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ABSTRACT  

High efficiency and low emissions from pf coal power stations has been the drive behind the 

development of present and future efficient coal combustion technologies. Upgrading coal, 

capturing CO2, reducing emission of NOx, SO2 and particulate matter, mitigating slagging, 

fouling and corrosion are the key initiatives behind these efficient coal technologies. This study 

focuses on a newly developed fuel additive (Silanite™) based efficient coal combustion 

technology, which addresses most of the aforementioned key points. Silanite™ a finely milled 
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multi-oxide additive when mixed with the coal without the need to change the boiler installation 

has proven to increase the boiler efficiency, flame temperature with reduction in corrosion, NOx 

and particulate matter (dust) emissions. The process has been developed through bench, pilot 

(100kWth) and full scale (233 MWth). The process has been found to have a number of beneficial 

effects that add up to a viable retrofit to existing power plant as demonstrated on the 233MWth 

boiler tests (under BS EN 12952-15:2003 standard). Multifaceted benefits proven on commercial 

and lab scale included reductions of 20% in the overall particulates, 42% in loss on ignition, 8-

25% in NOx with about 30% increase in the life span of tube section of the boiler. 
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1. INTRODUCTION 

The existing coal-fired power utility operators in the world are implementing ever stricter 

control regulations. For example, in Europe the European Commission’s industrial emissions 

directive (IED); the USA’s the clean power plan (TCPP) and environmental protection bureau 

china (EPBC). Successful agreements in Paris through the recent COP21 Climate Change 

summit are leading the way to governments directing their economies toward lower carbon 

energy usage and power generation. However, in the interim period to decarbonisation, there is a 

need to continue to operate fossil fuel-fired power stations until a realistic balance of renewable 
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technologies and nuclear power is achieved
1
. World-wide, coal-fired power generation has a 

41% share of the total [2]; hence, there is a large opportunity for new technologies to impact on 

reducing emissions and increasing efficiency. Improvement of combustion efficiency with 

pollutants reduction (NOx, SO2, particulate dust) has been proven with various coal conversion 

technologies including catalyst / additive based technologies 
3-4

. The catalyst / additives broadly 

classified as organic and inorganic are presently used in the power sector as catalysts
5-7

; 

however, in general, inorganic additives are widely applied due to the cost to benefit ratios. 

Recently, many studies have been focused on the utilization of fuel additives to improve 

combustion and reduce pollutants on the bench to small pilot scales 
4, 7-13

. 

The use of these fuel additives economically sourced or formulated could be beneficial to 

address the following problematic issues associated with coal combustion; 1-emission reduction 

(NOx, SO2, CO2, CO and dust), 2-fly ash improvement (reducing unburnt carbon and the 

concentration of challenging ash species, increasing the melting points- ash fusion temperatures 

and particle size distribution), 3-combustion efficiency improvement (fuel savings, heat release 

and temperature gain), 4- dust emission reduction- post electrostatic precipitator, 5- resistance 

towards fireside corrosion. 

There have been few recent technical reports published to demonstrate effectiveness of 

injected additives in the coal stream towards the improvement in inhibition of lignite ash 

slagging and fouling, coal saving- bed temperature rise- carbon content reduction in fly ash and 

steam to fuel ratio on 30 MWth industrial pulverized coal-fired boiler
14

, 5 MWe circulating 

fluidized bed boiler
15

 and 5 t.h
-1

 smoke tube boiler
16

 respectively. Some other technologies 

which are based on the injection of the additives in the flue gas pathway i.e. dry sodium 

bicarbonate
17

 based Airborne Process™, Sulphur trioxide-air mixture
18

 based Pentol flue gas 
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conditioning system and dry sorbent (hydrated lime) based injection
19

 demonstrate reduction in 

SOx-NOx emissions, resistivity of the electrostatic precipitators (ESP) and emitted acidic gas 

concentrations, respectively. Moreover economic driven overconsumption of high quality coal 

sources has resulted in investigation of technologies concentrating on processing coal waste as a 

main fuel component in thermal power plants. Investigations on the coal water slurry (CWS) and 

CWS containing petrochemicals (CWSP) based droplet firing technology shows greater potential 

to work in boilers as main fuel
20

. This is possible with optimal CWSP blends yielding shortest 

ignition delays and highest temperature of combustion along with other pollution remedial 

impact on the environment
20

. All of the above technologies have been demonstrated to provide 

part solution up to a restricted scale without multifaceted solution. This knowledge gap is 

explored in developing an additive based process technology to contribute to scarcely available 

data linked with findings from research based bespoke test rigs and a large scale commercial 

boiler (260-280 t.h
-1

). 

For many power plant operators the improved thermal combustion efficiency and the 

implications for reductions in fuel consumption and emissions are highly significant factors, but 

for others, the ability to improve the quality of fly ash for re-sale into construction sector 

applications and resistance towards corrosion will be priorities. Whatever the motivation for 

power station owners in different parts of the world, the range of proven benefits associated with 

the Silanite™ fuel technology means that it is extremely well placed in providing multipurpose 

solution to the individual power station challenges. The research findings of this paper focus 

especially on the pollutant (NOx, particulate emissions) and corrosion control with a wider effect 

on the boiler performance (ash fusibility, slagging/fouling, flame temperature, carbon burnout). 
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2. MATERIAL AND METHODS 

This study focuses on understanding the effectiveness of a newly developed solid pulverised 

fuel additive (Silanite™) towards NOx reduction, particulate control, and secondary effects on 

ash fusibility, slagging and fouling and boiler tube corrosion. Studies are presented from a pilot 

scale (100 kWth) combustor to commercial scale (233 MWth ~ 260-280 t.h
-1

 steam output) 

pulverized fuel boiler. Corrosion studies (1000 h operation) were performed in lab scale furnace 

test reactors. 

2.1. Pilot scale test facility 

The combustion test facility (Figure 1a) utilized for the pilot scale tests comprised of 8 x 400 

mm (ID) sections with a total of 4 m furnace height and has a down-firing configuration. The 

throat diameter of the burner is about 66 mm with an overall maximum designed fuel thermal 

input rating of about 100 kWth. In-flame measurement of CO2, O2, NOx, SO2 and CO and the 

exit flue measurements along with temperatures throughout the furnace are recorded through 

USB high-resolution data acquisition personal daqview modules (Iotech). Further details of the 

combustion test facility (CTF) have been presented in other studies
11-12, 21

. The loss in weight 

twin-screw feeder (Rospen) utilized for coal feeding can feed coal up to 15-20 kg.h
-1

, and a small 

vibratory feeder was used to inject fuel additive. The feeder for the additive was calibrated to 

feed up to approximately 6% by volume or 13% by weight fraction of the coal feed. The fly ash 

was separated from the flue gas by cyclone separator before emission. The collection efficiency 

of the cyclone separator is about 96% for particles above 10 microns.  
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The gas measurements were recorded using chemiluminescence (NOx), non-dispersive 

infrared (CO, CO2) and paramagnetic (O2) working principle based standard instruments. The 

collected fly ash samples were subjected to XRF, LOI, Ash fusibility analyses. 

2.2. Utility boiler 

The utility boiler having the maximum operating steam flow on coal of 260-280 t.h
-1

, 

whereas, the minimum steam flow is 170 t.h
-1

 was selected for the commercial scale testing 

program. The combustion chamber volume for the boiler is about 1185 m
3
 having furnace 

dimensions of 29 m x 7.5 m x 7.6 m with 770 m
2
 to be an effective furnace heating surface 

exposed to the radiant heat. The throat diameter for all burners is about 650 mm with a total of 

12 burners placed in 3 landings at 2440 mm apart between centers. The pf coal is radially fed 

into the burners with a dedicated separate central coolant core air system for heavy fuel oil 

burners and igniters. The flue gas is pulled through the air heater and electrostatic precipitator 

with the use of two induced draft fans. Each of the ball and ring type coal (Babcock type 6.3E9) 

mills are charged with about 9-10 t.h
-1

 of sub-bituminous type pulverized (pf) coal. The forced 

draft fans rated at about 60 m
3
.s

-1
 flow rate supply the combustion air to the boiler. The main 

steam output gets distributed to pressure manifolds, of which customers are supplied with HP 

and IP steam. The overall process flow diagram (Figure 1b) of the boiler has been earlier 

reported in a separate study
11

. Oil or gas fuels are generally used during the start-up of the boiler. 

The utility boiler did not have the steam air heater, steam reheaters, flue gas recirculation and 

circulating pump arrangements. 

The fuel additive was stored in a silo away from the main boiler infrastructure and can be 

blown directly into the loss in weight feeder connected to the coal feeder feeding to the coal 
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mills. This injection method gives good control of mixing ratio between the pf and the fuel 

additive without causing downtime to the boiler. The fuel additive loss in weight feeder was set 

to feed in about 3.4% by volume or 6.8% by weight equivalent to the coal feed. The particle size 

distribution of the additive and UK-based utility coal along with proximate and ultimate analysis 

is shown in Table 1. 

All the plant-related data operations have been controlled / logged by the Delta V control 

system. The collected samples of fly ash, bottom ash, pf coal, coal lumps from stockpile, coal 

mill rejects were analysed for ultimate, proximate, CV, loss on ignition (LOI), XRF and ash 

fusibility analyses, respectively. The thermal efficiency calculation for the boiler
11

 was 

calculated as per the BS EN 12952-15:2003 standard (Eq. 1-4). 

η (N)B =  QN / Q(N)Ztot         (1) 

QN = mST(hST − hFW) + mSS (hFW − hSS)      (2) 

Q(N) Ztot  =  mFH(N)tot +  Q(N)Z        (3) 

Q(N)  Ztot =  mF[(H(N) + CF(tF − tr)) / [1 −  (γAsh (1 − v))/(1 − γAsh − γH2O) ((uSL/(1 − uSL)ƞSL + (uFA/(1 − uFA)ƞFA)] +  μACpA(tA − tr)] + PM + P   (4) 

The calibration of the plant’s continuous emission monitoring (CEM) analysers, collection 

of the fuel-fly/bottom ash-mill reject- fly ash samples, steady loads on the mill/boiler, water 

quality control was maintained during the test duration. 
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2.3. Corrosion test facility 

The imperative effects of the additive technology are of major interest in the overall 

assessment by the industry. To this end, a number of studies were performed to determine the 

effects of deposits including the additive on corrosion rates. The corrosion test facility (Figure 

1c) utilized for this study comprised of 6 silicon carbide electrically heated elements transversely 

placed in the top half of the furnace. The heating elements can modulate the temperature of the 

heated chamber up to 1200
o
C. A gas mixture skid supplied the humidified simulated combustion 

gas products (O2: 3-4%, CO2: 14-16%, HCl: 0.03-0.05%, SO2: 0.13-0.15%, N2: 75-78%, H2O: 6-

8%) inside the electrically heated chamber. The simulated gas mixture is supplied through a 

metered skid connected to dedicated gas bottle cylinders. Thermal mass flow controllers based 

on the heat conductivity of fluids are used to control and determine the mass flow. These thermal 

mass flow meters were calibrated by the supplier for the specific gas concentrations. A slight 

negative pressure differential of about 0.05-0.09 mbar was maintained across the heated chamber 

of the corrosion test facility by using a compressed air venturi vacuum generator, due to low 

flow rates. The exit flue gas mixture was scrubbed through a frequently replaced solution of 

NaOH (0.5mol).  

T22 ferritic steel alloy (Cr: 2.25%, Mo: 1%) sample coupons after surface preparation
22-23

 

and coating with the coal fly ash and fuel additive (Silanite™) mixed fly ash were placed inside 

the crucibles positioned in the heated compartment. The specimen coupons were all prepared in 

the same way by polishing to a uniform surface roughness using P120, P 240, P 280, P400 and 

P1200 silicon carbide paper for later dry polishing with diamond paste. 24 point measurements 

were taken across the whole surface of the polished coupons using a Mitutoyo +/- 2-micron 

accuracy micrometer to acquire an average thickness of coupons. Ethanol was added to the fly 
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ash to facilitate a uniform stable coat (ethanol would be dried off at room temperature). Uniform 

coatings were applied despite extra care for producing a uniform layer with consistent gram 

approximately 0.25% differences in the applied coating weight on duplicates was observed. 

These coupons were conditioned at 200
o
C [473.15K] in the furnace for 2 h after coating each 

specimen with the collected ash samples (Table 1). These coupons later were shifted to crucibles 

for weighing and positioned inside the furnace exposed to the simulated combustion environment 

maintained at 560
o
C [833.15K] for 1000 h. The coated coupons were placed on top of the 

ceramic plate and covered with an inverted ceramic liner with gas tight inlet and outlet 

connections. The heated compartment comprised of a base Inconel plate which is protected by a 

ceramic plate, the peripheries of Inconel plate were sealed with high-temperature grade silica 

powder.  

The coupons were later analysed by accurate measurement for the metal loss. This was 

achieved by removing any deposited scale after 1000 h exposure to reach to the bare metal and 

again 24 point measurements at the same positions were taken to compare the difference in 

measurements between pre and post testing. These coupons were prepared in duplicates and the 

reported findings are based on the average of the results. 

3. RESULTS AND DISCUSSION 

The following section details the overall findings associated with the technology. The 

evaluated parameters alongside the discussions on array of tests performed on all of the 

aforementioned setups starts from the commercial to the pilot scale tests. 

3.1. BS EN 12952-15:2003- full-scale boiler commercial test 
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A detailed breakdown of the test protocol followed during the test is shown in Table 2. The 

reported findings are associated with the full scale boiler test incorporating the overall impact on 

the efficiency, emissions, flame temperature, LOI, dust concentration, particle size distribution 

(PSD), slagging and fouling propensities and ash fusibility temperatures mainly at constant 

injection rate of the additive for 1 h and 7-8 h. The main range of varied parameter during the 

commercial scale boiler test was injection rates and mainly time of injection of the additive. The 

EN 12952-15 acceptance test criteria dictate for at least 4 h recommended duration of test with 

frequency of readings observed in a range from 3-15 mins. The 1 h trial test results were initially 

performed to confirm rate of injection of the additive and mill- boiler performance indicators. 

However the wider in depth effect of the 3.4% by vol. additive over a longer duration is explored 

in this paper. 

3.1.1. The commercial full scale 8 h long test results on the 260 t.h
-1

, as per the BS EN 12952-

15: 2003 resulted in a net gain of about 1.05% increase in the boiler efficiency (Eq. 1-4, Table 3). 

An overall 7-8 h of steady state levels were maintained by keeping the loads on the coal mill- 

downstream high-intermediate pressure steam manifolds under unaltered conditions. The costs 

savings on the fuel input for maintained fixed output from the plant could also be regarded as an 

additional CO2 reduction (due to reduced parasitic load on coal mills / air heaters and other 

ancillary equipment because of 1.05% less coal consumption). 

3.1.2. A net 8.4% reduction in NOx has been found compared to coal baseline with the addition 

of 3.4% by vol. (i.e. 6.8% wt.) fuel additive (Figure 2a). This NOx reduction is in line with 

predictions (trials done earlier on 100 kWth pilot-scale combustion test facility and a 45 min trial 

on 280 t.h
-1

 steam-producing boiler
11

 (Figure 2b-c). The CEM of NOx emission (uncorrected) at 

the three different locations of the boiler for the baseline tests were reported as 195, 201 and 382 
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mg.Nm
-3

. They were compared at the same locations as 185, 167 and 357 mg.Nm
-3

 respectively 

when firing with 3.4% vol. additive injection. Then these measurements were corrected for the 

standard oxygen concentration of 6% (dry basis) along with plant recommended CEM 

instrument correction factors. The corrected NOx value for the baseline of 564 mg.Nm
-3

 was 

compared with NOx value obtained during the additive injection of 517 mg.Nm
-3

. The trial 

results have proven a net 8.4% reduction with the addition of 3.4% by vol. additive. This is in 

line with the earlier trials on both pilot and full-scale combustion test facility and boiler, 

respectively. CEMs normally get purged after every 12 h; hence around 14:10 the instruments 

got purged with air as evident from Figure 2a. The scatter of the points in the initial coal baseline 

when calculated as standard deviation was 21.60 compared to 25.57 for coal and coal with 

additive, respectively. Post additive injection, the downstream demand of the steam increased 

resulting in the increase of the coal mill loads (i.e. after 15:00). Hence the higher fuel to air ratio 

(i.e. fuel rich condition) produced lower NOx levels (Figure 2a). 

3.1.3. The monitoring and characterisation of the coal / coal-additive flames on the viewing port 

of landing B of the boiler was also undertaken. The flame measurement was recorded for 8-10 

minutes with the flame videos taken at a frame rate of 25 fps (frames per second) for observation 

purposes. The camera of the system was kept at the same settings (iris and exposure time) during 

the test. It was found that no detrimental effect on the flame temperature was recorded with the 

addition of the additive. In fact, 11
o
C [284.15K] increase in the average flame temperature 

(Figure 3a) was observed with the additive injections in comparison to coal baseline (1494
o
C) 

[1767.15K] unlike around 4 
o
C [277.15K] rise observed by the CC-88 additive based 

technology
15

. Each condition used to compute the average flame temperature included 150 to 

200 simultaneous images. Temperature distribution of flames was computed using flame images 
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averaged over 20 simultaneous imaged based on the two colour method
24

. Moreover, the power 

spectral density (PSD) of the flame signal (Figure 3c) were computed based on the average grey-

level of each image from the video images recorded using the high speed mode (200 fps) of the 

camera over about 2 minutes
24

. The oscillation frequency of the flame with and without additive 

was obtained using the weighted PSD of the flame signal. It remained in the range of 27-30Hz 

suggestive of no adverse effect of the additive on flame stability. The effect of the additive on the 

flame area was examined by applying an appropriate threshold to the segmented luminous region 

of each image; this was later normalized to the image size. These normalized flame areas were 

recorded to be in the range of 28% to 30% for coal and coal + Silanite™ baselines (Figure 3c), 

this seems to suggest that flame area was slightly more converged with the additive.  

3.1.4. The fly ash samples were taken from the fly ash hoppers post Electrostatic precipitators 

(ESPs). The hoppers were emptied before and after steady state conditions by a dedicated fly ash 

recovery vacuum system, this allowed collection of the representative coal fly ash samples. The 

representative samples were stored in air tight clearly marked barrels for further analysis. Barrels 

numbered 1 to 11 were designated for coal fly ash collection; whereas barrels number 13 to 23 

were used to collect fly ash with the additive. Later two more samples were taken post additive 

injection in Barrels 25-26. The collected samples were later analysed as per ASTM D7348 to 

determine the loss on ignition (LOI) values. The calculation of loss on ignition (Eq. 5) from the 

single step procedure used is as follows: 

LOI = [(W-B)/W]*100         (5)  

Where W = mass of test specimen used, g, and B = mass of test specimen after heating at 950°C 

[1223.15 K], g. The LOI values for coal fly ash samples gave a range from 14.5% to 15.7% for 
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barrels 1 to 11. This averages to be about 15% -coal fly ash baseline. On the other hand, a range 

of 8.1% to 9.8% was determined for coal + 6.8% Silanite™ fly ash samples, averaging to be 

about 8.6%. Figure 4 shows the LOI data points respective to samples collected from 1st, 2nd or 

3rd fly ash hoppers post ESPs. The scatter of the points in the initial coal baseline when 

calculated as standard deviation was 2.8 compared to 3 for coal + 6.8% Silanite™.  A net 42.7% 

reduction in LOI was observed with the injection of the fuel additive. In all cases, LOI in fly ash 

show the reduction after injecting the fuel additive. In refs 10.56% reduction in the carbon in 

ash
15

 and improvement in the color of fly ash has been reported
16

 unlike around 43% reduction in 

carbon with Silanite™ additive. 

3.1.5. Dust concentration post electrostatic precipitator (Figure 5) has been reduced by 

approximately 18% with the Silanite™ injection indicating better performance of ESPs. The 

reductions in the unburned carbon present in the fly ash and the conductive properties of the 

oxides of iron (in the additive) have resulted in the reduction of dust concentration emitted in the 

stack. Silanite™ injection delivers a positive impact on the chemical composition of fly ash, 

particle size and the resistivity- crucial parameters for improvement of the electrostatic 

precipitator performance. The recorded concentration of the dust post ESPs are tabulated in 

Table 4 and Figure 5 entails dust concentration plots for 45 min- 8 h and 1 h trials carried out on 

the same boiler along with the full-scale BS EN 12952 8 h test. The scatter of the points in the 

initial coal baseline when calculated as standard deviation was again close to that of coal with 

Silanite™. Other competing studies
16, 18

 make qualitative claim of increase in the ESP 

performance and reduction of fly ash resistance. However, it is difficult to compare the results of 

other qualitative claims with quantified results of this study. 
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3.1.6. The Air Jet PSD analysis conducted on the coal – Silanite™ fly ash samples collected 

during the 8h trial indicated 90% passing at 335 microns compared to 508 microns for the coal 

fly ash. It is also evident from Figure 6 that the coal + additive mixed fly ash is finer than 

compared to coal fly ash. This is mainly associated with the injection of the additive having d0.9 

less than 34 micro ns compared to a typical coal having d0.9 less than 125microns. The fineness 

of the coal - Silanite™ fly ash also qualifies it for EN450 (not more than 40% retained on the 45 

microns sieve).  The resultant coal fly ash with the injected Silanite™ is finer then coal fly ash. 

3.1.7. The slagging and fouling propensities calculations from the full scale 8 h trial have 

indicated no detrimental impact on the slagging and fouling propensities. This is due to the 

combined concentration of the oxides of iron, aluminium and silica. Table 5 entails the findings 

of XRF analysis with the major and minor elemental oxide concentrations present in the fly ash 

and Silanite™ respectively. These concentrations have been utilised to calculate the fouling and 

slagging indices as per the Eq.6-7. 

Fouling Indices
25-26

=  OKONaABFu 22)/(        (6) 

Slagging Indices
25-26

 = d
SABRs )/(        (7) 

where )/()()/( 23222232 TiOOAlSiOOKONaMgOCaOOFeAB   in dry fuel 

3.1.8. The samples collected as part of the 8h trial were subjected to ash fusibility as per BS 

ISO 540:2008. The ash fusibility temperatures were determined using Carbolite digital CAF-8. 

The samples tested were analysed on an as received basis. Ash samples were mixed with an 

adhesive dextrin solution to prepare a paste mixture. The cylindrical mould was first coated with 

a thin layer of petroleum jelly. The mould was uniformly and completely filled with the prepared 
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paste of ash so that edges of cylindrical test pieces are sharp. Upon visual drying, the specimens 

are removed from the mould on its support to dry overnight. Two identical cylindrical samples 

were prepared for the same sample for repeatability purposes and placed on support next to each 

other. The test pieces were visually examined with the camera after loading in Carbolite digital 

furnace. The slow gradual increase in temperature @ 10 
o
C/min [283.15K/min] to about 815

o
C 

[1088.15K] caused the removal of any organic matter. The specimen and recording of the shapes 

at intervals of temperature change not greater than 10 
o
C [283.15 K] were recorded until the flow 

temperature of the specimen was attained. The fusibility temperatures observed during the 

analysis are defined as follows; the deformation temperature at which the first sign of rounding, 

due to melting, of the tip or edges of the test piece, occur. Sphere temperature is at which the 

edges of the test pieces become completely round with the height remaining unchanged. 

Hemisphere temperature at which test piece forms approximately a hemisphere (height becomes 

equal to half of the base diameter). Flow temperature at which the ash melt spread out over the 

supporting tile in layer (height of which is one-third of the height of the test piece at the 

hemisphere temperature). The analysis of the samples did not indicate a difference in the initial 

deformation and sphere temperatures of coal fly ash samples with and without additive, however, 

hemisphere and flow temperatures were observed to be higher for coal- Silanite™ fly ash 

compared to the simple coal fly ash (Table 6). This is an indication of the formation of high 

temperature eutectic mixtures of fly ash with the lower slagging propensity. It is evident from the 

data that a suppression of about 10
o
C-30

o
C was observed in the flow temperature with the 

additive combined coal fly ash samples. Similarly a 10
o
C-20

o
C [283.15K- 293.15K] increase in 

hemisphere temperature was observed for additive combined coal fly ash samples. 
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Injection of silica based additive
14

 to lignite coal fired industrial boiler also inhibit the slagging 

and fouling due to scavenging of highly molten slag by added silica. The stable Fe
+3

- silicate 

formations due to high melting points and viscosity also contribute to inhibition of slagging
14

. 

Silanite™ additive originally containing both magnetite and fayalite phases resulted in 

promotion of magnetite formation proven by the ash collected from the convective sections of 

the boiler
11

. This formation could be partially based on the mechanism proposed for iron 

speciation by ref
14

. 

During the ash fusibility tests it was also verified that the coal fly ash samples exhibited greater 

shrinkage rate compared to the Silanite™ -coal fly ash samples. The shrinkage of the samples 

with temperature can be observed in a sequential comparison of the images obtained. The image 

analysis has revealed that there was an overall 53.26% reduction in the image area of coal fly ash 

sample compared to 46% reduction in the image area for coal with the additive fly ash sample. 

The approach has been applied to other samples endorsing relatively lesser shrinkage compared 

to the simple coal fly ash samples. These remarkable differences of shrinkage rates are attributed 

to sintering characterisation of the fly ash. Hence from the analysis of the images, it has been 

shown that coal with additive fly ashes has relatively lesser tendency to sinter compared to the 

simple coal fly ash because of lesser shrinkage rates. 

3.2. 100kWth furnace test results 

The reduction of NO by combustion intermediate i.e. CO over the surface of oxides of 

iron
11-12, 27-29

 was validated by the recorded radial and axial profile measurements from the pilot 

scale 100kWth furnace combustion tests at 15% excess air for 3.4% by vol. addition of the 

additive. Convincing evidence specifies better results towards de-NOx using iron oxides in 
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conjunction with other commercially available technologies i.e. reburning, advance reburning, 

selective non-catalytic reduction
29-31

. The inflame measurement of CO at the module 1 (port 1) 

position confirmed higher concentrations with Silanite™ (Figure 8a) compared to coal baseline 

measurement at the same location. However, later at the module 2 (port 2) location, the values 

were recorded lower than the respective coal baseline measurements. An increase in the 

production of the lighter hydrocarbon (i.e. CO) from the coal matrix due to the possible 

exothermic reactions
12

, pyrolytic cracking
32

 and increased surface area and pore structure
33

, in 

the near-burner zone is visible from the first set of radial profile measurements at module 1. 

However, a shift can be seen as the reactions carry forward in the later part of stationary 

combustion source (module 2, port 2 position) where the concentration of CO starts to reduce in 

order to facilitate the self-reduction of oxide phases of iron with non-conjectural NOx reduction 

(Figure 8a). This has been discussed to be linked with the oxides of iron / iron as a gas phase 

catalyst or as indirect heterogeneous NOx reduction catalyst
27

. There is also evidence associated 

with the iron metal cations in the ion-exchanged forms, present in coal or coal ash, changing the 

ratio of heavy hydrocarbon to lighter hydrocarbon
29

.The in-furnace reduction of NO achieved 

without the need of an additional reactor has been reported in literature
27, 29 

not only under fuel 

rich but equivalently in fuel lean conditions. 

It can be inferred from the traverse profiles (Figure 8a) that the test facility burner flame is 

not exactly symmetrical from the center axis of the burner, due to heterogeneous combustion 

characteristics of coal. The traverse measurement was taken over a 15 mins with frequency of 

readings recorded after 10 s for both with and without additive injected conditions. The error 

bars are shown in Figure 8a, also taking into account the 95% accuracy confidence of the data 

based on the standard deviation. The O2 trends for the module 1 (port 1) position are relatively at 
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lower level values compared to the module 2 (port 2) positions, indicative of the extension of 

fuel-rich combustion zone from the burner quarl up till module 1 position. Figure 8b also 

indicates a shift from the fuel rich zone to fuel lean zone while moving axially down to the flue 

emission point. A net 8.2% NO reduction was achieved with 3.5 vol. % Silanite™ injection. It 

has been reported that the surface to surface based reactions are mainly responsible for the solid 

iron based additives; however, the gas species might also play a role towards NO destruction in 

fuel rich zones
27

. Even though the iron oxide chemical redox reactions have a negative Gibbs 

free energy, the NO destruction would still converge to a limit (optimum value) as the mass 

fraction of the additive is increased. 

The collected fly ash from the pilot scale facility was subjected to analysis using the 

scanning electron microscope with energy dispersive spectroscopy. Table 7 summarizes the 

overall spectrum with 5 iterations of the metal % present in the fly ash samples with and without 

the additive. It is shown that based on the spectrum analysis the metal concentration of iron in 

the fly ash increased by about twofold. The results show the net reduction in the K% which is 

beneficial to suppress the potassium based corrosion sulphidation reactions. The previous tests
11

 

have shown the formation of the magnetite phase due to the possible interaction of fayalite and 

CO2. Moreover, the presence of Fe2O3 at 1100
o
C [1373.15K] with the potential formation of 

magnetite at about 700
o
C has also been reported by other researchers

29-30,34
. 

3.3. Corrosion test results 

In an industrial application, fireside corrosion poses a vital challenge so as to reduce the 

downtime required to repair failed superheater (SH) and reheat (RH) section boiler tubes. In 

order to examine the effect of Silanite™ on alloy specimen T22 (widely used for SH and RH 
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boiler section tubes) was tested under simulated flue gas concentration. Figure 9 presents the 

mass gain and rate of corrosion of the alloy T22 specimens after 1000h exposure at 570
o
C 

[843.15K], coated with coal and Silanite-coal fly ash collected from both the 100 kWth and 

commercial boiler (260 t.h
-1

  steam production rate).  

The Silanite-coal fly ash-coated T22 alloy presented reduced corrosion rates (Figure 9b) 

compared to the simple coal fly ash-coated and non-coated specimens. The total amount of alkali 

oxides reported in Table 1, especially the volatile oxides (Na2O, K2O) of the collected Silanite™ 

+ Coal fly ash sample (used for coating purposes) is lower  than coal fly ash. This has a direct 

impact on the known reactions associated with the transformation of alkali chlorides to form 

alkali sulphates (K2SO4) reacting with the oxides of iron (Fe2O3) and SO3, eventually resulting in 

the formation of alkali iron trisulphates
35-37

. This compound known for its lower melting point 

dependent fluidity could enhance the rate of corrosion
35

 and the steps involved are pictorially 

explained in Figure 10. The triggering alkali oxides at high temperature react with the water 

vapours of the surrounding simulating gas mixture to form alkali hydroxide (KOH, NaOH) 

which after reacting with SO3 form alkali sulphate ( 42SOK , 42SONa ) deposits. Moreover, the 

continuous formation of these sulphates allows the diffused oxygen to the metal scale of the 

specimen to form trioxide of iron (Fe2O3) which reacts with SO3 to form iron sulphates (Fe2 

(SO4)3). The already formed K2SO4 would then react with Fe2 (SO4)3 to form the molten layer of 

low melting alkali iron trisulphates
35-37

. Eq. 8 summarises these reactions with a rate dependent 

on the concentration of sulphates of the oxides of alkali.  

34332342 )(233 SOFeKOFeSOSOK  34-36
     (8) 



 20 

The primitive deposits associated with the sulphate; 42SOK , 42SONa have melting 

points
39

 of 1067
o
C [1340.15K], 888

o
C [1161.15K] respectively. However, the thermal stability 

limit of the alkali iron trisuphates is around 570
o
C - 590

o
C [843.15K- 863.15K]

37,39
. This 

unstable molten compound reacts with the base metal of the T22 alloy as per the Eq. 9 resulting 

in the loss of the boiler tube wall thickness. 

4342343 33310)(2 OFeFeSSOKFeSOFeK  39-40 
   (9) 

The formation of the alkali molten complex progresses (Eq. 9) in the form of a 

continuous reaction cycle
39-40

 based on the formation of the K2SO4 (Eq. 8). In the present study 

due to the presence of relatively lower concentration of oxides of potassium in the Silanite™ + 

Coal fly ash samples (both 100 kWth and 260 t.h
-1

  steam producing boiler), the formation of 

these alkali molten complexs would be lower resulting in the evident reduced corrosion rates 

compared to the coal fly ash samples. 

In relation to high temperature, chlorine based fireside corrosion, the direct attack of HCl 

present in the combustion gaseous products results in FeCl2 formation, which upon oxidation 

produces Cl2 able to penetrate directly to the metal resulting in a phenomenon called “metal 

chlorination at the metal surface” 
41 

(Eq. 10
42-43

). 

223222 323222 ClHOFeOFeClHClFe       (10) 

In the presence of the higher concentration of Fe2O3 (Table 1) in the Silanite™ + coal fly 

ash samples, a protective coating layer could potentially act as a barrier stopping the direct 

contact of HCl with the base metal (Eq. 11). The iron oxide would then react with the HCl / Cl2 

at the deposit coated surface before they could diffuse into the base metal. 
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OHFeClHClOFe 2332 326        (11) 

Moreover, the formation of Chromia (Cr2O3- present in the Silanite™ + coal fly ash) 

approximately twice compared to the coal fly ash could (Table 1) can act as a very protective 

layer preventing the iron-rich oxides formation of the iron from the base metal
43

. The above 

explained mechanisms in the presence of the additive can be summarized as follows: lower alkali 

oxides and higher oxides of iron concentrations in the deposit formations are expected to lead to 

a lower corrosion rate. 

Figure 9a show that the Silanite™ additive mostly increased the weight gain of the 

samples, and that the T22 alloy without any coating had the highest weight gain. The pure T22 

alloy without any coating due to the direct exposure to the simulated flue gas concentration 

produced oxidative layers of the oxides of the base metal. The SEM/EDS results of the cross-

sectional view of the corroded T22 specimen without any coating (Figure 11a) only indicated 

rich in Fe, O2 and Cr in the intact oxide scale compared to only Fe, Cr and Mo of the base metal. 

Due to the high presence of Fe and O (Fe2O3) along with Cr, the iron oxide can then form a thick 

layer of FeCr2O4 (chromium / iron compound spinel) as evident from the EDS of Figure11a. 

Similarly, with the presence of additional iron oxide of Silanite™ + Coal fly ash and twice the 

amount of Chromia (Cr2O3), the formation of the same complex Fe/Cr spinel can add to the 

overall weight gain (Figure 11c). The molar mass of FeCr2O4 i.e. 223.8 g/mol is also relatively 

higher compared to the molar mass of oxide of iron i.e. Fe2O3: 159 g/mol. In case of the 

observed findings with the Silanite™ + Coal fly ash coatings, the weight gain due to Fe/Cr spinel 

formation could exceed the decrease in the weight gain due to the lower corrosion rate. 

Therefore, in the Figure 9b, an overall weight gain in case of Silanite™+Coal fly ash has been 

observed. The lower concentration of O (35.8%) in the mapped box (Figure 11c) of the 
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simulated flue gas exposed Silanite™+Coal fly ash coating, compared to the O (52.3%) (Figure 

11b) of the Coal fly ash coating especially with lower K (0.3% instead of 0.9%) supports the 

presence of a lower concentration of the low melting complexes compared to  343 )(2 SOFeK . It 

is also interesting to observe that the thickness of the scale formation due to corrosion above the 

base metal is slightly thicker in case of the T22 alloy with and without coal fly ash coating 

(Figure 11a-b), compared to the Silanite™+ Coal fly ash coating (Figure 11c). 

The average surface area of each of the specimen coupons is approximately 1.5cm
2
, the 

mass density gain of the studied samples (g.cm
-2

) are as follows: T22 without coating = 16.67, 

T22 Coal fly ash from the 100kWth CTF = 10.23, T22 Silanite+ Coal fly ash from the 100kWth 

CTF = 10.47, T22 Coal fly ash from the 233MWth boiler = 5.6 and T22 Silanite™+Coal fly ash 

from the 233MWth boiler = 11.37. A similar study
44 

on T22 alloy with different coatings 

produced a higher density gain of 45 g.cm
-2

 due to the wide difference between the alkali oxide / 

sulphates concentrations though with the similar iron oxide concentration.  

Other competing technologies
15-19

 report corrosion reduction by means of the additives, 

however, the impact with Silanite™ additive is analysed whether it is significant enough to 

improve the life span of the real power plant boiler tubes. In the present study with 2.25% Cr 

ferritic steel tubes the minimum and maximum corrosion rates (mm/year) of approximately 

0.345 and 0.352 was achieved with Silanite™+Coal fly ash coatings produced from both the 

pilot and commercial tests. Usually 33% of the thickness is the limit for corrosion in the boiler 

tubes, which for a typical 38mm diameter superheater tubes is about 1.51mm
45

. The life span of 

the boiler tubes due to coating can be assumed to be reasonably estimated from the achieved 

corrosion rates. Therefore the life span of the corrosion deposit without additive coating will 

approximately be 1.51/0.468 which equals an estimated value of 3.2 years; whilst the corrosion 
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with additive coating will have a life span of 1.51/0.352 which equals an estimate of 4.2 years. 

This investigation reveals that the Silanite™ additive is capable of increasing the life span of a 

high temperature super-heater tubes by approximately 1 year. 

4. CONCLUSIONS  

The technology demonstrated on 233 MWth (260-280 t.h
-1

 steam output) pulverized fuel 

boiler a net 42% reduction in LOI, 20% decrease in the particulate matter of ESP, 8% NOx 

reduction with 11
o
C increase in the flame front for 3.5 vol. % injected additive. The iron oxide 

chemical redox reaction verified by the radial and axial profile measurements from the pilot scale 

are responsible for NO destruction along with production of lighter hydrocarbon. The 1000 h 

corrosion rate findings on T22 tube sections exposed to 833.15K indicate an increase in the 

lifespan of boiler tubes from 3.2 to 4.2 years due to the following reasons: 

1) Lower concentration of oxides of potassium in the additive coating reduce the continuous 

reaction cycle of low melting iron trisulphates complexes formations. 

2) Additive coating with built in iron oxide layer acts as a barrier to inhibit the direct metal 

chlorination. 

3) Presence of Chromia (Cr2O3 in the additive) acts as a protective layer preventing the 

oxidation of the base metal. 
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NOMENCLATURE 𝑚𝑆𝑇 = Main steam flow, kg.s
-1 ℎ𝑆𝑇  = Specific enthalpy of main steam, kJ.kg

-1 𝑚𝑆𝑠 = Spray water flow rate to the main steam attemperature, kg.s
-1 ℎ𝑆𝑆  = Specific enthalpy of spray water, kJ.kg

-1 ℎ𝐹𝑊 = Specific enthalpy of spray water, kJ.kg
-1 𝑚𝐹 = Total coal flow to the boiler, kg.s

-1 𝐻(𝑁)𝑡𝑜𝑡 = Net total calorific value of the coal, kJ.kg
-1 𝐶𝐹 = Specific heat of the fuel, kJ.kg

-1
.
o
C

-1 𝑡𝐹 = Average temperature of the coal supply (fuel), 
o
C 𝑡𝑟 = Reference temperature, 

o
C 𝐶𝑃𝐴 = Specific heat of the air, kJ.kg

-1
.
o
C

-1 𝜇𝐴= Combustion air to mass fuel ratio, kg.kg
-1 𝛾𝐴𝑠ℎ = Ash content in the fuel, kg.kg

-1 𝛾𝐻2𝑂= Moisture content in the fuel, kg.kg
-1 𝑣 = Volatile matter content of ash, kg.kg

-1 𝑢𝑆𝐿= Unburned combustible content of slag, kg.kg
-1 ƞ𝑆𝐿= 0.05 = Ratio of collected furnace bottom-ash mass to mass of ash in fuel minus its volatile 

fraction 
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𝑢𝐹𝐴= Unburned combustible content of fly ash, kg.kg
-1 ƞ𝐹𝐴= 0.95 = Fly ash retention efficiency 

PM = Coal Pulveriser power, kW 

P = Any other power required on motors, kW 𝑄𝑁 = Useful heat output, kW 𝑄(𝑁)𝑍𝑡𝑜𝑡= Total heat input, kW 𝜂 (𝑁)𝐵 = Thermal efficiency by Direct method 
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Figure 1. Equipment and schematics of the test facilities: a) 100kWth combustion test facility, b) 260t.h
-1

 steam producing commercial 

boiler [12], c) simplified schematic of the corrosion test facility.  
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Figure 2. a) NOx profile 8h full Scale Commercial Test; b) Pilot Scale Trial- 100 kWth; c) NOx profile 45 min Full Scale Trial [12]. 
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Figure 3. Effect of the injection of Silanite™ on the flame temperature, oscillation frequency and flame area
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Figure 4. Effect of the injection of Silanite™ on the loss on ignition calculated for collected fly 

ash samples temperature. 
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Figure 5. Effect of the injection of Silanite™ on Dust concentration post ESPs. 
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Figure 6. Air jet sieve- Rosin Rammler Distribution with and with Silanite™ injection. 



 38 

 

Figure 7. Slagging and fouling indices with and with Silanite™ injection. 
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Figure 8. a) Radial profiles with a test sub-bituminous coal imported from outside UK; b) Axial profiles (NO, CO and O2). 
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Figure 9. a) Mass gain b) Corrosion rate: after 1000h exposure of the T22 alloy specimens. 
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Figure 10. The morphological pictorial representation of the sulphidation reactions. 
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Figure 11. SEM /EDS of the cross-sectional view of the 1000h exposure non –coated and coated T22 alloy samples. 
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Table 1 Analysis of Silanite™ and UK-based utility Coal & collected fly ash. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ultimate Analysis 

as received, % 
UK-Utility Coal  Silanite™ 

C 66.00 

- 

 

H 4.60 

N 2.53 

O (diff) 8.90 

S 0.02 

H2O 6.00 

Ash 11.95 

Proximate Analysis 

as received, % 
UK-Utility Coal  Silanite™ 

Volatile Matter 17.08 - 

Fixed Carbon 64.97 - 

Ash 11.95 97.5 

Moisture 6.00 2.50 

Net Calorific Value, 

MJ/kg 
27.04 0 

Air Jet Sieving UK-Utility Coal  Silanite™ 

d(0.1) (µm) 11.5 2.5 

d(0.50) (µm) 62.5 12 

d(0.9) (µm) 181 26 

X-Ray fluorescence 

analysis (% normalized) 

of the collected fly ash as 

part of commercial scale 

test 

UK-Utility Coal fly 

ash  

UK- Utility Coal - 

Silanite™ fly ash 

SiO2 43.79 37.13 

TiO2 0.81 0.6 

Al2O3 18.19 14.45 

Fe2O3 5.15 21.09 

MnO 0.04 0.05 

MgO 1.63 1.9 

CaO 4.91 3.9 

Na2O 0.29 0.46 

K2O 1.7 1.32 

P2O5 0.45 0.43 

SO3 0.883 0.93 

ZnO 0.018 0.34 

CuO 0.0087 0.26 

PbO 0.0058 0.08 

Cr2O3 116 μg/g 209 μg/g 

LOI + Others 22.12 17.06 
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Table 2 Timeline based protocol during the test. 

1.  Soot blowing completion before the test 

2.  Coal mill (Babcock type 6.3E9 vertical) 6-A being inoperative due to the maintenance 

purposes, hence, 6-B and 6-C utilised for maintained coal flows. Coal mill-B load 

reduced from 12.4t t.h-1  to 11.38 t.h-1  from 06:00 to 06:45. Coal mill-C load was 

reduced from 12.4 t.h-1  to 12t.h-1  from 06:00 to 19:19. 

3.  Electrostatic precipitators (ESPs) cleaned by ash recovery vacuum system. 

4.  Boiler steady load started 07:00 to 10:20. 

5.  Blow down left open at ¼ turn on valve, conductivity 16µs (agreed with Parson 

Brinckerhoff to maintain blow down at ¼ turn throughout the test with or without 

additive). The blow down flow rate was not measured; its impact on the net change in 

net boiler efficiency improvement is cancelled for both with and without additive due 

to consistent ¼ turn opening. 

6.  Pf samples taken during the coal steady baseline. 

7.  Fly ash recovery system switched off from control room at 07:57 

8.  The fly ash hoppers underneath ESPs emptied by ash recovery vacuum system 08:30. 

9.  Fly ash and bottom ash samples collection completed by 09:30. 

10.  The initial steady base line between 07:00 to 10:10. 

11.  Fly ash hopper underneath ESPs by ash recovery vacuum system 10:15. 

12.  Additive (3.4% by vol. i.e. 1.59 t.h-1 ) injection started at 10:20. The injection rate 

was selected in agreement with Sembcorp plant operators and PB’s Inspection team. 

13.  Pf samples for coal and additive mixture completed 13:20. 

14.  Fly ash and bottom ash samples completed by 14:50. 

15.  Additive injection stopped at 15:00. 

16.  Test concluded at 15:00 

17.  The ending baseline was recorded but due to steam demand from customers, coal mills 

loads were changed resulting in changed ending coal baseline. 
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Table 3 Net boiler efficiency calculation with and without Silanite™. 
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Table 4 Dust concentration (mg.Nm
-3

) east-center and west bound legs of the boiler. 

 
Dust particulate-East 

(mg.Nm
-3

) 

Dust particulates-

Centre (mg.Nm
-3

) 

Dust particulates-

West (mg.Nm
-3

) 

Coal fly ash 

 

246.3 266.9 148.7 

Standard Deviation for coal 

fly ash calculation 
139 158 138 

Coal + 6.8% AC Silanite fly 

ash 

 

206.2 224.5 122.3 

Standard Deviation for coal 

+ 6.8% AC Silanite fly ash 

calculation (-) 

133 188 157 

Dust reduction w.r.t coal 

baseline (%) 
16.25 15.89 17.76 
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Table 5 Slagging and fouling indices based on the X-Ray fluorescence (XRF) analysis. 

Metal in ash 

reported as 

% 

Sample 7- 

ESPs coal 

fly ash 1
st
 

Field / 1
st
 

hopper 

Sample 

10- ESPs 

coal fly 

ash + 

6.8% 

AC 

Silanite 

1
st
 Field 

/ 1
st
 

hopper  

Sample 

8- 

ESPs 

coal 

fly ash 

1
st
 

Field / 

2
nd

 

hopper 

Sample 

11- 

ESPs 

coal fly 

ash + 

6.8% 

AC 

Silanite 

1
st
 

Field / 

2
nd

 

hopper 

Sample 

9- 

ESPs 

coal 

fly ash 

1
st
 

Field / 

3
rd

 

hopper 

Sample 

12- 

ESPs 

coal fly 

ash + 

6.8% 

AC 

Silanite 

1
st
 

Field / 

3
rd

 

hopper 

Sample 

16- 

Bottom 

coal fly 

ash 

Sample 

17- 

Bottom 

coal + 

6.8% AC 

Silanite 

fly ash 

SiO2 43.25 38.78 43.79 37.13 44.33 39.27 15.42 15.88 

TiO2 0.79 0.63 0.81 0.60 0.81 0.64 0.37 0.39 

Al2O3 18.24 15.03 18.19 14.45 18.22 15.31 5.80 5.86 

Fe2O3 5.00 18.92 5.15 21.09 5.09 17.70 3.81 7.24 

MnO 0.04 0.05 0.04 0.05 0.04 0.05 0.03 0.02 

MgO 1.68 1.38 1.63 1.90 1.67 1.71 0.06 0.07 

CaO 4.70 4.13 4.91 3.90 4.86 4.11 3.21 2.85 

Na2O 0.29 0.41 0.29 0.46 0.29 0.41 0.20 0.24 

K2O 1.72 1.39 1.70 1.32 1.70 1.40 0.68 0.65 

P2O5 0.46 0.42 0.45 0.43 0.47 0.44 0.14 0.18 

SO3 0.9070 0.9790 0.8830 0.93 0.9190 0.92 0.906 1.175 

ZnO 0.0192 0.2810 0.0180 0.34 0.0170 0.25 0.009 0.035 

CuO 0.0088 0.2239 0.0087 0.26 0.0083 0.20 0.008 0.063 

PbO 0.0059 0.0707 0.0058 0.08 0.0051 0.06 0.002 0.008 

B/A 0.22 0.48 0.22 0.55 0.21 0.46 0.37 0.50 

R(B/A) 0.19 0.45 0.19 0.52 0.19 0.43 0.33 0.47 

Rs 0.08 0.19 0.08 0.21 0.08 0.17 0.13 0.23 

Fu 0.43 0.87 0.43 0.98 0.43 0.83 0.32 0.44 
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Table 6 Ash fusibility temperatures. 

Sample 

ID 
Description 

Slagging index 

calculated on the 

basis of Deform. 

Temp and hemi. 

temp 

Ash fusibility temperatures 

Fs 
a 

= (4DT + 

HT)/5 

Deformation 

temperature 

Sphere 

temperature 

Hemisphere 

temperature 

Flow 

temperature 
o
C [K]

 o
C [K] 

o
C [K] 

o
C [K] 

o
C [K] 

Sample 7 
ESP’s coal fly ash 1st

 

field / 1
st
 hopper 

1254     

[1527.15] 

1240 

[1513.15] 

1260 

[1533.15] 

1310 

[1583.15] 

1330 

[1603.15] 

Sample 

10 

ESP’s coal fly ash + 
6.8% AC Silanite     1

st
 

field / 1
st
 hopper 

1258      

[1531.15] 

1240 

[1513.15] 

1260 

[1533.15] 

1330 

[1603.15] 

1360 

[1633.15] 

Sample 8 
ESP’s coal fly ash 1st

 

field / 2
nd

 hopper 

1259     

[1532.15] 

1240-1250 

[1513.15-

1523.15] 

1260 

[1533.15] 

1310-1320 

[1583.15-

1603.15] 

1350 

[1623.15] 

Sample 

11 

ESP’s coal fly ash + 
6.8% AC Silanite 1

st
 

field / 2
nd

 hopper 

1258      

[1531.15] 

1240 

[1513.15] 

1260 

[1533.15] 

1330 

[1603.15] 

1360 

[1633.15] 

Sample 9 
ESP’s coal fly ash 1

st
 

field / 3
rd

 hopper 

1258      

[1531.15] 

1240 

[1513.15] 

1270 

[1543.15] 

1330 

[1603.15] 

1340 

[1613.15] 

Sample 

12 

ESP’s coal fly ash + 
6.8% AC Silanite 1

st
 

field / 3
rd

 hopper 

1251      

[1524.15] 

1230   

[1503.15] 

1260 

[1533.15] 

1330-1340  

[1603.15-

1613.15] 

1360 

[1633.15] 

Sample 

13 
AC Silanite 

1306    

[1579.15] 

1280  

[1553.15] 

1350 

[1623.15] 

1410 

[1683.15] 

1420  

[1693.15] 

Sample 

14 
WC Silanite 

1342          

[1615.15] 

1320 

[1593.15] 

1390 

[1663.15] 

1430 

[1703.15] 

1440 

[1713.15] 

Sample 

19C 
Cegrit Pot Coal fly ash  

1270     

[1543.15] 

1260 

[1533.15] 

1260 

[1533.15] 

1310 

[1583.15] 

1330-1340  

[1603.15-

1613.15] 

Sample 

20C 

Cegrit Pot Coal fly ash 

+ 6.8% AC Silanite  

1252    

[1525.15] 

1240 

[1513.15] 

1250-1260  

[1523.15-

1533.15] 

1300 

[1573.15] 

1340-1350 

[1613.15-

1623.15] 

Sample 

21C 
Cegrit Pot Coal fly ash  

1252     

[1525.15] 

1240 

[1513.15] 

1260  

[1533.15] 

1300  

[1573.15] 

1340  

[1613.15] 

Sample 

22C 

Cegrit Pot Coal fly ash 

+ 8% AC Silanite  

1248    

[1521.15] 

1230 

[1503.15] 

1250 

[1523.15] 

1320 

[1593.15] 

1350  

[1623.15] 

Sample 

23C 
Cegrit Pot Coal fly ash  

1244    

[1517.15] 

1230 

[1503.15] 

1250 

[1523.15] 

1300  

[1573.15] 

1320 

[1593.15] 

Sample 

24C 

Cegrit Pot Coal fly ash 

+ 8% WC Silanite  

1256    

[1529.15] 

1240 

[1513.15] 

1260 

[1533.15] 

1320 

[1593.15] 

1330 

[1603.15] 
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a
 Fs= Slagging index proposed by Gary and Moore (R.J. Gray, G.F. Moore, Burning the sub-

bituminous coals of Montana and Wyoming in large utility boilers, ASME paper (1974) p. 74-

WA/FU-1) 

Medium slagging propensity ; 1232
 o
C [1505.15 K] < Fs < 1342

 o
C [1615.15 K] 

High slagging propensity; 1052
 o
C [1325.15 K] < Fs < 1232

 o
C [1505.15 K] 

Severe high slagging propensity; 1052
o
C [1325.15 K] 
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Table 7 SEM/ EDS of the coal and coal+ Silanite ash. 

 

  

 

Spectrum 1 

Spectrum 2 Spectrum 3 

Spectrum 4 

Spectrum 5 

Spectrum 2 

Spectrum 1 

Spectrum 3 

Spectrum 4 

Spectrum 5 

Coal Ash Electron Image Coal+Silanite Ash Electron Image 

Element Weight % 
Coal ash Analysis (normalised spectrum with 5 no of iterations) 
Spectrum 1 Spectrum 2 Spectrum 3 Spectrum4 Spectrum 5 

C  0.14 3.86 6.36 4.98 53.90 
O  57.00 46.23 58.99 40.80 33.72 
Na  0.58 - 0.62 - 0.18 
Mg  1.13 4.65 0.59 1.00 0.32 
Al  9.91 4.32 11.82 1.61 2.87 
Si  25.62 7.44 18.51 2.61 6.30 
K  2.03 - 1.74 - 0.49 
Ca 1.91 1.67 0.25 6.89 0.78 
Ti  0.34 - 0.36 - 0.20 
Fe  1.61 30.7 0.78 39.51 1.11 
P - 0.40 - 0.78 - 
Mn  - 0.74 - 1.83 - 
S  - - - - 0.15 
Element Weight % Coal + 13% Silanite ash Analysis (normalised spectrum with 5 no of iterations) 
 Spectrum 1 Spectrum 2 Spectrum 3 Spectrum4 Spectrum 5 
C  3.66 5.14 10.73 4.50 5.02 
O  46.64 39.43 47.56 53.46 44.51 
Na  0.57 - 0.59 0.77 0.55 
Mg  0.31 0.41 0.40 0.61 0.48 
Al  1.90 1.88 1.90 4.17 1.80 
Si  18.83 13.82 14.01 17.16 16.54 
K  0.41 0.38 0.34 0.83 0.28 
Ca  1.09 1.96 1.22 2.70 1.44 
Ti  - - - 0.31 - 
Fe  26.29 36.33 23.25 14.82 29.08 
P - - - 0.36 - 
Mn  - - - - 0.30 
S  - - - 0.31 - 
Cu 0.29 0.66 - - - 


