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The advent of graphene and related 2D materials
1,2

 has recently led to a new technology: 

heterostructures based on these atomically thin crystals
3
. The paradigm proved itself extremely 

versatile and led to rapid demonstration of tunnelling diodes with negative differential 

resistance
4
, tunnelling transistors

5
, photovoltaic devices

6,7
, etc. Here we take the complexity and 

functionality of such van der Waals heterostructures to the next level by introducing quantum 

wells (QWs) engineered with one atomic plane precision. We describe light emitting diodes (LEDs) 

made by stacking up metallic graphene, insulating hexagonal boron nitride (hBN) and various 

semiconducting monolayers into complex but carefully designed sequences. Our first devices 

already exhibit extrinsic quantum efficiency of nearly 10% and the emission can be tuned over a 

wide range of frequencies by appropriately choosing and combining 2D semiconductors 

(monolayers of transition metal dichalcogenides). By preparing the heterostructures on elastic and 

transparent substrates, we show that they can also provide the basis for flexible and semi-

transparent electronics. The range of functionalities for the demonstrated heterostructures is 

expected to grow further with increasing the number of available 2D crystals and improving their 

electronic quality.  
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The class of 2D atomic crystals
1
, which started with graphene

2
 now includes a large variety of 

materials. However, the real diversity can be achieved if one starts to combine several such crystals 

in van der Waals heterostructures
3,8

. Most attractive and powerful is the idea of band-structure 

engineering, where by combining several different 2D crystals one can create a designer potential 

landscape for electrons to live in. Rendering the band-structure with atomic precision allows tunnel 

barriers, QWs and other devices, based on the broad choice of 2D materials. 

Such band-structure engineering has previously been exploited to create LEDs and lasers based on 

semiconductor heterostructures grown by molecular beam epitaxy
9
. Here we demonstrate that 

using graphene as a transparent conductive layer, hBN as tunnel barriers and different transition 

metal dichalcogenides (TMDC)
1,10

 as the materials for QWs, we can create efficient LEDs; Fig. 1F. In 

our devices, electrons and holes are injected to a layer of TMDC from the two graphene electrodes. 

Because of the long lifetime of the quasiparticles in the QWs (determined by the height and 

thickness of the neighbouring hBN barriers), electrons and holes recombine, emitting a photon. The 

emission wavelength can be fine-tuned by the appropriate selection of TMDC and quantum 

efficiency (QE) can be enhanced by using multiple QWs (MQWs). 

We chose TMDC because of wide choice of such materials and the fact that monolayers of many 

TMDC are direct band gap semiconductors
11-15

.  Until now, electroluminescence (EL) in TMDC devices 

has been reported only for lateral monolayer devices and attributed to thermally assisted processes 

arising from impact ionization across a Schottky barrier
16

 and formation of p-n junctions
15,17,18

. The 

use of vertical heterostructures allows us to improve the performance of LED in many respects: 

reduced contact resistance, higher current densities allowing brighter LEDs, luminescence from the 

whole device area (Figs. 1E,F) and wider choice of TMDC and their combinations allowed in 

designing such heterostructures. The same technology can be extended to create other QW-based 

devices such as indirect excitonic devices
19

, LEDs based on several different QWs and lasers. 

Figure 1 schematically shows the architecture of single quantum well (SQW) and MQW structures 

along with optical images of a typical device (Fig. 1E). We utilised a peel/lift Van der Waals 

technique
20

 to produce our devices (see Methods and Supplementary Information for further details 

on device fabrication). In total we measured more than a dozen of such QW structures comprising 

single and multiple layers of TMDC flakes from different materials: MoS2, WS2 and WSe2. The yield 

was 100% with every device showing strong electroluminescence which remains unchanged after 

months of periodic measurements, which demonstrates the robustness of the technology and 

materials involved. 
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Cross sectional bright field 

scanning transmission electron 

microscope (STEM) images of 

our SQW and MQW devices 

demonstrate that the 

heterostructures are atomically 

flat and free from interlayer 

contamination
21

; Fig. 1B,D. The 

large atomic numbers for TMDC 

allow the semiconductor 

crystals to be clearly identified 

due to strong electron-beam 

scattering (dark contrast 

observed in Fig. 1B,D). Other 

layers were identified by energy 

dispersive X-ray spectroscopy. 

The large intensity variation 

partially obscures the lattice 

contrast between adjacent 

layers but, despite this, the hBN 

lattice fringes can clearly be 

seen in Figs. 1B, D. The 

different contrast of the four 

MoS2 monolayers in the MQW 

of Fig. 1D is attributed to their 

different crystallographic 

orientations, (confirmed by 

rotating the sample around the 

ŚĞƚĞƌŽƐƚƌƵĐƚƵƌĞ͛Ɛ ǀĞƌƚŝĐĂů 

direction which changes the 

relative intensity of different 

layers). 

 

Fig. 1. Heterostructure devices with SQW and MQW. (A) Schematics of 

SQW heterostructure hBN/GrB/2hBN/WS2/2hBN/GrT/hBN. (B) Cross-

sectional bright field STEM image of the type of heterostructures 

presented in (A). Scale bar 5nm. (C, D) Schematics and STEM imaging of 

MQW heterostructures hBN/GrB/2hBN/MoS2/2hBN/MoS2/2hBN/ 

MoS2/2hBN/MoS2/2hBN/GrT/hBN. The number of hBN layers between 

MoS2 QW in (D) varies. Scale bar 5nm. (E) Optical image of an 

operational device (hBN/GrB/3hBN/MoS2/3hBN/GrT/hBN). The dashed 

curve outlines the heterostructure area. Scale bar 10m. (F) Optical 

image of EL from the same device. Vb=2.5V, T=300K. 2hBN and 3hBN 

stand for bi- and tri-layer h-BN, respectively. (G) Schematic of our 

heterostructure consisting of 

Si/SiO2/hBN/GrB/3hBN/MoS2/3hBN/GrT/hBN. (H-J) Band diagrams for 

the case of zero applied bias (H), intermediate applied bias (I) and high 

bias (J) for heterostructure presented in (G).  
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For brevity we concentrate on current-voltage (I-V) characteristics, photoluminescence (PL) and EL 

spectra from symmetric devices based on MoS2, Fig. 2A-C. Devices based on WS2 and devices with 

asymmetric barriers are considered in the Supplementary Information. 

At low Vb, the PL in Fig. 2A is dominated by the neutral A exciton, X
0

, peak
12

 at 1.93 eV. We attribute 

the two weaker and broader peaks at 1.87 and 1.79 eV to bound excitons
22,23

. At certain Vb, the PL 

spectrum changes abruptly with another peak emerging at 1.90 eV. This transition is correlated with 

an increase in the differential conductivity (Fig. 2A). We explain this transition as being due to the 

fact that at this voltage the Fermi level in GrB rises above the conduction band in MoS2, allowing 

injection of electrons into the QW (Fig. 1I). This allows us to determine the band alignment between 

 

Fig. 2. Optical and transport characterisation of our SQW devices, T=7K.  (A) Colour map of the PL spectra as a 

function of Vb for a MoS2 ʹďĂƐĞĚ SQW͘ TŚĞ ǁŚŝƚĞ ĐƵƌǀĞ ŝƐ ƚŚĞ ĚĞǀŝĐĞ͛Ɛ ĚIͬĚVb. Excitation energy EL=2.33eV. (B) 

EL spectra as a function of Vb for the same device as in (A). White curve: its j-Vb characteristics (j is the current 

density).  (C) Comparison of the PL and EL spectra for the same device. As PL and EL occur in the same spectral 

range, we measured them separately. (D,E) and (F,G) Same as (B,C) but for the bilayer and monolayer WS2 

QWs, respectively. The PL curves were taken at Vb=2.4V (C), 2.5V (E) and 2V (G); EL ʹ at Vb =2.5V (C), 2.5V (E) 

and 2.3V (G).  
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the Dirac point in graphene 

and the bottom of 

conductance band in MoS2: 

the offset equals half of the 

bias voltage at which the 

tunnelling through states in 

conductance band of MoS2 is 

first observed. To take into 

account the effects of 

possible variance in the 

thickness of hBN barriers and 

small intrinsic doping of 

graphene, we average the 

onset of tunnelling through 

MoS2 for positive and 

negative bias voltages (see 

Fig. 2A), which yields the 

offset to be ~0.5eV ʹ in agreement with theoretical prediction
24,25

. Note, that the alignment of 

ŐƌĂƉŚĞŶĞ͛Ɛ DŝƌĂĐ ƉŽŝŶƚ ǁŝƚŚ ƌĞƐƉĞĐƚ ƚŽ ƚŚĞ ǀĂůĞŶĐĞ ďĂŶĚ ŝŶ ŚBN ŚĂƐ ďĞĞŶ ŵĞĂƐƵƌĞĚ ŝŶ ƚƵŶŶĞůůŝŶŐ 

experiments previously
5,26,27

. 

Injection of electrons into the conduction band of MoS2 leads not only to an increase in tunnelling 

conductivity but, also, to accumulation of electrons in MoS2 and results in formation of negatively 

charged excitons
12

, X
-
. The X

-
 peak is positioned at a lower energy compared to the X

0
 peak due to 

the binding energy, EB, of X
-
. In the case of MoS2 we estimate EB as 36 meV near the onset of X

-
. As 

the bias increases, the energy of the X
-
 shifts to lower values which can be attributed either to the 

Stark effect or to the increase in the Fermi energy in MoS2
12

.  

In contrast to PL, EL starts only at Vb above a certain threshold, Figs. 2B. We associate such 

behaviour with the Fermi level of GrT being brought below the edge of the valence band so that 

holes can be injected to MoS2 from GrT (in addition to electrons already injected from GrB) as 

sketched in Fig. 1J. This creates conditions for exciton formation inside the QW and their radiative 

recombination. We find that the EL frequency is close to that of PL at Vb2.4V (Figs. 2A-C), which 

allows us to attribute the EL to radiative recombination of X
-
. Qualitatively similar behaviour is 

observed for WS2 QWs (see Figs. 2D-G). 

 

Fig. 3.  Optical and transport characteristics of MQW devices, T=7K.  (A) 

Modulus of the current density through a triple QW structure based on 

MoS2. (B,C) Maps of PL and EL spectra for this device. EL=2.33eV. (D) Its 

schematic structure. (E) Individual EL spectra plotted in logarithmic scale 

show the onset of EL at 1.8 nA/µm
2
 (blue curve). Olive and red: j = 18 and 

130 nA/m
2
, respectively. (F) Comparison of EL and the PL spectra. 
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An important parameter for 

any light emission device is 

the QE defined as ߟ ൌ ܰʹ݁Ȁܫ , (here e is the electron 

charge,  N is the number of 

the emitted photons).  For 

SQW͛Ɛ ǁĞ ŽďƚĂŝŶ ƋƵĂŶƚƵŵ 

efficiencies of ~ 1% - this 

value by itself is ten times 

larger than that of  planar p-n 

diodes
15,17,18

  and 100 time 

larger than EL from Schottky 

barrier devices
16

 . Our rough 

estimations show that the 

EQE for PL is lower than that 

for EL. Relatively low EQE 

found in PL indicates that the 

crystal quality itself requires 

improvement and that even 

higher EQE in EL may then be 

achieved
28

.  

To enhance QE even further, 

we have employed multiple 

QWs stacked in series, which increases the overall thickness of the tunnel barrier and enhances the 

probability for injected carriers to recombine radiatively. Fig. 3 shows results for one of such MQW 

structures with three MoS2 QWs (layer sequence: 

Si/SiO2/hBN/GrB/3hBN/MoS2/3hBN/MoS2/3hBN/MoS2/3hBN/GrT/hBN) and another MQW with four 

asymmetric MoS2 QWs (Fig. 1C,D) is described in Supplementary Information. The current increases 

with Vb in a step-like manner, which is attributed to sequential switching of the tunnelling current 

through individual MoS2 QW͛Ɛ. PL for the MQW device is qualitatively similar to that of SQW devices 

but the X
0
 peak is replaced with X

-
 peak at a Vb=0.4V; Fig. 3B. The X

0
 peak reappears again at 

Vb>1.2V. This can be explained by charge redistribution between different QWs. The EL first 

becomes observable at Vb>3.9V and j ŽĨ ϭ͘ϴ ŶAͬʅŵ2
; Fig. 3C,E. This current density is nearly 2 orders 

of magnitude smaller than the threshold current required to see EL in similar SQW. Importantly, the 

 

Fig. 4.  Devices combining different QW materials and on flexible 

substrates.  (A-C) EL at negative (A) and positive (C) bias voltages for the 

device with two QW made from MoS2 and WSe2, schematically shown as 

the inset in (D). Its PL bias dependence is shown in (B), for laser excitation 

EL=2.33eV, T=7K. White curve: IjI-Vb characteristics of the device. 

(D)Temperature dependence of EQE for a device with two QW made from 

MoS2 and WSe2. Inset: schematic representation of a device with two QW 

produced from different materials. (E) Optical micrograph taken in 

reflection of a SQW (MoS2) device on PET. (F) Optical micrograph of the 

same device as in (E) taken in transmission. For (E-F) the area of the stack 

is marked by red squares; scale bars are 10m. (G) EL spectra for the 

device in (E-F) at zero (blue dots) and 1% (red dots) strain. Vb=-2.3V, I=-

40A at room T.  
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increased probability of radiative recombination is reflected in higher QE, reaching values of ~8.4% 

(for the device with quadruple QW, 6% for triple). Importantly, this high QE is comparable to the 

ĞĨĨŝĐŝĞŶĐŝĞƐ ŽĨ ƚŚĞ ďĞƐƚ ŵŽĚĞƌŶ ĚĂǇ ŽƌŐĂŶŝĐ ůŝŐŚƚ ĞŵŝƚƚŝŶŐ ĚĞǀŝĐĞƐ ;OLED͛ƐͿ29
. 

The described technology of making designer MQWs offers the possibility of combining various 

semiconductor QWs in one device. Figs. 4A-C describe an LED made from WSe2 and MoS2 QWs: 

Si/SiO2/hBN/GrB/3hBN/WSe2/3hBN/MoS2/3hBN/GrT/hBN. EL and PL occur here in the low-E part of 

the spectra and can be associated with excitons and charged excitons in WSe2. However, in 

comparison with SQW devices, the combinational device in Fig. 4 exhibits more than an order of 

magnitude stronger both PL and EL, ~ 5 % quantum efficiency. We associate this with charge transfer 

between the MoS2 and WSe2 layers such that electron-hole pairs are created in both layers but 

transfer to and recombine in the material with the smaller band-gap
30

. Such a process is expected to 

depend strongly on band alignment, which is controlled by bias and gate voltages. This explains the 

complex, asymmetric Vb dependence of PL and EL in Fig. 4. 

Generally, the fine control over the tunnelling barriers allows reduction in the number of electrons 

and holes escaping from the quantum well, thus enhancing EQE. EQE generally demonstrates a peak 

at T around 50K-150K, depending on the material. Depending on the particular structure we found 

that typical values of EQE at room T are close or a factor of 2-3 lower than those at low T, Fig. 4D.  

Finally, we note that because our typical stacks are only 10-40 atoms thick, they are flexible and 

bendable and, accordingly, can be used for making flexible and semi-transparent devices. To prove 

this concept experimentally, we have fabricated a MoS2 SQW on a thin PET film; Fig. 4E,F. The device 

shows PL and EL very similar to those in Fig. 3A-C. We also tested the device͛Ɛ performance under 

uniaxial strain of up to 1% (using bending) and found no changes in the electroluminescence 

spectrum; Fig. 4G.  

In summary, we have demonstrated band-structure engineering with one atomic layer precision by 

creating QW heterostructures from various 2D crystals including several TMDC, hBN and graphene. 

Our LEDs based on a single QW already exhibit quantum efficiency of above 1% and line widths 

down to 18meV, despite the relatively poor quality of currently available TMDC layers. This EQE can 

be improved significantly by using multiple QWs, consisting of 3 to 4 QWs, these devices show EQE͛Ɛ 

up to 8.4%. Combining different 2D semiconductor materials allows fine tuning of the emission 

spectra and also an enhanced EL with a quantum yield of 5%. These values of quantum efficiency are 

comparable to modern day OLED lighting and the concept is compatible with the popular idea of 
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flexible and transparent electronics. The rapid progress in technology of CVD growth will allow 

scaling up of production of such heterostructures. 

Methods 

Sample fabrication 

FůĂŬĞƐ ŽĨ ŐƌĂƉŚĞŶĞ͕ ŚĞǆĂŐŽŶĂů ďŽƌŽŶ ŶŝƚƌŝĚĞ ;ŚBNͿ ĂŶĚ ƚƌĂŶƐŝƚŝŽŶ ŵĞƚĂů ĚŝĐŚĂůĐŽŐĞŶŝĚĞƐ ;TMDC͛ƐͿ 

are prepared by micromechanical exfoliation of bulk crystals. Single or few layer flakes are identified 

by optical contrast and Raman spectroscopy.  Heterostructures are assembled via the dry peel/ lift 

method described in detail in the supplementary materials. Electrical contacts to the top and bottom 

graphene electrodes are patterned using electron beam lithography followed by evaporation of 5 

nm Cr/ 60 nm Au. 

Electrical and optical measurements  

Samples are mounted within a liquid helium flow cryostat with a base temperature of T = 6 K. 

Electrical injection is performed using a Keithley 2400 source meter. To measure PL the samples 

were excited with a continuous wave 532 nm laser, ĨŽĐƵƐĞĚ ƚŽ Ă ƐƉŽƚ ƐŝǌĞ ŽĨ Ε ϭ ʅŵ ƚŚƌŽƵŐŚ Ă 100x 

objective (NA = 0.55) at a power less than required to modify the spectral line shape.  The signal was 

collected and analysed using a single spectrometer and a nitrogen cooled charge coupled device. 

Scanning transmission electron microscopy (STEM) 

STEM imaging was carried out using a Titan G2 probe-side aberration-corrected STEM operating at 

200 kV and equipped with a high-efficiency ChemiSTEM energy-dispersive X-ray detector. The 

convergence angle was 19 mrad and the third-order spherical aberration was set to zero (±5 µm). 

The multilayer structures were oriented along the hkl0  crystallographic direction by taking 

advantage of the Kikuchi bands of the silicon substrate. (See Supplementary information and ref.
21

 

for more detailed description) 
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S1. Heterostructure 

preparation  
The quantum well (QW) 

heterostructures were produced 

via multiple ͚ƉĞĞů͛ ĂŶĚ ͚ůŝĨƚ͛ ƚƌĂŶƐĨĞƌ 
processes as described previously 

in [1, 2]. Fig. S1 and Fig. S2 show 

the schematic for the processes. 

FŽƌ ƚŚĞ ͚ƉĞĞů͛ ƉƌŽĐĞƐƐ Ă ĨůĂŬĞ ŝƐ 
mechanically exfoliated onto a 

polymer double layer then the 

bottom polymer is dissolved 

releasing the membrane which 

then floats on top of the liquid. The 

PMMA membrane is then inverted 

and aligned onto the target crystal. 

The two crystals are brought into 

contact and heated until the PMMA 

adheres to the target substrate. 

Once the flake has adequately stuck 

to the target crystal the PMMA 

membrane is brought back. The 

flake due to the strong Van der 

Waals interaction peels from the 

PMMA onto the target flake.  

FŽƌ ƚŚĞ ͚ůŝĨƚ͛ ƉƌŽĐĞƐƐ ƚhe membrane 

is produced in the same way as 

shown in Fig. S1. Instead of peeling 

the flake onto the target crystal, a large flake on the membrane is used to collect a smaller flake on 

the substrate. The flake to be lifted is exfoliated onto a second thermally oxidised silicon wafer.  

 

Fig. S1. SĐŚĞŵĂƚŝĐ ƉƌŽĐĞĚƵƌĞ ĨŽƌ ƚŚĞ ͚ƉĞĞů͛ ƉƌŽĐĞƐƐ͘ 

 

Fig. S2. SĐŚĞŵĂƚŝĐ ƉƌŽĐĞĚƵƌĞ ĨŽƌ ƚŚĞ ͚ůŝĨƚ͛ ƉƌŽĐĞƐƐ͘ 

 

Fig. S3. (A-D) Schematic and differential interference contrast microscope images with semi-transparent dark field 

ŝŵĂŐĞƐ ŽǀĞƌůĂŝĚ ƚŽ ŚŝŐŚůŝŐŚƚ ĨůĂŬĞ ĞĚŐĞƐ͕ ĨŽƌ ƚŚĞ ŵƵůƚŝƉůĞ QW ƐƚƌƵĐƚƵƌĞƐ͘  SĐĂůĞ ďĂƌ ŝƐ ϱϬ ʅŵ͘ 
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Fig. S3 shows the fabrication route for the multiple QW (MQW) structure. Firstly a graphene flake is 

peeled from a PMMA membrane to a hBN crystal on the Si/SiO2 substrate, Fig. S3A. After this a thin 

h-BN tunnel barrier is peeled from the PMMA membrane onto the hBN-GrB structure, Fig. S3B. A 

thin hBN spacer carrying a single layer TMDC crystal (lifted from a second substrate) is then peeled 

from the membrane, thus completing the first well, Fig. S3C. This process can be repeated as shown 

in Fig. S3D to produce a double QW and even further to produce triple and quadruple QW 

structures.   

 

S2. Data for additional devices 

 

 

Fig. S4. (A) Colour map of the PL for the WS2 quantum well shown in Figure 2 of the main text EL = 2.33 eV .   
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Fig. S5. (A) IjI-Vb characteristics for another SQW made from single layer MoS2. (B) Colour plot of the EL intensity vs bias 

voltage for the same device. (C) The normalised EL and PL spectra. 

 

 

Fig. S6. (A) IjI-Vb characteristics for a device with four QW each made of single layer MoS2. Inset: an image of the 

approximate structure. (B) Colour map of the EL spectrum. (C)  EL spectra for a few different injection currents showing 

the onset of EL. (D) The EL and PL for the same device (normalised). 
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Device  EL peak position, eV FWHM, meV QE at highest 

injection current and 

T = 6 K, % 

SL MoS2 ʹ 1 1.86 30 0.30 

SL MoS2 ʹ 2 1.81 90 0.51 

FL MoS2 1.86 34 0.06 

SL WS2 2.00 23 1.32 

BL WS2 1.96 29 0.09 

3MQW MoS2 1.94 78 6.00 

4MQW MoS2 1.83 65 8.40 

3 stacked MoS2  1.82 106 3.54 

WSe2 / MoS2 2QW-1 1.66 14 4.80 

WSe2 / MoS2 2QW-2 1.68 21 5.40 

Table S1. The main peak position, width and quantum efficiency for the electroluminescence spectra for different devices 

based of TMDC materials. 
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Fig. S7. (A) IjI-Vb characteristics for the bilayer WS2 device described in the main text (B) Single spectrum of the 

electroluminescence at T = 6 K at a bias voltage of 3.2 V.  
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Fig. S8. Extracted peak positions vs bias voltage for (A) MoS2, (B) WS2. 
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S4. Quantum efficiency  
The quantum efficiency is defined as the number of photons emitted per number of injected 

electron-hole pairs N2e/i ( N = number of emitted photons per second, e electron charge, i is the 

current passing through a 2 micron area which is our collection area determined by the slit). In order 

to estimate the number of emitted photons we need to estimate our collection efficiency. The total 

loss is defined as,  

 ɻ с ɻLensɻopticɻsystem. 

ɻoptic is the loss of all the optical components in the optical circuit. It was measured directly using a 

1.96 eV laser and a power meter to determine the loss at each component. WĞ ĨŝŶĚ ɻoptic = 0.18. 

ɻsystem  - converts the number of photons arriving at the incoming slit of the detector into the 

detector counts. It takes into account the loss of photons which pass through the slit, grating and 

onto the CCD and has been again measured directly by using the 1.96 eV laser and taking spectra of 

the laser for different powers in order to get a counts vs incident photons. For our system we get 

4203 integrated cts/sec per 1 pW. If the system were 100% efficient we should count 

NсPͬŚʆсϯϭϳϳϰϳϲ ƉŚŽƚŽŶƐ͕ ƚŚĞƌĞĨŽƌĞ ǁĞ ĂƌƌŝǀĞ Ăƚ ĂŶ ĞƐƚŝŵĂƚĞ ĨŽƌ ƚŚĞ ƐǇƐƚĞŵ ĞĨĨŝĐŝĞŶĐǇ ƚŽ ďĞ 
ɻsystem=4203/3177476 =1.32 x 10

-3
. 

ɻLens is the efficiency of the lens collection[3]. We use a 100x objective with a numerical aperture, NA 

= 0.55. The TMDC layer is effectively encapsulated within hBN of refractive index n = 2.2[4].  

௅௘௡௦ߟ ൌ  ଵସగ ׬ ݀߮ଶగ଴ ׬ ୟ୰ୡୱ୧୬ ሺಿಲ೙ߠ݊݅ݏߠ݀ ሻ଴ ൌ  ଵଶ ቈͳ െ ටͳ െ ቀே஺௡ ቁଶ቉ ൌ ͲǤͲͳ͸  

From this we can make an estimate of the quantum efficiency to be,  ܳܧ ൌ ʹ݁ ௖ܰ௢௨௡௧௦ ൗ݅ߟ . In this 

equation Ncounts is the integrated number of counts taken for the spectrum.   
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S5. Cross sectional imaging 
Details of cross sectional imaging of  heterostructures produced from 2D materials can be found in 

[5].  

S5.1 Preparation of cross sectional STEM samples 

A dual beam instrument (FEI Dual Beam Nova 600i) has been used for site specific preparation of 

cross sectional samples suitable for TEM analysis using the lift-out approach [Schaffer, M. et al. 

Sample preparation for atomic-resolution STEM at low voltages by FIB [6]]. This instrument 

combines a focused ion beam (FIB) and a scanning electron microscope (SEM) column into the same 

chamber and is also fitted with a gas-injection system to allow local material deposition and 

material-specific preferential milling to be performed by introducing reactive gases in the vicinity of 

the electron or ion probe. The electron column delivers the imaging abilities of the SEM and is at the 

same time less destructive than FIB imaging. SEM imaging of the device prior to milling allows one to 

identify an area suitable for side view imaging. After sputtering of a 10 nm carbon coating and then a 

50 nm Au- Pd coating on the whole surface ex-situ, the Au/Ti contacts on graphene were still visible 

as raised regions in the secondary electron image. These were used to correctly position and deposit 

a Pt strap layer on the surface at a chosen location, increasing the metallic layer above the device to 

~2 ʅŵ͘ The Pt deposition was initially done with the electron beam at 5kV e
-
 and 1nA up to about 

0.5m in order to reduce beam damage and subsequently with the ion beam at 30kV Ga
+
 and 100pA 

to build up the final 2m thick deposition.  The strap protects the region of interest during milling as 

well as providing mechanical stability to the cross sectional slice after its removal. Trenches were 

milled around the strap by using a 30 kV Ga
+
 beam with a current of 1-6nA, which resulted in a slice 

of about 1m thick. Before removing the final edge supporting the milled slice and milling beneath it 

to free from the substrate, one end of the Pt strap slice was welded to a nanomanipulator needle 

ƵƐŝŶŐ ĨƵƌƚŚĞƌ Pƚ ĚĞƉŽƐŝƚŝŽŶ͘ TŚĞ ĐƌŽƐƐ ƐĞĐƚŝŽŶĂů ƐůŝĐĞ ǁŝƚŚ ƚǇƉŝĐĂů ĚŝŵĞŶƐŝŽŶƐ ŽĨ ϭ ʅŵ ǆ ϱ ʅŵ ǆ ϭϬ ʅŵ 
could then be extracted and transferred to an Omniprobe copper half grid as required for TEM. The 

slice was then welded onto the grid using Pt deposition so that it could be safely separated from the 

nanomanipulator by FIB milling. The lamella was further thinned to almost electron beam 

transparency using a 30kV Ga
+
 beam and 0.1-1nA.  A final gentle polish with Ga+ ions (at 5kV and 

50pA) was used to remove side damage and reduce the specimen thickness to 20-70nm. The fact 

that the cross sectional slice was precisely extracted from the chosen spot was confirmed for all 

devices by comparing the positions of identifiable features such as Au contacts and /or hydrocarbon 

bubbles, which are visible both in the SEM images of the original device and within TEM images of 

the prepared cross section. 
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S5.2 Scanning transmission electron microscope imaging and energy 

dispersive x-ray spectroscopy analysis 

High resolution scanning transmission electron microscope (STEM) imaging was performed using a 

probe side aberration-corrected FEI Titan G2 80-200 kV with an X-FEG electron source operated at 

200kV. High angle annular dark field (HAADF) and bright field (BF) STEM imaging was performed 

using a probe convergence angle of 26 mrad, a HAADF inner angle of 52 mrad and a probe current of 

~200 pA. Energy dispersive x-ray (EDX) spectrum imaging was performed in the Titan using a Super-X 

four silicon drift EDX detector system with a total collection solid angle of 0.7 srad. The multilayer 

structures were oriented along an <hkl0> crystallographic direction by taking advantage of the 

Kukuchi bands of the Si substrate. 

 

 

 

 

Fig. S9.  Bright field (a) and high angle annular dark field (b) STEM images of a single layer WS2 heterostructure cross-

section. WS2 lattice fringes are visible in both images, as are the boron nitride fringes at a lower intensity. (c i-iii) Elemental 

maps for W, S and N extracted from energy dispersive x-ray (EDX) spectrum image data. The top and bottom graphene 

electrodes can be seen as deficiencies in the nitrogen EDX map (see dashed white lines). This allows the number of boron 

nitride layers between the graphene and WS2 layer above and below the WS2 layer to be estimated as five and two layers 

respectively. (d) and (e) show BF and HAADF images at lower magnification. 
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Fig. S10. Cross sectional Imaging of MoS2 multilayer quantum well. (a) Bright field and (b) high angle annular dark field 

STEM images of the four layer MoS2 heterostructure cross-section. Boron nitride lattice fringes are clearly visible in both 

images, as are the position of the MoS2 monolayers. The number of boron nitride layers between each MoS2 monolayer 

were determined to be four, six and nine layers for the bottom, middle and top stacks respectively. (c i-iii) Show elemental 

maps for Mo, S and N extracted from energy dispersive x-ray (EDX) spectrum  image data. The top graphene electrode can 

be seen as a deficiency in the nitrogen EDX map (indicated by dashed white line in (f)). This allows the number of boron 

nitride layers between the top MoS2 layer and the graphene to be estimated as seven layers. (d) and (e) show BF and 

HAADF images at lower magnification. The structure was found to be atomically flat  and highly uniform over regions 

>100nm. All scale bars are 4 nm. 
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