get into.  The state-space of physical possibilities gave out. … 

[I]nformation about the causal history of the stopping has been provided, but it was 

information of an unexpectedly negative sort.  It was the information that the stopping 

had no causes at all, except for all the causes of the collapse which were a 

precondition of the stopping.  Negative information is still information.” (Lewis 1986, 

222–23) 

 

Attempting to shoehorn this into the causal framework by suggesting that the lack of causal 

information is still indicative of causal relevance, might strike many as a desperate 

manoeuvre. Skow (2014), however, has recently argued that it can be brought into the causal 

framework, insisting, first, that it is not the case that the stopping had no causes at all and 

second, that there are in fact states for the electrons to ‘get into’. 

 

With regard to the first point, Skow notes that many physics textbooks standardly refer to the 

‘pressure’ of a degenerate electron gas in this and other cases. He insists that there is, 

therefore, a sense in which we can attribute a countervailing pressure to the gravitational 

attraction, so that the explanation can be regarded as causal. It is important to note, as Skow 

himself does, that the so-called ‘pressure’ in this case is very different from that ascribed to a 

gas, say, since it is not due to any underlying electrostatic force, or indeed any force at all. 

Indeed, in the years following the establishment of PEP physics struggled to disentangle itself 

from the understanding of it in terms of ‘exclusion forces’ and the like (Carson 1996). Thus, 

one might be inclined to argue that the use of the term ‘pressure’ here is no more than a façon 

de parler, or a pedagogic device, and that in terms of our standard conception of pressure as 

grounded in certain causal features relating to the relevant forces involved (typically 

electromagnetic), there is simply no such thing as ‘degeneracy pressure’. 

 

Skow rejects such a move, insisting that terms in quantum statistical physics, such as 

‘pressure’ and, indeed, ‘temperature’, have escaped their thermodynamic origins and must be 

conceived of in more abstract terms than as resulting from the force based interactions of 

particles or as identical to mean molecular kinetic energy, respectively (op. cit. pp. 458-459). 



Rather, according to Skow these terms should be regarded as dispositional: as the disposition 

of a system to transfer energy or ‘volume’, respectively, to another body. Thus, something 

other than repulsive forces between constituents – such as the consequences of PEP, for 

example – can contribute to the pressure of a system, rendering the ‘degeneracy pressure’ 

explanation causal, after all.
10

  

 

Now we might just pause at this point and wonder whether ‘pressure’, characterised in such 

abstract terms, can be understood as appropriately causal. After all, in the case of the white 

dwarf star, this ‘transfer of volume’ still does not proceed via any of the known forces and it 

is unclear how to understand this notion in causal terms. Nevertheless, we shall be charitable 

and set these issues specific to statistical physics to one side as we believe there are reasons 

for thinking that non-statistical explanations essentially involving PEP clearly go beyond the 

causal framework.  

 

                                                

10
 With regard to Skow’s second point, concerning Lewis’ claim that the collapse stops because there is no 

state for the star as a whole to get into, Skow insists that this claim is also false (op. cit., pp. 459-460). As 

he points out, what PEP excludes are states of the star in which more than one electron is in the same 

quantum state. However, he argues, since there are always infinitely many states available, the electrons 

never run out of states to get into (because there are always some empty ones available, albeit of high 

energy), no matter how small the star is. Hence the fact that the star stops collapsing at a certain size has 

nothing to do with the lack of available states for the electrons to occupy. According to Skow, ‘no matter 

how small the star’s radius, the electrons never run out of states because there are infinitely many of them. 

’ (op. cit., p.460) Thus, the cessation of the star collapse is ‘not because a state with a smaller radius is 

physically impossible, but because the star has reached the radius at which the outward-directed pressure 

in the star exactly balances the inward-directed gravitational forces. This is a paradigmatically causal 

explanation.’ (ibid.) However, we think it is odd to insist that the radius of the star can be disassociated 

from the availability and occupation of electron states, since it is the latter that determine the former: the 

higher the energy state, or, putting it somewhat crudely, the further away the energy level is, the bigger the 

star. Skow is right in that the collapse stops when the star reaches a radius at which the degeneracy 

‘pressure’ balances the gravitational attraction, but given that attraction (i.e. given the mass of the star) 

PEP ensures that it is impossible for the star to achieve a smaller radius, without a reduction in the number 

of particles (which is possible through a fusion of protons and electrons into neutrons, via inverse beta-

decay). When he insisted that the state-space of possibilities gave out, Lewis was assuming the constraint 

imposed by the gravitational attraction – under those conditions, and given PEP, for the star to occupy a 

state corresponding to a smaller radius is a physical impossibility for a star of a given number of fermions. 



Consider, for example, the explanation of chemical bonding. In 1927 Heitler and London 

explained the bonding in a homonuclear molecule such as H2 by explicitly invoking PEP. It 

had become evident that the attraction between two hydrogen atoms could not be accounted 

for in terms of Coulomb forces; the key, as Heitler realised, lay with the so-called exchange 

integral, previously introduced by Heisenberg, which was something purely quantum 

mechanical, with no classical analogue (Gavroglu 1995, p. 45). Heitler and London 

proceeded from the fundamental basis that the electrons were indistinguishable and hence the 

usual way of labelling them when writing out the relevant wave function had to be re-

thought.
11

 It then followed that the electronic wave function of the two-atom system had to be 

written in either symmetric or anti-symmetric form, according to the Symmetrization 

Postulate. With the electron spins incorporated, PEP dictates that the anti-symmetric form be 

chosen, with spins anti-parallel. This corresponds to the state of lower energy and attraction 

is thus understood on the basis of energy minimization. Thus, by deploying the Exclusion 

Principle chemical valence and saturation could be understood and the ‘problem of 

chemistry’ solved, or as Heitler put it, ‘Now we can eat chemistry with a spoon!’ 

 

This forms the basis of valence bond theory, further developed by Pauling and others, and 

which is now regarded as complementary to molecular orbital theory. Unlike the former, the 

latter does not assign electrons to distinct bonds between atoms and approximates their 

positions via Hartree-Fock or ‘Density Function’ techniques. The former explicitly applies 

PEP right at the start, to obtain what is known as the Slater determinant, in the case of 

fermions, where this describes the N-body wave-function of the system, and from which one 

can then obtain a set of coupled equations for the relevant orbitals. The latter begins with the 

electron density in 3 spatial coordinates and via functionals of that density reduces the N-

body problem of a system with 3N coordinates to one of 3 coordinates only. Again the 

technique explicitly incorporates the ‘exchange interaction’ due to PEP, and together valence 

bond theory and molecular orbital theory offer a complementary range of tools and 

techniques for describing and explaining various aspects of chemical bonding. Despite its 

name, exchange interaction (also sometimes called exchange force) is best construed as a 

                                                

11
 In effect, the labels have to be permuted and an appropriate wave function then constructed. This 

permutation of the labels was, at the time, understood as signifying that the particles should not be 

regarded as individuals, although as it turns out, they can be albeit at a certain (metaphysical) cost; see 

French and Krause op. cit. 



purely kinematical consequence of quantum mechanics, having to do with the possible multi-

particle wavefunctions allowed by PEP (or, more generally, Permutation Invariance).    

 

For a specific illustration of the explanatory contribution of this kind of kinematic constraint, 

consider the solubility of salt. Examining the explanation of solubility brings out its non-

causal character. We begin with the formation of an ionic bond between Na+ and Cl-, with 

the bond-dissociation energy (Ediss) measuring the strength of a chemical bond the breaking 

of which is required for substance to dissolve: 

 

!"#$$ = !& + !( −
*+,

-
+ .
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-
 

 

Here the first term stands for the ionization energy, the second for the electron affinity, the 

third for the Coulomb attraction, and the fourth describes the energy associated with the so-

called ‘Pauli repulsion’, arising from PEP.
12

 In this case, perhaps even more clearly than 

above, the sense of ‘repulsion’ is that of a façon de parler. The contribution of this 

symmetry-based term to the dissociation energy is critical, and it does not have a causal 

origin unlike the other terms, corresponding to none of the four known forces. Furthermore, 

there is no equivalent move available here to statistical abstraction, as in the case of quantum 

statistical ‘degeneracy pressure’. 

 

Before we go on to analyse this explanation, it’s worth noting that examples of PEP-based 

explanations proliferate: numerous mechanical, electromagnetic and optical properties of 

solids are explained by invoking PEP, including, indeed, the stability of matter itself.
13

 

Perhaps in certain scenarios, such as that of the white dwarf collapse, a case can be made that 

the explanation involved can be accommodated within a broad causal (and, if this is the 

direction in which one’s metaphysical inclinations run, dispositionalist) framework. 

However, in the light of the wide range of explanations of very different kinds of phenomena 

                                                

12
 For the Pauli repulsion diagram for salt, see http://hyperphysics.phy-

astr.gsu.edu/hbase/molecule/paulirep.html#c1 

13
 For a quantum theoretic, PEP-based explanation of stability of matter, see e.g. Dyson and Lenard 1967 

and 1968. This was already anticipated by Fowler (1926), who only two years after Pauli’s proposal of his 

exclusion principle, suggested that PEP explains white dwarves’ stability. 



that turn on PEP (and the Permutation Invariance from which it is derived), we would argue 

that the recognition of the explanatory role played by this fundamental symmetry motivates a 

move beyond the causal schema to the framework of counterfactual dependence. 

 

How, then, should we characterise these explanations? Let us begin by recalling that at the 

heart of the counterfactual-dependence view of explanation is the idea that an explanation 

proceeds on the back of some form of dependence between that which is described by the 

explanans and the phenomena captured by the explanandum. Strevens also considers, in this 

spirit, the example of the halting of white dwarf collapse and the role of PEP within his 

kairetic approach to explanation: 

 

‘What relation holds between the law [PEP] and the arrest, then, in virtue of which the 

one explains the other? Let me give a partial answer: the relation is, like causal 

influence, some kind of metaphysical dependence relation. I no more have an account 

of this relation than I have an account of the influence relation, but I suggest that it is 

the sort of relation that we say “makes things happen”.’ (Strevens 2008, 178)  

 

Metaphysically one can explicate this dependence in various ways (see French 2014), but 

what we regard as important with respect to the philosophy of explanation is that it can be 

cashed out via counterfactual dependence and thus can underwrite the appropriate 

counterfactual reasoning. Explanations, whether causal or non-causal, can be supported by a 

theory that correctly depicts a space of possible physical states with a sufficiently rich 

structure, such that it grounds robust reasoning that answers ‘what-if- things-had-been-

different’ questions.
14

 Such facts about state-space is precisely what we have in the white 

dwarf case, as Lewis noted.  Similarly, in the explanation of salt’s solubility, and in a host of 

other explanations, PEP imposes a global constraint upon a space of possible physical states, 

yielding the robust explanatory dependence of the explanandum on the global symmetry. Due 

to the global character of that constraint the relevant counterfactuals are quite different from 

the interventionist counterfactuals associated with causal explanation. But the spirit of the 

Woodwardian counterfactual framework still holds. 

                                                

14
 See  Saatsi (2015) for examples of explanations where the relevant structure of the space of possible 

states concerns closed loops (holonomies) in state space.  



 

In the case of PEP, the relevant counterfactuals involving changes in the explanans turn on 

asking ‘what if PEP did not apply?’.   Note that what we have here is a ‘contra-nomic’ 

counterfactual (lumping laws and symmetries together for these purposes). There are, of 

course, a number of significant issues associated with how we evaluate such counterfactuals 

but which we do not have the space to go into here. Instead we shall limit ourselves to 

explicating it, and answering the question, in the context of our concrete examples. 

 

In the case of the explanation of the solubility of salt, if PEP did not apply, then the crucial 

ionic bond would not form in the first place and we would not have any salt to begin with! 

More fundamentally, if PEP did not apply then that would imply that electrons would not be 

fermions and we would not even have ions of sodium and chlorine because there would not 

be the constraint that leads to electrons occupying the relevant energy states in the way that 

underpins ionisation (or, indeed, the formation of atoms!). In the case of the white dwarf, if 

PEP did not apply – viz. if the particles involved were not fermions – the Symmetrization 

Postulate dictates that the relevant quantum mechanical wave function must be symmetrised, 

yielding Bose-Einstein statistics. Of course, under that form of statistics the white dwarf 

collapse would not halt at all; indeed, what we would end up with is a form of ‘Bose-Einstein 

condensate’. For phenomena for which the requirement of symmetric wave functions is 

appropriate, the symmetrization postulate serves as an explanans for a whole host of different 

phenomena, from lasers to superconductivity and the ‘fountain effect’ in liquid helium-4, 

where very small temperature differences lead to dramatic (and ultimately non-classical) 

convection effects (see Bueno, French and Ladyman 2002). And we can go further: if we 

replace the Symmetrization Postulate with the arguably even more fundamental requirement 

of Permutation Invariance, then, with the possibility of paraparticle statistics, we get a whole 

host of counterfactuals – indeed an infinite number – rather than just two. Here, quite 

interesting statistical behaviour emerges if we ask ‘what if there were paraparticles of order 

such-and-such?’ for example. Or more generally perhaps, ‘what if we have deviations from 

either Bose-Einstein or Fermi-Dirac statistics?’ (see, for example, Greenberg 1992).
15

 And 

                                                

15
 So, returning to the example of salt, we might ask, not just ‘what if electrons were bosons?’, in which 

case what we call ‘matter’ would look ad behave very differently indeed (!), but ‘what if electrons were 

paraparticles of some order?’. In that case, not everything would degenerate into a Bose-Einstein 



we can go further still: as already noted, in spaces of less than three dimensions, one can 

obtain kinds of particles (or, rather, ‘quasi-particles’) known as anyons
16

, which explain the 

fractional quantum Hall effect, regarded as representing a new state of matter manifesting so-

called ‘topological order’.
17

 

 

To sum up, we have argued that in connection with explanations turning on fundamental 

discrete symmetries such as PEP we can avail ourselves of a counterfactual framework, but 

drop the requirement of interventions that effectively mark a causal dependence. What 

distinguishes the kinds of explanations we are concerned with from causal ones is the nature 

of the explanans. The relevant counterfactuals are theoretically well-formed (in the sense of 

being grounded in the relevant – mathematically described – physics), and if true they are 

indicative of dependence relations that hold between various explananda and fundamental 

symmetries of the world. But these dependence relations are not causal by virtue of involving 

a global kinematic constraint on the available physical states – an explanans for which the 

notion of intervention seems inapplicable.  

 

We will bring our discussion of discrete symmetries to a close by suggesting that this analysis 

can also be extended to cases other than Permutation Invariance. One example is the 

explanation of universality of critical phenomena, which arguably crucially involves a non-

causal dependence between specific universality classes, on the one hand, and a discrete 

symmetry property of the micro-level interactions (the symmetry of the ‘order parameter’), 

on the other. This dependence is brought out by renormalization group analyses of statistical 

systems (Reutlinger 2016). For another example, consider the so-called CPT Theorem and 

the explanations that invoke it. The theorem states that all Lorentz-invariant quantum field 

theories must also be invariant under the combination of charge conjugation (swapping + for 

                                                

condensate and quite interesting statistical behaviour would result. The point is, however, that changing 

the explanans would yield very different consequences. 

16
 As already noted in fn 4, These are described by the ‘braid’ group which generalizes the permutation 

group. 

17 Anyons are described as ‘quasi-particles’ since it remains contested whether they should be regarded as 

effectively mathematical devices or real; an experiment supposedly demonstrating the latter remains 

controversial (Camino, Zhou, and Goldman 2005). However, further suggestions have been made involving the 

experimental manipulation of anyons (see Keilmann et. al. 2011).  



– charges and vice versa; i.e. swapping matter for anti-matter), parity reversal (reflection 

through an arbitrary plane or flipping the signs of the relevant spatial coordinates of the 

system) and time reversal (flipping the temporal coordinate). It has been invoked to prove the 

Spin-Statistics Theorem, which states that particles that obey Bose-Einstein statistics must 

have integral spin and those that obey the Fermi-Dirac form must have half-integral spin.
18

 

Violations of the components of the invariance also feature in scientific and philosophical 

explanations. For example, violation of CP symmetry has been used to explain the 

preponderance of matter in the universe, rather than an equal distribution of matter and anti-

matter as would be expected. Our hunch is that such explanations also involve assumptions 

about non-causal counterfactual-dependencies, but we shall not pursue this further here. 

 

4. Continuous symmetries 

 

Let’s now move on to consider the other significant kind of symmetry found in science, 

continuous symmetries, and explanations they can support. Continuous symmetries are 

described by continuous groups of transformations (in particular the Lie groups which cover 

smooth differentiable manifolds and which underpin Klein’s ‘Erlangen’ programme of 

systematizing geometry). They are embodied in classical claims regarding the homogeneity 

and isotropy of space and the uniformity of time, and are accorded fundamental primacy over 

the relevant laws in the context of Special Relativity, where the Lorentz transformations are 

effectively promoted to universal, global continuous spacetime symmetries. The extension of 

such symmetries beyond the space-time context, to the so-called local ‘internal’ symmetries 

in the context of fundamental interactions represents one of the major developments in 

physics of the past hundred years or so, underpinning the so-called Standard Model (see, for 

example, Martin 2003). 

 

One of the most celebrated explanatory uses of such continuous symmetries appeals to 

Noether’s famous theorem, connecting continuous symmetries to the existence of conserved 

quantities. The issue of how to interpret that connection has been the subject of some debate. 

Thus, although many scientists and philosophers regularly speak of conservation laws being 

explained by symmetries or by Noether’s theorem itself, some have challenged this idea. 

                                                

18
 And likewise for parastatistics, since we’ve mentioned them.  



Brown and Holland (2004), for example, point to the two-way nature of Noether’s (first) 

theorem: it not only allows for a derivation of conserved quantities from dynamical 

symmetries, but equally for the derivation of dynamical symmetries from knowledge of 

which quantities are conserved:
19

  

 

“[The] theorem allows us to infer, under ordinary circumstances for global 

symmetries, the existence of certain conserved charges, or at least a set of continuity 

equations. The symmetry theorem separately allows us to infer the existence of a 

dynamical symmetry group. We have now established a correlation between certain 

dynamical symmetries and certain conservation principles. Neither of these two kinds 

of thing is conceptually more fundamental than, or used to explain the existence of, 

the other (though as noted earlier if it is easier to establish the variational symmetry 

group, then a method for calculating conserved charges is provided). After all, the real 

physics is in the Euler–Lagrange equations of motion for the fields, from which the 

existence of dynamical symmetries and conservation principles, if any, jointly 

spring.” (p. 1138)  

 

Lange (2007) concurs that “it is incorrect to appeal to Noether’s theorem to secure these 

explanations”, also pressing the point about the theorem’s two-way directionality: “The link 

that Noether’s theorem captures between symmetries and conservation laws is (ahem!) 

symmetric and so cannot account for the direction of explanatory priority.” (p. 465) Lange 

does not conclude that continuous symmetries cannot play an explanatory role, however, as 

he goes on to provide his own ‘meta-laws’ account of the modal hierarchy of symmetries and 

conservation laws with the intention to secure the explanatory priority of symmetries. We 

will comment on this account in due course, but let’s first consider further the two-way 

directionality of Noether’s theorem.  

 

In our view – from the counterfactual-dependence perspective – little hangs on the fact that 

Noether’s theorem represents a correlation between symmetries and conserved quantities. 

After all, most explanations in physics appeal to regularities that can underwrite derivations 

                                                

19
 Here we will only focus on Noether’s first theorem, which relates conserved quantities to continuous 

(global) symmetries in Lagrangian dynamics. The second theorem has to do with local symmetries (viz. 

symmetries that depend on arbitrary functions of space and time; see Brading and Brown 2003). 



running in two directions, only one of which may be considered explanatory. (Our toy 

example in §2 is a case in point, reflecting a point already familiar from explanations of 

flagpole shadows, pendulum periods, and so on.)  What matters, rather, is whether the 

physics that connects symmetries and conserved quantities can be regarded as uncovering 

genuine (causal or non-causal) dependencies that underwrite explanations in which 

symmetries function as explanans. If this can be done, then we can regard such dependencies 

as the source of the explanatory power of continuous symmetries.  

 

This can be done. To show how, we will first recall the relevant theoretical context. (For 

details, see e.g. Neuenschwander 2011.) Noether’s theorem concerns physical systems 

amenable to a description within Lagrangian dynamics, in which the system can be 

associated with a Lagrangian: a function of the system’s configuration variables and their rate 

of change. The system’s dynamical behaviour over time is such that it minimizes a functional 

of the Lagrangian over time. For a system in classical mechanics, for instance, this functional 

is the time integral of the difference between the kinetic and potential energies:  

 

1 = * − 2
3

/

45 = 6
3

/

45 

 

The requirement that the system’s actual dynamics follows a trajectory that minimizes this 

functional is called Hamilton’s principle. The coordinates of this trajectory will satisfy 

differential equations called Euler-Lagrange equations. 
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789
=
4

45
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In Lagrangian dynamics there are significant connections between symmetries and conserved 

quantities that flow out directly from the Lagrangian, without at all having to consider 

Noether’s theorem (and the more general connection between conserved quantities and 

symmetries of the functional). For instance, it is a straightforward corollary of the Euler-

Lagrange equations that canonical momentum :9 is constant if and only if 
;<

;=>
= 0.

20
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 Canonical momentum is defined as :9 =

;<

;=>
 for each coordinate 89 and its coordinate velocity 89. 



Similarly, it follows directly from the Euler-Lagrange equations that a system’s Hamiltonian 

is constant if and only if the Lagrangian does not explicitly depend on 5, viz. 
;<

;@
= 0. When 

the Hamiltonian (formally defined as A = :98
9 − 6) can be identified with (the numerical 

value of) the system’s energy, it can thus be seen that energy conservation is connected to 

symmetry under a time translation.  

 

These elementary connections between continuous symmetries and conserved quantities in 

the Lagrangian framework can be viewed as special cases of Noether’s theorem, which in its 

full generality need not come into play in deriving the conserved quantities for a given 

Lagrangian.
21

 Based on these connections, mathematical derivations can run in reverse, too, 

so as to establish symmetries of the Lagrangian from a given set of conserved quantities. 

Again, these connections in and of themselves say nothing about explanatory priority. In 

order to get a handle on that we need to consider the modal information provided by the 

physics. From the perspective of the counterfactual-dependence account, this explanatory 

priority is underwritten by the fact that in a typical application of these results to a particular 

system (e.g. the solar system) there is a natural sense in which the conserved quantities 

depend on the features of the system represented by the Lagrangian and its symmetries, but 

not the other way around. The Lagrangian and its properties reflect the relevant properties of 

the system being described: kinetic and potential energy functions, and whatever constraints 

there are to its dynamics. When we consider changes to these features of the system, we 

consider changing e.g. the spatial distribution of mass or charge, or their quantity. These 

changes can have an effect on regularities manifested by the system as it evolves over time: 

different features of the system may become constants of motion, properties whose values are 

unchanged over time. The point is that there is no way to alter these regularities concerning 

the system’s behavior – these constants of motion – directly as it were, without acting upon 

the features of the system that determine the system’s behavior. And it is the latter that 

feature in the Lagrangian, the symmetries of which thereby determine the constants of motion 

in a way that supports explanatory what-if-things-had-been-different counterfactuals.  

 

                                                

21
 Noether’s theorem is broader in that it relates conserved quantities to the symmetries of the functional 

(not just the Lagrangian), yielding conserved quantities that are linear combinations of A and :9. 



This asymmetry is best illustrated with a concrete example. For an elementary case, consider 

a particle moving under a central force. In spherical coordinates -, C, D , the potential 

energy 2 -  of the particle depends only on the radial coordinate -, when a spherically 

symmetric source of e.g. gravitational or electric force field is located at the origin. The 

kinetic energy function 

 

* =
E

,
FG, =

E

,
F -, + -,C, + -D, sin, C  

 

feeds into the Lagrangian 6 = * − 2 - . From Euler-Lagrange equations we get as 

(separate) constants of motion the azimuthal and polar components of the orbital angular 

momentum: :K = F-,C and :L = F-,D sin, C. This is why the particle’s trajectory is 

constrained to a plane; this regularity about the dynamics depends on the symmetry of the 

Lagrangian (viz. symmetry of kinetic and potential energy functions). 

 

Changing the potential energy function, either in its strength (by varying the amount of mass 

or charge at the center), or in its spatial geometry by breaking the spherical symmetry in 

favour of some other symmetry, will have effects on the dynamical behaviour of bodies 

moving under the potential. These effects are reflected also in the regularities of the dynamics 

captured by the constants of motion. Grasping the connection between these constants of 

motion and the symmetries of the Lagrangian enables us to answer what-if-things-had-been-

different questions such as: What if the source were not spherically symmetrical? What if the 

source were a spheroid, as opposed to a sphere? What if the spheroid revolved about its 

minor axis? What if it oscillated in a particular way? From the counterfactual-dependence 

perspective this kind of modal information is explanatory: it places the explanandum in a 

pattern of counterfactual dependencies (as Woodward puts it), thus bringing out how the 

regular aspects of the dynamics captured by the conserved quantities depend on the 

symmetries.
22
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 This is analogous to the connection between a gravitational pendulum’s length and its period. For a 

given pendulum, we can explain a feature of its dynamical behavior over time, namely its period, in terms 

of its length (and the gravitational potential). But we do not explain the pendulum length in terms of the 

period, even though the pendulum law allows for its derivation. 



In this simple example the asymmetry of dependence is amenable to a ‘manipulationist’ 

interpretation, given that the notion of intervention is applicable to the relevant features of the 

central force system that function as the explanans (cf. Woodward  2003). However, it is 

worth noting that the explanandum is a regularity, and it’s not clear whether there is a 

corresponding event explanandum at all. This casts some doubt on whether the explanation in 

question should really count as causal. (Saatsi and Pexton, 2013) Furthermore, we will now 

argue that such an interventionist interpretation of symmetry qua explanans need not always 

be available, and even if it is not available, the derivation of conserved quantities from 

symmetries can nevertheless be explanatory.  

 

In particular, assume that the closed system we are concerned with is the whole universe with 

its dynamical laws, represented via the Lagrangian, exhibiting certain symmetries. We can, 

again, answer counterfactual questions of the sort ‘What if the universe were not symmetrical 

in this or that way?’. Answers to such what-if-things-had-been-different questions bring out 

the way in which particular conservation laws are counterfactually related to the symmetries 

at stake, even though it is not clear that counterfactuals regarding alternative symmetries can 

be interpreted in causal terms, with reference to possible manipulations or interventions. The 

global symmetries of dynamical laws seem intuitively on a par with e.g. the dimensionality of 

space – a global feature which Woodward once mooted as grounding a non-causal 

counterfactual-dependence explanation of the stability of planetary orbits (Woodward 2003, 

§5.9).  

 

One might worry that we do not have a sufficiently solid grasp on the sense of counterfactual 

‘dependence’ between the symmetries of dynamical laws and conservation laws. Why 

dependence, as opposed to a mere correlation, as Brown and Holland suggest? We think the 

reason that physicists often give explanatory priority to symmetries over conservation laws 

has to do with the fact that in analogous applications of Noether’s theorem to particular 

subsystems of the universe, such as the central-force system examined above, the explanatory 

priority is transparent, partly due to the applicability of notions of manipulation and 

interventions. Explanatory reasoning about the relationship between conserved quantities and 

symmetries is naturally extended from such subsystems, involving e.g. central or harmonic 

forces, to symmetries of the laws covering the whole universe. Given the tight connection 

between conserved quantities and continuous symmetries in the Lagrangian framework – a 

connection which Noether’s theorem captures in highly general terms – we naturally 



understand and explain conservation laws in terms of symmetries. This provides a non-causal 

explanation of particular conservation laws, capturing pervasive regularities of dynamical 

systems. 

 

The explanatory dependence appealed to here need not be a matter of deep metaphysics. 

Indeed, in as far as our understanding of the counterfactual-dependence analysis of 

explanation is concerned, this perspective is meant to be compatible with both Humean and 

non-Humean approaches to the metaphysics of modality and laws. Remember that for the 

Humean, dynamic and conservation laws alike are just statements of worldly regularities, the 

special status of which is underwritten by features of the whole global ‘mosaic’ of particular 

facts. Understanding the law-like status of those regularities is partly a matter of grasping 

which features of the mosaic are responsible for that special status. For the regularities 

involving conserved quantities, the relevant features involve symmetries, statements 

regarding which would feature as axioms in the relevant formalisation, according to the Best 

System Analysis of laws. Grasping how those symmetries are responsible for the regularities 

that conservation laws represent is only a matter of seeing how mosaics with different 

symmetries would yield different conservation laws. For the Humean there is no deeper 

metaphysical connection between symmetries and conservation laws: both concern 

regularities of the mosaic, connected by Noether’s theorem. The connection is necessary to a 

stronger degree of necessity than nomological or causal necessity, and as such comparable to 

‘distinctly mathematical’ explanations. (Lange 2013; Jansson and Saatsi, forthcoming)
23

 

Admittedly there is much more to be said to elaborate on this sketch, and the nature of 

conservation laws and symmetries is a largely unexplored area of Humean metaphysics of 

science.
24

  

 

Alternatively, one can could try to accommodate such symmetries within a dispositionalist 

approach to modalities and laws. Bird (2007) dismisses symmetries as temporary features of 

science, to be dropped from our metaphysics as science progresses. And certainly, the 

prospects for capturing symmetries via the standard stimulus-and-manifestation 

characterisation of dispositions look dim (see French forthcoming). Nevertheless, one might 
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 See also Saatsi and Reutlinger (forthcoming) for related point of view on renormalization group 

explanations.  

24
 For a significant exception, see Yudell (2013).  



adapt some of the recently proposed metaphysical devices in this area to articulate an account 

of how symmetries might be understood as obtaining from a powers based metaphysics (see 

Vetter 2015). More plausibly, perhaps, if one were to insist on giving modality some 

metaphysical punch, as it were, one could interpret symmetry principles such as Permutation 

Invariance as ‘encoding’, in a sense, the relevant possibilities. By virtue of that, they could 

then be understood as inherently or, perhaps, primitively, modal. If, further, such principles 

were taken to be features of the structure of the world, one would reach a position that could 

be considered a ‘third way’ between Humean and dispositionalist accounts (French 2014). 

And of course, on such a view, the role of such principles as the explanans in the kinds of 

explanations we have considered here would correspond with their ontological priority as 

such structural features. 

 

However, our central point about the explanatory character of symmetry explanations is 

meant to be independent of the metaphysics of modality that underwrites the explanatory 

counterfactuals that, in turn, answer the relevant what-if-things-had-been-different questions. 

This is in contrast with Lange (2007), who regards symmetry principles in science as deeper 

meta-laws that constrain the laws there could be: given such meta-laws, the range of possible 

laws is restricted to those that comply with the symmetry principles in question. Lange 

motivates this anti-Humean metaphysics of (meta-)laws by drawing on utterances from 

prominent scientists, such as Feynman: 

 

“When learning about the laws of physics you find that there are a large number of 

complicated and detailed laws, laws of gravitation, of electricity and magnetism, nuclear 

interactions, and so on, but across the variety of these detailed laws there sweep great 

general principles which all the laws seem to follow. Examples of these are the principles 

of conservation. All the various physical laws obey the same conservation principles.” 

(Feynman, 1967, pp. 59, 83)  

  

Although we are sympathetic with the naturalistic spirit of Lange’s programme, we also see it 

as potentially question-begging against the competing Humean accounts. From the 

perspective of a non-governing conception of laws, the idea that laws are governed by higher 

symmetry principles is obviously problematic, to say the least. Furthermore, arguably the 

Humean has an alternative account to offer, as indicated above. As far as symmetries are 



employed to explain particular law-like regularities, including specific conservation laws, we 

maintain that this can be captured in the counterfactual-dependence framework.  

 

Admittedly one can ask a deeper question of why various laws are unified in such a way that 

they are seemingly governed by one and the same symmetry principle. (For example, why are 

Newton’s gravitational law and Coulomb’s law both symmetric under arbitrary spatial 

displacement?) But although answers to this question are probably not amenable to 

counterfactual-dependence treatment, it seems to us that the question may not have a 

scientific explanation at all. Lange provides one metaphysical answer to it, Humeans offer 

another, and structural realists yet another. Assessment of the respective vices and virtues of 

these competing answers is a matter of wholesale comparison of ‘metaphysical packages’, 

and must be left for another occasion. Let us just say that appealing to scientists’ sense of 

‘governance’ at the level of broad symmetry principles and meta-laws is potentially question 

begging in the way such appeal has been deemed problematic at the level of laws ‘governing’ 

events and regularities (Beebee 2000). 

 

We will not pursue this metaphysical issue further here, but instead comment on Lange’s take 

on Noether’s theorem. According to Lange, Noether’s theorem is irrelevant for explaining 

conservation laws. The argument partly turns on the noted symmetry of the theorem, already 

discussed above, and partly on the fact that “explanations [of conservation laws] were given 

long before anything resembling Noether’s theorem had been even remotely stated” (2007, p. 

465) Lange is right to note this, of course, and we also emphasized the fact that in Lagrangian 

dynamics symmetries can be linked to conserved quantities in straightforward ways that do 

not demand anything like the full generality of Noether’s theorem. Having said this, it seems 

to us that Noether’s theorem is nevertheless explanatorily relevant in the following sense: it 

functions in a way analogous to an extremely broad-ranging invariant generalization in 

supporting counterfactual reasoning, by providing a link between symmetries and 

conservation that enables us to answer what-if-things-had-been-different questions for a 

maximal range of alternative situations. As such, the explanatory relevance of Noether’s 

theorem is comparable to that of Euler’s mathematical proof (regarding the necessary and 

sufficient conditions for a graph to have a Eulerian circuit) in relation to the impossibility of 

traversing all Koenigsberg’s bridges by crossing each only once. In both cases we could in 

principle appeal to much more narrow-ranging generalizations connecting the relevant 



variables, but the respective mathematical theorems have maximal generality. (Cf. Jansson 

and Saatsi (forthcoming) for related discussion of the Koenigsberg case.) 

 

5. Conclusion 

We started our discussion of symmetry explanations with an exceedingly simply toy 

example, a balance remaining in a state of equilibrium, which was explained by a symmetry 

of the forces involved. The more interesting real-life symmetry explanations discussed 

thereafter vary in their features, involving: discrete vs. continuous symmetries; local vs. 

global symmetries; symmetries that are fundamental vs. non-fundamental. Despite this 

variance, the cases we have discussed are unified in their explanatory character, which, we 

have argued, is naturally captured in the counterfactual-dependence framework.  
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Figure 1: Equilateral triangle with its three axes of symmetry. 

 

 

 

 

 

 

 



Figure 2. Balance

 


