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Highlights 

 Large eddy simulation is used to predict interacting microbubbles in a turbulent 

horizontal channel flow 

 Two-way coupled simulations are performed based on Eulerian-Lagrangian technique  

 Effects of bubble and fluid inertia on bubble migration and turbulence modulation are 

demonstrated 

 Results are in good agreement with, and complement and extend, those obtained from 

direct numerical simulation 
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Large eddy simulation of microbubble transport in a turbulent 

horizontal channel flow 

Kenneth S. Asiagbe1, Michael Fairweather, Derrick O. Njobuenwu, Marco Colombo 

School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK 

Abstract 

Liquid-gas multiphase flows occur in many engineering and environmental applications, with 

the former ranging from the flow of oil and gas in pipelines, of steam and water in nuclear 

reactors and steam generators, and the evaporation and condensation of refrigerants in 

refrigeration and air conditioning equipment. In this paper, the dispersion and interaction 

between microbubbles and turbulence in a horizontal channel flow is investigated using a 

two-way coupled Eulerian-Lagrangian approach based on large eddy simulation. The 

microbubbles are considered to be spherical and non-deformable, and are represented by a 

Lagrangian bubble tracking technique, with the bubbles subject to drag, gravity, buoyancy, 

shear lift, added mass and pressure gradient forces. Dynamic calibration of a Smagorinsky-

type sub-grid scale (SGS) closure is employed to account for the unresolved stresses, whilst a 

stochastic Markov method is used to describe the effect of the SGS velocity fluctuations on 

bubble dispersion. Channel flows of water at two shear Reynolds numbers, ܴ݁ఛ ൌ ͳͷͲ and 

590, and three different bubble diameters, ݀௕ ൌ ͳͲͲ, 220 and 330 ݉ߤ, are simulated. The 

results show acceptable agreement with DNS predictions of single- and two-phase flows, 

with the low density microbubbles migrating towards the upper channel wall with time under 

the influence of buoyancy, and segregating in the upper half of the channel, with this effect 

increasing with bubble diameter. The accumulated bubbles near the upper wall modify the 

liquid velocity field, with the mean velocity profile becoming asymmetric as a consequence 

and with slight modification of the turbulent stresses. At higher mean velocity and turbulence 

levels, the buoyancy effect is reduced due to more effective turbulent dispersion of the 

microbubbles, leading to reduced bubble migration towards the upper channel wall.  

Keywords 

Large eddy simulation, Eulerian-Lagrangian, microbubbles, turbulent flow, horizontal 

channel 
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horizontal channel flow 
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 Effects of bubble and fluid inertia on bubble migration and turbulence modulation are 
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 Results are in good agreement with, and complement and extend, those obtained from 

direct numerical simulation 

 Introduction 1.

Liquid-gas bubbly flows are frequently encountered in a wide variety of engineering, 

environmental and industrial applications, including boilers, distillation towers, chemical 

reactors, oil pipelines and nuclear reactors, amongst many others. The dynamics of bubbly 

flows are strongly sensitive to the flow regime, bubble size and shape, bubble velocity and 

void fraction, hence it is imperative to account for these parameters in order to accurately and 

reliably predict bubbly flow behaviour which is of importance to the operational safety, 

control and reliability of the type of industrial equipment noted (Hassan, 2014). Dispersed 

bubbly flows, where gaseous bubbles are present in a continuous liquid flow, and in general 

most particle-laden two-phase flows, are predicted using either Eulerian-Eulerian or Eulerian 

Lagrangian approaches, with attendant advantages as well as short comings (Njobuenwu et 

al., 2013). In this work, the Eulerian-Lagrangian approach is adopted since this method is 

expedient in terms of the broad motivation of our research which necessitates the accurate 

tracking of individual bubbles, with their subsequent coalescence due to collisions and break-

up due to shear forces monitored. Hence, the subsequent discussion is limited to studies that 

employed this approach. In the Eulerian-Lagrangian approach, the liquid phase is treated as a 

continuum in the Eulerian reference frame in which the flow and turbulence are obtained by 

modelling or simulation, and the dispersed gas phase is treated in a Lagrangian reference 

frame with the individual bubbles in the system tracked by solving Newton’s second law, 

whilst accounting for the forces acting on the bubbles.  

 

Amongst the different types of bubbly flow, the use of microbubbles injected near a wall into 

a turbulent flow can generate drag reductions of up to 80%, with reductions of even small 

amounts being extremely beneficial to pumping and pipeline system efficiency, and skin 
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friction reduction on ships (Apte et al., 2003; Lu et al., 2005). Recently, a series of 

comprehensive reviews of drag reduction by microbubbles was published by a number of 

researchers (Ceccio, 2010; Murai, 2014; Paik et al., 2016; Pang et al., 2014; Watamura et al., 

2013). Bubble size has been found to be a critical factor, with drag reduction only possible 

when the bubble diameter is less than about 1 mm, and with drag reduction rates generally 

higher with smaller bubble diameters. 

 

As demonstrated by several studies of bubbly flows, the effect of bubbles and microbubbles 

on the liquid velocity and turbulence field is extremely complicated and depends on many 

factors, such as the bubble size and shape, void fraction, gas and liquid velocities, and the 

flow direction of the liquid (Kitagawa et al., 2005; Wang and Maxey, 1993). Bubbles 

experience a transverse lift force when moving in a shear or rotational flow, and this plays a 

decisive role in the lateral distribution of these bubbles in pipes and other industrial flows. In 

upflow, bubbles move faster than the liquid and, as long as their shape remains close to 

spherical, they are pushed towards the wall by the lift force. Here, when the bubbles are very 

close to the wall, the flow of liquid between the bubbles and the wall generates a wall 

lubrication force that tends to keep the bubbles from contacting the wall (Giusti et al., 2005; 

Molin et al., 2012). In downflow, the bubbles move slower than the liquid and are pushed 

towards the centre of the flow and away from the walls (Wang et al., 1987). In addition, when 

the diameter of a bubble increases beyond a certain value, deformation of the bubble by the 

inertia of the surrounding liquid can alter the fluid circulation around it, changing the sign of 

the lift force that consequently pushes the bubble, in upflow conditions, towards the centre of 

the flow (Ervin and Tryggvason, 1997). Several extensive studies have been carried out on 

the lift force (Auton, 1987; Auton et al., 1988; Lighthill, 1956) and numerous correlations for 

this force proposed (Hibiki and Ishii, 2007), among which is the model of Legendre and 

Magnaudet (1997) that is used in the present work. Nevertheless, the motion of bubbles in 

turbulent flows and near walls continues to be a topic of considerable interest, as shown by 

recent studies (de Vries et al., 2002; Jeong and Park, 2015) that considered how the 

trajectories of bubbles near walls change with bubble size. For relatively low Reynolds 

numbers, buoyant microbubbles generally rise unsteadily, with repeated interactions between 

the bubbles occurring (de Vries et al., 2002). This trend is, however, statistically steady and 

the average motion (averaged over time and space) does not change with time. 
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But in many practical applications (Wörner, 2012), the Reynolds number is considerably 

higher and bubbles at high enough Reynolds numbers rise unsteadily, either wobbling as they 

rise or rising along a spiral path. The direct numerical simulation (DNS) studies of Esmaeeli 

et al. (1994) found that two-dimensional bubbles in periodic domains start to wobble at much 

lower rise Reynolds numbers than their three-dimensional counterparts, and that bubbles slow 

down significantly once they start to wobble. Göz et al. (2002) also observed a chaotic 

motion for real (three-dimensional) deformable bubbles rising at high enough Reynolds 

numbers. However, since air bubbles are deformed to a spherical-cap shape only when their 

diameter is higher than a critical value, such motions might not be observed under normal 

conditions. From experimental work, Ellingsen and Risso (2001) suggested that the wobbling 

mode may be a transitionary phase and that wobbly bubbles could eventually rise along spiral 

paths, if sufficient time were allowed.  

 

Direct numerical simulations of such flows, with homogeneous bubble distributions in fully 

periodic domains, have been used to obtain results for the bubble rise velocity, velocity 

fluctuations, and the average relative orientation of bubble pairs (Ferrante and Elghobashi, 

2004; Giusti et al., 2005; Mazzitelli et al., 2003; Molin et al., 2012; Pang et al., 2014). Xu et 

al. (2002) obtained results that increased understanding of turbulent boundary layers laden 

with microbubbles. Esmaeeli and Tryggvason (1998) used DNS to examine the motion of up 

to 324 two-dimensional, or 8 three-dimensional, rising bubbles at low Reynolds numbers, 

similar to those typical of Stokes flows. The results show that a regular bubble array is 

unstable and that it breaks up in two-bubble interactive systems. At low Reynolds numbers, 

in agreement with Stokes flow predictions, a freely evolving bubble array rose faster than a 

regular one, with this trend reversed at higher Reynolds numbers. Due to the rapid increase in 

the computational resources required to perform such simulations with Reynolds number, 

however, such studies are mainly limited to low Reynolds number flows. Whilst most of the 

research on channel flows has been focused on the use of DNS, different authors have 

employed large eddy simulation (LES) coupled with a Lagrangian bubble tracker to study 

hydrodynamics, coalescence and break-up in bubbly flows, mainly in square cross-section 

bubble columns (Delnoij et al., 1997; Deen et al., 2001; van den Hengel et al., 2005; Lau et 

al., 2014). Instead, in this work, large eddy simulation is used to study the flow of 

microbubbles in a horizontal channel, with specific consideration of bubble interaction with 

the turbulent flow, as part of an ongoing development of high accuracy computational fluid 

dynamic tools of value to the prediction of industrial flows. In LES, fi ltered forms of the 
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Navier-Stokes equations are solved, with only the large scales of turbulent motion resolved, 

whereas the sub-grid turbulent scales and their effect on the mean flow are modelled. In 

liquid-gas flows, the large scale turbulent structures interact with bubbles and are responsible 

for the macroscopic bubble motion, while small scale turbulent structures only affect small 

scale bubble fluctuations. Since large energy-containing motions are explicitly captured in 

LES, and the less energetic small scales are modelled using a sub-grid scale (SGS) model, 

LES can reasonably reproduce the statistics of bubble-induced velocity fluctuations in the 

liquid. The LES code is coupled with a Lagrangian bubble tracker and extended to study the 

dynamics of microbubbles in turbulent channel flows. Given the basis of the predictive 

methods noted, the overall approach can be expected to properly describe the scales which 

are responsible for the interactions between the continuous and dispersed phases and, at the 

same time, to permit subsequent extension to other more complex flows of engineering 

interest because the overall approach is less-demanding in terms of computational resources 

than DNS-based methods. The results described are of benefit in improving our 

understanding of bubbly flows, and hence are relevant to the understanding of more complex 

industrial flows. 

 

The overall model is applied to the flow of air microbubbles in a horizontal water channel 

flow. Results are validated against the DNS results of Pang et al. (2014) at a shear Reynolds 

number, ܴ ݁ఛ = 150 and a microbubble diameter, ݀௕ = 220 ȝm. Additional simulations are 

made at the higher shear Reynolds number of ܴ݁ఛ = 590 to study the effect of higher 

turbulence levels on bubble concentration towards the upper wall promoted by buoyancy, and 

the modifications induced by the presence of these bubbles in the continuous phase field. 

Also, two additional bubble sizes (݀௕ = 110 and 330 ȝm) are considered at both shear 

Reynolds numbers to investigate the complex mutual interactions between turbulence, bubble 

diameter and preferential bubble concentration near the upper wall. The work described 

forms the basis for further extensions of the overall model to handle more complex 

phenomena such as bubble deformation, collision, break-up and coalescence, the full 

implementation of which will allow the model to be deployed to study a wide range of 

industrially relevant flows. An illustration of how the model can be extended to address 

bubble coalescence is also included in this work. The paper is structured as follows. Section 2 

describes the numerical model, with details of the numerical solution given in Section 3. In 
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Section 4, the results of the simulations are presented and discussed, with concluding remarks 

in the final section. 

 

 

 Mathematical Modelling 2.

2.1 Large eddy simulation  

To compute the carrier flow field, large eddy simulation was adopted. In LES, the fluid flow 

field is decomposed into large scale motions that are resolved by the computation, and small 

scale, sub-grid fluctuations by use of a filtering operation. The resolved flow field is obtained 

taking into account the effects of the SGS fluctuations according to the filtered continuity and 

momentum equations: 

 
డ௨ഢതതതడ௫೔ ൌ Ͳ, (1) డ௨ഢതതതడ௧ ൅ ఫഥݑ డ௨ഢതതതడ௫ೕ ൌ െ ଵఘ డ௣ҧడ௫೔ െ డడ௫ೕ ൫ߪపఫതതതത ൅ ߬௜௝൯ ൅ ο୮തതതതఘ௅೥ ௜ଷߜ ൅ ௙మೢǡ೔ఘ , (2) 

where the overbar identifies filtered quantities, ߩ is the fluid density, ݑ the Eulerian fluid 

velocity, ݌ the pressure, ߤ the dynamic viscosity, and ߪ௜௝ is the viscous stress given by: ߪపఫതതതത ൌ െʹߤ పܵఫതതതത ൌ െߤ ൬డ௨ഢതതതడ௫ೕ ൅ డ௨ണതതതడ௫೔൰. (3) 

Here, ௜ܵ௝ is the strain-rate tensor, and ߬௜௝  in Eq. (2) is the sub-grid scale stress tensor, arising 

from the top-hat filtering operation, which is required to close the system of equations. The 

SGS stress is modelled using the dynamic model of Germano et al. (1991), implemented 

using the approximate localisation procedure of Piomelli and Liu (1995) together with the 

modification proposed by di Mare and Jones (2003), according to:  ߬௜௝ ൌ ఫതതതതതݑపݑ െ ఫഥݑపഥݑ . (4) 

The dynamic SGS model is adopted here as it is a function of both space and time, and hence 

is more accurate than the standard Smagorinsky model which depends on choosing an 

optimal model constant. The SGS stresses are obtained from the product of a SGS turbulent 

kinematic viscosity, ߥ௦௚௦, and the resolved part of the strain-rate tensor. The SGS kinematic 

viscosity is evaluated as the product of the filter width ο and an appropriate velocity scale:  ߥǡௌீௌ ൌ ሺܥοሻଶԡܵҧԡ.      (5) 

with  ԡܵҧԡ ൌ ටʹܵҧ௜௝ܵҧ௜௝Ǥ    (6) 

Therefore, the anisotropic part of the SGS stress tensor is given by: 
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߬௜௝௔ ൌ െʹሺܥοሻଶԡܵҧԡܵҧ௜௝. (7) 

The model coefficient ܥ is estimated by applying a second filter, known as the test filter, 

denoted by ̱  in the equations. In the test filtered equation the SGS stresses are: 

jijiij uuuuT
~~ . (8) 

The parameters ܶ௜௝ and ܶ෨௜௝ are unknown but are related by Germano’s identity (Germano et 

al., 1991) through the resolved stress tensor: 

jijiijijij uuuuTL
~~~    (9) 

which can be calculated from the resolved quantities. To give the required expression for C, 

some form of relationship between the model constant values C and )~(2 C  at the grid- and 

test-filter levels must be specified and, based on the hypothesis that the cut-off length falls 

inside the inertial sub-range, )~(22 CC . However, such a sub-range is not guaranteed to 

occur in wall bounded or low Reynolds number flows, with the largest deviation from 

universality of the SGS motions expected to occur in the regions of weakest resolved strain. 

Based on this, the two values of the model parameter at two different filter levels are liable to 

differ. To account for this, di Mare and Jones (2003) proposed the following: 


















22

22

||
~

||||
~

||
~

22
1)~(

ass
CC


, 

(10) 

where ߝ represents the assumed turbulence energy dissipation rate, such that ߝ ൎ ଷݒ ݈Τ ǡ  ݒ and ݈ are the velocity and length scales, respectively, such that ݒ ൌ ݈ ௕ andݑ ൌ ݄, where ݑ௕ and ݄  

are the bulk velocity and channel half-height for the flows considered herein.  

 

Equation (10) is based on the assumption that the scale invariance of C can only be invoked if 

the cut-off falls inside an inertial sub-range, and when this occurs, the modelled dissipation 

should represent the entire dissipation in the flow. Conversely, in the high Reynolds number 

limit, the dissipation is only determined by ݒ and ݈  so that the ratio of ߝ to ο෨ଶฮ ሚܵฮଷ is a 

measure of how far the flow is from scale preserving conditions. This equation represents a 

first-order expansion of other scale dependent expressions for C , e.g. that of Porte-Agel et 

al. (2000) which also use a single length and velocity scale. Equations (9) and (10) with 

contraction of both sides with the tensor s
~ , then give: 
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, (7) 

where כܥଶ is a provisional value for the field ܥଶ, for example, its value at the previous time 

step (Piomelli and Liu, 1995). The dependence embodied in Eq. (7) gives a simple correlation 

for ܥଶ. The main advantage of this method is that it is well conditioned and avoids the spiky 

and irregular behaviour exhibited by some implementations of the dynamic model and, as the 

resolved strain tends to zero, ܥଶ also tends to zero, while )~(2 C  remains bounded. The 

dissipation term also yields smooth ܥଶ fields without a need for averaging, and the maxima 

of ܥଶ are of the same order of magnitude as Lilly’s (1967) estimate for the Smagorinsky 

model constant. Negative values of the model parameters are not prevented, with such values 

set to zero to prevent instability. Negative values of the SGS viscosity are similarly set to 

zero. In the present work, test filtering was performed in all space directions, with no 

averaging of the calculated model parameter field. The ratio ο෨Ȁο  was set to 2 and the filter 

width determined from οൌ ൫ο௫ο௬ο௭൯ଵ ଷΤ
, where ο௫, ο௬, and ο௭ denotes the physical grid 

spacing in the three coordinate directions. 

 

The last two terms on the right hand side of Eq. (2) represent the mean pressure gradient, ο݌തതതതȀܮ௭ ǡ required to drive the flow and the action on the fluid of the bubbles, ଶ݂௪ǡ௜, given by 

the summation of all the hydrodynamic forces acting on the bubbles except gravity and 

buoyancy. The mean pressure gradient, taken into account gravity and buoyancy forces, is 

given by (Molin et al., 2012; Yamamoto et al., 2001): ο݌തതതതܮ௭ ൌ െݑߩఛଶ݄ ൅ ߩ௕ሺߙ െ  ௕ሻ݃ (8)ߩ

where ݑఛ is the fluid shear velocity, ߙ௕ the bubble volume fraction, ߩ௕ the bubble density and ݃ the acceleration due to gravity. The term ଶ݂௪ǡ௜ is considered further below. 

 

2.2 Lagrangian tracking of bubble motion 

The motion of a small rigid spherical bubble in a turbulent flow field is described by 

Newton’s second law of motion (Maxey and Riley, 1983). With the bubble-fluid density ratio ߩ௕Ȁا ߩ ͳ, the microbubbles are subjected to drag, lift, gravity, buoyancy, pressure gradient 

and added mass forces, and a stochastic contribution arising from the SGS velocity 

fluctuations (Elghobashi and Truesdell, 1992). The Basset history force is neglected in this 
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work following the observation of Rivero et al. (1991) and Sridhar and Katz (1999) that, in 

the case of bubbles, this force is always negligible in comparison with the other forces noted. 

Therefore, the motion of microbubbles obeys the following Lagrangian equation written per 

unit mass: ݀ݐ݀࢜ ൌ ൬ͳ െ ࢍ௕൰ߩ௟ߩ ൅ ࢛ െ ௕߬࢜ ௌேܥ ൅ ௅ܥ ௕ߩ௟ߩ ሾሺ࢛ െ ሻ࢜ ൈ ࣓ሿ ൅ ௕ߩ௟ߩ ݐ࢛݀݀ ൅ ௕ߩʹ௟ߩ ൬݀ݐ࢛݀ െ ൰ݐ݀࢜݀ ൅  ǡ (9)࢙ࢍ࢙࣑

where the terms on the right hand side of Eq. (9) represent the gravity-buoyancy, drag, shear-

lift, pressure gradient and added mass forces per unit mass, respectively, while the last term, ࢙ࢍ࢙࣑, represents the effect of the SGS velocity fluctuations on the bubble motion. Subscripts ݈ 
and ܾ  represent liquid and bubble, respectively, ࣓ ൌ ͲǤͷ ൈ  is the fluid vorticity, and ߬௕ is ࢛׏

the bubble relaxation time which can be corrected to account for added mass effects to give Ƽ߬௕ ൌ ߬௕ሺͳ ൅ ௟ߩ ௕Τߩʹ ሻ. The bubble position vector ݔ௕ is obtained by further differentiation of 

Eq. (9).  

 

The coefficient ܥௌே represents the non-linear Schiller and Naumann (1935) drag coefficient 

written, with respect to the bubble Reynolds number ܴ݁௕ ൌ ȁ࢛ െ ௌேܥ  :as ,ߥȁ݀௕Ȁ࢜ ൌ ሺͳ ൅ ͲǤͳͷܴ݁௕଴Ǥ଺଼଻ሻ (10) 

The lift coefficient CL is also a function of ܴ݁௕ and the dimensionless shear rate ܵݎ௕, and is 

computed from the correlation of Legendre and Magnaudet (1997): ܥ௅ ൌ ට൫ܥ௅௟௢௪ோ௘൯ଶ ൅ ൫ܥ௅௛௜௚௛ோ௘൯ଶ, (11) 

where ܥ௅௟௢௪ோ௘ ൌ ͸ߨଶ ሺܴ݁௕ܵݎ௕ሻି଴Ǥହ ൤ ʹǤʹͷͷሺͳ ൅ ͲǤʹିߦଶሻଵǤହ൨ (12) 

and ܥ௅௛௜௚௛ோ௘ ൌ ͳʹ ቆͳ ൅ ͳ͸ ܴ݁௕Τͳ ൅ ʹͻ ܴ݁௕Τ ቇ (13) 

with ܵݎ௕ ൌ ȁ࣓ȁ݀௣Ȁሺʹȁ࢛ െ ߦ ȁሻ and࢜ ൌ  ඥܵݎ௕ ܴ݁௕Τ . 

 

The last term in Eq. (9), representing the effect of the SGS velocity fluctuations on bubble 

motion, is determined using a stochastic Markov model (Bini and Jones, 2008) which 

represents the influence of the unresolved fluctuations on bubble acceleration using: ࢙ࢍ࢙࣑ ൌ Ͳܥ ቆ݇ݐ߬ݏ݃ݏ ቇܹ݀ݐȀ݀ݐǡ (14) 
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where ݇ ௦௚௦ is the unresolved kinetic energy of the liquid phase, ܥ଴ is a model constant taken 

as unity, and ݀ ௧ܹ represents the increment of the Wiener process. During the simulation, ݀ ௧ܹ is represented by ߦ௜ ൈ ξοݐ, where  ߦ௜ is a random variable sampled from a normal 

distribution with zero mean and a variance of unity, and which is independent for each time 

step and for each velocity component. ߬௧ is a sub-grid time scale which affects the rate of 

interaction between the bubble and the turbulence dynamics, defined as: ߬௧ ൌ ߬௕ଵǤ଺൫ο ݇௦௚௦଴ǤହΤ ൯଴Ǥ଺Ǥ (15) 

The SGS kinetic energy is obtained from ݇௦௚௦ ൌ ൫ʹοݒ௦௚௦ܵҧ௜௝ܵҧ௜௝൯ଶ ଷൗ , an expression derived 

using equilibrium arguments (Bini and Jones, 2008). Interaction and collision of the bubbles 

with a wall are handled using the hard sphere collision model (Njobuenwu and Fairweather, 

2017). 

 

2.3 Two-way coupling  

In situations where the bubble volume fraction is greater than 10-6, the momentum transfer 

from the bubble suspension is large enough to modify the structure of the turbulence of the 

carrier fluid and the flow is referred to as two-way coupled. This coupling effect is enforced 

by the addition of the source term ଶ݂௪ǡ௜ which represents the force per unit volume exerted by 

the bubbles on the fluid in the fluid momentum balance equation, Eq. (2), and is given by: 

ଶ݂௪ǡ௜ ൌ ͳȟଷ෍ ு݂ǡ௜௝௡್௝ୀଵ ǡ (20) 

where the summation is defined over the number of bubbles ݊௕ present in the computational 

cell volume under consideration, ு݂ǡ௜௝  is the source term arising from the ݆௧௛ bubble in the ݅௧௛ 

direction, and the subscript ܪ represents the hydrodynamic force terms. In the present case, 

the relevant source term for the LES momentum equation is the summation of all the 

hydrodynamic force terms (drag, shear-lift, pressure gradient and added mass), excepting the 

body force (gravity and buoyancy) terms which occur on the right hand side of Eq. (9) since 

these have already been included in the pressure gradient term: 

ு݂ǡ௜௝ ൌ െ݉௕ ൤݀ݒ௜݀ݐ െ ൬ͳ െ  ௕൰݃௜൨ǡ (21)ߩ௟ߩ

where ݉ ௕ is the mass of a bubble and ݃ ൌ ͻǤͺͳ, 0 and 0 ݉ ݅ ଶ in theିݏ ൌ  ݖ and ݕ ,ݔ

directions, respectively. 
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2.4 Four-way coupling 

In the final part of the results and discussion section below, an extended version of the model 

is used, including a four-way coupled mechanistic approach that accounts for bubble-bubble 

collision and coalescence. Bubble-bubble collisions are individually tracked and, after 

collision, bubbles may bounce off one another or coalesce, depending on their relative 

velocity and radii. Collision is modelled using the deterministic, hard sphere, frictionless 

inter-bubble collision model, therefore collisions are binary and perfectly elastic, and 

deformation after collision is neglected (Breuer and Alletto, 2012; Njobuenwu and 

Fairweather, 2015). 

 

After collision, the probability of coalescence is evaluated using the Prince and Blanch 

(1990) model, based on the film drainage approach. In this model, two bubbles that collide 

trap a small amount of liquid between them. For coalescence to take place, the liquid film has 

to drain out down to a critical thickness where rupture occurs. Therefore, coalescence occurs 

only when the bubble contact time ߬௜௝ exceeds the film drainage time ݐ௜௝. Otherwise, the 

colliding bubbles bounce off one another without coalescence. The contact time is assumed to 

be given as: ߬௜௝ ൌ ௡ݑ௖ܴ௜௝ܥ  (22) 

where ܴ ௜௝ is the equivalent bubble radius which is given as: ܴ௜௝ ൌ ʹǤͲ ൬ ʹ݀௕ଵ ൅ ʹ݀௕ଶ൰ିଵ (23) 

Here, ݑ௡ is the relative approach velocity of the bubbles in the normal direction, and ܥ௖ is the 

deformation distance. The latter’s value was taken as 0.25 as this has been found to give 

optimal agreement with experimental data (Sommerfeld et al., 2003). The film drainage time 

is expressed as (Prince and Blanch, 1990):  ݐ௜௝ ൌ ටோ೔ೕయ ఘ೗ଵ଺ఙ  In ൬௛బ௛೑൰ (24) 

with the initial film thickness ݄଴ for water-air set to 1.0 x 10-4 m, the final film thickness 

before rupture ݄௙ set to 1.0 x 10-8 m (Prince and Blanch, 1990), the bubble surface tension ߪ 

given as 7.2 x 10-2 Nm-1, and where ݀௕ଵ and ݀ ௕ଶ are the two colliding bubble diameters. The 

properties of the new bubble after coalescence are calculated from a mass and momentum 

balance. The new bubble diameter after coalescence is calculated as: 
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݀௕ǡ௡௘௪ ൌ ሺ݀௕ଵଷ ൅ ݀௕ଶଷ ሻଵ ଷΤ  (25) 

 

In further work, not reported below, it was found that at the Reynolds numbers investigated, 

bubble break-up was negligible. 

 

 Numerical Solution 3.

Before introducing bubbles, a fully developed single-phase turbulent channel flow was 

obtained at shear Reynolds numbers ܴ݁ఛ ൌ  of 150 and 590, with water as the carrier ߥఛ݄Ȁݑ

phase fluid with kinematic viscosity ݒ ൌ ͳͲି଺ ݉ଶିݏଵ and density ߩ ൌ ͳͲͲͲ ݇݃݉ିଷ. The 

computational domain is a channel bounded by two infinite flat parallel walls, as illustrated in 

Fig. 1, with the x, y and z axes pointing in the wall normal, spanwise and streamwise 

directions, respectively. A channel flow was adopted to benefit from its advantages in terms 

of the simplified implementation of boundary and initial conditions, as well as the reduced 

computation times compared to other geometries. The dimensions of the computational 

domain were set to ܮ௫ ൈ ௬ܮ ൈ ௭ܮ ൌ ʹ݄ ൈ ݄ߨʹ ൈ Ͷ݄ߨ, and these were discretised using 

௫ܰ ൈ ௬ܰ ൈ ௭ܰ ൌ ͳʹͻ ൈ ͳʹͺ ൈ ͳʹͺ grid points in the ݕ ,ݔ and z directions, respectively. The 

grid nodes were distributed uniformly along the ݕ െ and ݖ െaxes, and non-uniformly using a 

hyperbolic function (Gamet et al., 1999) in the wall normal direction. A no-slip boundary 

condition is imposed at the channel walls, while periodic boundary conditions are imposed in 

the streamwise and spanwise directions, with the flow being driven using an imposed 

streamwise fixed pressure gradient. The BOFFIN (boundary fitted flow integrator) code was 

used to solve the governing equations. This code has been applied extensively in the LES of 

reacting, e.g. di Mare et al. (2004) and Jones et al. (2014), and non-reacting, e.g. Bini and 

Jones (2008) and Njobuenwu and Fairweather (2015) turbulent flows. For further details of 

the numerical methods used in BOFFIN, readers are referred to these publications and 

references therein. 

 

Air bubbles with a density ߩ௕  = 1.3 ݇ ݃݉ିଷ were introduced uniformly into fully-converged 

single-phase flow solutions, with the initial velocity of a bubble equal to the fluid velocity at 

the bubble location, obtained by interpolation. Three bubble sizes, ݀௕ ൌ110, 220 and 330 µm, 

were considered, and the bubble volume fraction was chosen as ߙ௕ ൌ 1.12  10-4, which is 

high enough to allow analysis of the effect of microbubbles on the continuous flow field but, 

at the same time, low enough to ensure negligible bubble – bubble interaction. This 
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corresponds to a total number of 181,272 microbubbles for ݀௕= 110 ȝm, 25,400 for ݀ ௕= 220 

ȝm and 6,714 for ݀ ௕= 330 ȝm. 

 

 

Figure 1. Coordinate system and channel geometry details. 

 

Table 1. Computational parameters of liquid and bubbles relevant to the simulation of bubble 

dispersion for the two flow Reynolds numbers. Superscript + signifies dimensionless 

variables.  ୠ ൌ Ƚୠ ୈ                 Τ  is the number of tracked bubbles, where CD is 

volume of the flow domain. 

 ܴ݁ఛ = 150 ܴ݁௕ = 2272 ݑఛ = 7.5 x 10-3 ݉ିݏଵ ݑ௕௨௟௞ = 0.114 ݉ିݏଵ ݀௕ Ȁ  ݉ ݀௕ା ߬௕ Ȁ  ݏ ߬௕ା ǁ߬௕Ȁ ݏ ǁ߬௕ା ௕ܰ 
110 0.825 0.874 4.894 x 10-5 3.370 x 10-4 1.895 x 10-2 181,272 
220 1.650 3.495 1.966 x 10-4 1.349 x 10-3 7.582 x 10-2 25,400 
330 2.475 7.865 4.424 x 10-4 3.033 x 10-3 1.706 x 10-1 6,714 

  ܴ݁ఛ = 590 ܴ݁௕ = 11033 ݑఛ = 2.9 x 10-2 ݉ିݏଵ ݑ௕௨௟௞ = 0.552 ݉ିݏଵ ݀௕ Ȁ  ݉ ݀௕ା ߬௕ Ȁ  ݏ ߬௕ା ǁ߬௕Ȁ ݏ ǁ߬௕ା ௕ܰ 
110 3.245 0.874 7.605 x 10-4 3.370 x 10-4 0.293 181,272 
220 6.490 3.495 3.042 x 10-3 1.349 x 10-3 1.173 25,400 
330 9.735 7.865 6.845 x 10-3 3.033 x 10-3 2.639 6,714 

 

The trajectory of individual microbubbles was obtained from integration of the Lagrangian 

tracking equation, Eq. (9), which was solved using a fourth-order Runge–Kutta scheme. 

Perfectly elastic collisions were assumed at the walls when the microbubble centre was at a 

distance from the wall lower than the bubble radius. The time-step for the bubble tracker was 

chosen equal to that of the fluid solver time-step, and corresponding to roughly one fifth of 

the bubble relaxation time ሺ߬௕ ൌ ௕݀௕ଶߩ ͳͺߤΤ ሻ for both Reynolds’ numbers (Molin et al., 

2012). ߬௕ can be corrected to account for added mass effects, resulting in ǁ߬௕ ൌ ߬௕ሺͳ ൅

Flow domain: ܮ௫ା ൌ ఛݑ௫ሺܮ ߭Τ ሻ = 300 wall units ܮ௬ା ൌ ఛݑ௬ሺܮ ߭Τ ሻ = 942 wall units ܮ௭ା ൌ ఛݑ௭ሺܮ ߭Τ ሻ = 1885 wall units 



ACCEPTED MANUSCRIPT

A
C
C
E
P
T
E
D

 M
A

N
U

S
C
R
IP

T

ߩ  ሺʹߩ௕ሻΤ ሻ ؄ ͵ͷͺǤ͸߬௕ (Molin et al., 2012). Simulation parameters are defined in Table 1. The 

total simulation time, which is a dimensionless time in wall units, was obtained using the 

expression ݐା ൌ ఛଶݑݐ ߭Τ , where ݐ is the computational time in seconds, ߭ represents the fluid 

kinematic viscosity and ݑఛଶ is the square of the shear velocity. t+ was 200 for ܴ ݁ఛ = 150, and 

2000 for ܴ ݁ఛ = 590, with averaging carried out after 100 and 1000 t+, respectively. These 

were found to be sufficient to ensure convergence of averaged quantities, and constant values 

of bubble concentration profiles. Here, and below, the superscript (+) refers to a non-

dimensional quantity scaled by the wall (viscous) variables, where uĲ/Ȟ, uĲ and Ȟ/uĲ2 are the 

characteristic length, velocity and time scales. Also, t+ values quoted relate to times after the 

bubbles were first introduced to the fully developed single-phase solutions. 

 

 Results and Discussion 4.

In this section, simulation results are discussed, and in particular the velocity fields for both 

the fluid and the microbubbles, as well as microbubble concentration profiles. First of all, 

single-phase LES results are validated against DNS predictions. The DNS results of Pang et 

al. (2014) are also used to validate LES simulations of the multiphase flow at ܴ݁ఛ = 150 and ݀௕ = 220 ȝm. LES is then used to extend the simulations to ܴ݁ఛ= 590 and bubble diameters ݀௕ = 110 and 330 ȝm. An examination of the forces acting on the bubbles is then performed, 

followed by an assessment of the importance of bubble coalescence in the flows considered. 

Note that the fluid and bubble velocities are expressed in wall units, obtained from ݑା ൌݑ ఛǡΤݑ  where ݑ is the actual velocity in ݉ିݏଵ. 

 

4.1 Single-phase flow 

Figure 2 shows the steady profiles of the mean streamwise velocity, the root mean square 

(rms) of the velocity fluctuations and the ݑ௫ᇱାݑ௭ᇱା shear stress at shear Reynolds numbers of 150 

and 590. Here, and in the following, these profiles have been obtained after averaging over 

time and space. For ܴ݁ఛ = 150, the LES results are compared against the DNS predictions of 

Pang et al. (2014) that, for a 10h  5h  2h domain, applied a mesh resolution of 64  64  64 

which is less refined than the present LES. While the turbulent stresses (Fig. 2(b)) are in good 

agreement, the streamwise velocity is over-predicted with respect to the Pang et al. (2014) 

results. Therefore, to further extend the validation of the LES, the single-phase DNS results 

of Marchioli et al. (2008), made using the same computational domain as in the present work, 

are also included in the comparison. From Fig. 2(a), the LES streamwise mean velocity 
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profile is in rather good agreement with the Marchioli et al. (2008) DNS which also adopted 

the same resolution as the present LES. Therefore, the under-prediction of the mean velocity 

profile obtained using the LES by Pang et al. (2014) can be attributed to the grid resolution 

used by the latter authors. Turbulent stresses predicted by the LES remain in good agreement 

with those obtained by Marchioli et al. (2008). 
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Figure 2. Single-phase velocity statistics: mean streamwise velocity (a, c) and turbulent 

normal and shear stresses (b, d) for ܴ݁ఛ = 150 (a, b) and ܴ݁ ఛ = 590 (c, d). 

 

In Fig. 2(c, d), the LES results at ܴ݁ఛ = 590 are compared against the predictions of Moser et 

al. (1999) who carried out DNS of channel flow at shear Reynolds numbers ܴ݁ఛ =180, 395 

and 590 using a spectral element numerical solution method. The LES results are in good 

agreement with those of Moser et al. (1999) for both the mean velocity and the turbulent 

stresses, although the normal stresses are slightly under-predicted near the wall in the 

spanwise and wall normal directions, and near the centre of the channel in the streamwise 

direction. Moser et al. (1999) used a grid resolution of 384  257  384 in contrast to the 

resolution of 129  128  128 used in this work. Despite the differences noted above, 

however, the large eddy simulations at both Reynolds numbers are in acceptable agreement 

with the DNS results considered for comparison purposes, with the ability of the LES to 

resolve the main characteristics of the turbulent flows evident. This, in the context of 

multiphase flows, translates into the ability of the LES to resolve the scales that are mainly 

responsible for fluid-bubble interactions. 
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4.2 Two-phase flow 

In this section, a two-way coupled LES is compared with the DNS of Pang et al. (2014) at ܴ݁ఛ = 150 and for ݀௕ = 220 ȝm. Fig. 3 shows the fluid velocity statistics, the bubble velocity 

statistics and bubble concentration profiles with time. Fig. 3(a, b) gives the fluid mean 

streamwise velocity, and turbulent normal and shear stresses. The mean streamwise velocity 

of Pang et al. (2014) is slightly over-predicted, probably as a consequence of the lower grid 

resolution used by the latter authors as noted above, although the normal and shear stress 

results of both approaches are in good agreement. These results are in line with those 

obtained for the ܴ݁ఛ = 150 single phase flow considered in the previous section. 

 

Figure 3 (c, d) gives the microbubble mean velocity and turbulent stress profiles, again 

compared with the DNS predictions of Pang et al. (2014), where available. For the mean 

bubble velocity, the DNS is found to be lower than the LES results as a consequence of the 

under-predicted continuous phase mean velocity. Unfortunately, no DNS results for the 

turbulent stresses were provided by Pang et al. (2014), although the LES results are given in 

Fig. 3. For both the LES and the DNS, the velocity profiles of the gas and liquid phases are 

very similar, with the microbubble mean velocity being slightly higher than that of the fluid 

phase. An explanation to this is provided by Pang et al. (2014). The interphase forces acting 

on the microbubbles are the drag, lift, added mass, gravity-buoyancy and the pressure 

gradient forces. In the streamwise direction, the added mass, pressure gradient and gravity-

buoyancy forces are negligible, and the drag force is expected to be weak due to the low 

mean slip velocity between the gas and liquid phases. The velocity difference is therefore 

mostly generated by the component of the lift force in the streamwise direction induced by 

the spanwise vorticity (Pang et al., 2014), and this effect is reproduced by the LES. 

 

In the wall-normal direction, gravity-buoyancy is the dominant force, even if the lift force is 

expected to contribute towards moving the bubbles towards the channel walls. The gravity-

buoyancy force itself forces the lower density bubbles towards the upper wall of the channel, 

and Fig. 3 (e, f) illustrates the evolution of the microbubble concentration with time. Starting 

from an initially uniform bubble concentration, the bubbles gradually migrate from the lower 

channel wall to the upper wall and, by t+ = 102, the majority of the bubbles have moved close 

to the latter wall.  
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Figure 3. Fluid and bubble velocity statistics at t+=102, and time evolution of bubble 

concentration profiles, in two-way coupled simulations compared with Pang et al. (2014) 

DNS at ܴ ݁ఛ = 150: (a) fluid mean streamwise velocity, (b) fluid turbulent normal and shear 

stresses, (c) bubble mean streamwise velocity, (d) bubble turbulent normal and shear stresses, 

(e) bubble concentration profiles across the horizontal channel, and (f) bubble concentration 

profiles close to the upper channel wall. 
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Figure 4. Comparison between two-way coupled and single-phase fluid statistics: (a) LES 

mean streamwise velocity, (b) DNS mean streamwise velocity (Pang et al., 2014), and (c) 

LES turbulent normal and shear stresses. 

 

This concentration of bubbles near the upper wall affects the velocity field of the fluid, and a 

comparison between the two-way coupled and the single-phase fluid mean streamwise 

velocities and turbulent stresses is given in Fig. 4. The LES mean streamwise velocity is 

shown in Fig. 4(a) and this can be compared with the DNS prediction from Pang et al. (2014) 

given in Fig. 4(b). The LES turbulent normal and shear stresses are also shown in Fig. 4(c). 

Relative to the single-phase, the mean velocity of the fluid phase exhibits an asymmetrical 

profile. More specifically, in the lower half of the channel (0 < x+ < 150), the fluid velocity 

generally matches that of the single phase due to the negligible number of microbubbles in 

that region. In contrast, in the upper half of the channel (151 < x+ < 300), the fluid phase 

velocity is slightly enhanced in the region away from the wall due to the presence of the 

microbubbles. As a consequence, the peak velocity is shifted slightly higher than the channel 

centre relative to the single phase peak. Some small modifications are also visible in the 
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turbulent stress profiles (Fig. 4(c)) which, in agreement with Pang et al. (2014), are slightly 

reduced in the upper half of the channel, particularly in the streamwise direction.  

 

4.3 Effect of Reynolds number 

Additional simulations at ܴ݁ఛ = 590 were also made for the two-way coupled LES to study 

the effect of turbulence levels on microbubble dispersion and migration to the upper wall. 

Fig. 5 shows the fluid velocity statistics, the bubble velocity statistics and bubble 

concentration profiles with time. For the fluid, the two-way coupled results are again 

compared with the single-phase profiles (Fig. 5(a, b)). The asymmetrical profiles which were 

observed at a shear Reynolds number ܴ݁ఛ = 150 are not apparent at the higher Reynolds 

number, with the mean velocity and turbulent stress profiles insignificantly different from the 

corresponding single-phase results. This is a result of the higher bulk velocity and turbulence 

levels that dominate the buoyancy effect on the bubbles and their movement towards the 

upper wall. This is confirmed by the results of Fig. 5(c, d), where the mean velocity and 

turbulent stresses of the bubbles are almost identical to those of the continuous phase, and of 

Fig. 5(e, f), which demonstrates that although some effect of buoyancy is apparent with time 

near the lower channel wall, there is no significant accumulation of bubbles near the upper 

wall. As a consequence of the higher bubble dispersion by the turbulence, the concentration 

of bubbles therefore remains high in the upper half of the channel, even at t+ = 1200. 

 

An additional simulation at the intermediate shear Reynolds number of ܴ݁ఛ = 300 was also 

performed, and results for the bubble concentration in the channel at all three Reynolds 

numbers are shown in Fig. 6(a, b). This allows further consideration of the time required for 

the microbubbles to move from the lower to the upper channel wall, with the predictions in 

Fig. 6 plotted at a fixed time of t+ = 70 and with distance given relative to the total channel 

height, H+, expressed in wall units. At ܴ݁ఛ = 150, the microbubble concentration is negligible 

in the lower regions of the channel until x+/H+ = 0.55, such that more than half the channel is 

devoid of bubbles. In contrast, bubbles still occupy the majority of the channel height at ܴ݁ఛ = 300, and even more so at ܴ݁ఛ = 590, because of their higher mean velocity and 

turbulence levels that partially override the buoyancy effect. Comparing the bubble 

concentration at ܴ݁ఛ = 150 and ܴ ݁ఛ = 590 at the t+ used in Fig. 5, the migration rate of the 

microbubbles is 11 times faster at the lower shear Reynolds number. A correspondingly 
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lower concentration of bubbles at the upper channel wall with increasing ܴ݁ఛ is shown in Fig. 

6(b). 
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Figure 5. Fluid and bubble velocity statistics at t+=1219, and time evolution of bubble 

concentration profiles, in two-way coupled simulations at ܴ݁ఛ = 590: (a) fluid mean 

streamwise velocity compared against the single phase, (b) fluid turbulent normal and shear 

stresses compared against the single phase, (c) bubble mean streamwise velocity, (d) bubble 

turbulent normal and shear stresses, (e) bubble concentration profiles across the horizontal 

channel, and (f) bubble concentration profiles close to the upper channel wall. 
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Figure 6. Bubble concentration profiles at t+ = 70 for different shear Reynolds numbers: (a) 

across the horizontal channel, and (b) close to the upper channel wall. 

 

  

 

Figure 7. Time evolution of bubble concentration profiles at ܴ݁ఛ = 150 for different bubble 

diameters: (a) 110 µm, (b) 220 µm, and (c) 330 µm. 
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The influence of bubble size was also studied using two additional bubble diameters (݀௕ = 

110 ȝm and 330 ȝm), with simulations performed at shear Reynolds numbers of 150 and 590. 

The evolution of bubble concentration profiles at ܴ݁ఛ = 150 is illustrated in Fig. 7 and at ܴ݁ఛ 
= 590 in Fig. 8. Both figures give results for all three bubble sizes considered. In Fig. 7, the 

segregation of the microbubbles and their movement towards the upper wall is increased with 

an increase in the bubble size. In Fig. 7(a), some bubbles remain in the lower half of the 

channel at t+  200, whilst in Fig. 7(b), the lower half of the channel is practically devoid of 

bubbles by t+  100 and by t+  38 in Fig. 7(c). Since the buoyancy force acting on the 

bubbles is proportional to their volume, and hence to the third power of the bubble diameter, 

it is increased eight times by doubling the bubble diameter. In contrast, larger bubbles tend to 

be less affected by turbulent dispersion. Therefore, the buoyancy force is clearly more 

influential than turbulent dispersion at the larger bubble diameters, with buoyancy promoting 

the greater segregation of the bubbles and their accumulation near the upper wall of the 

channel.  

 

Results for the higher shear Reynolds number are given in Fig. 8. Similar to the results of Fig. 

7, the rate of microbubble migration upwards in the channel increases with bubble size, 

although this increase is slower when compared to the shear Reynolds number ܴ݁ఛ = 150 

flow because of the higher bulk velocity and turbulence levels that increase the dispersion of 

the microbubbles. 
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Figure 8. Time evolution of bubble concentration profiles at ܴ݁ఛ = 590 for different bubble 

diameters: (a) 110 µm, (b) 220 µm, and (c) 330 µm. 
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magnitudes, Fig. 9(b) and (d) shows an expanded scale to better illustrate the variation in the 

latter forces. At the higher shear Reynolds number ܴ݁ఛ = 590 (Fig. 9(c, d)) in particular, 

although the gravity-buoyancy and drag forces are still dominant, the lift, added mass and 

pressure gradient forces are seen to play a role, albeit small, in the near-wall region. Here, an 

increased positive lift contributes to pushing bubbles towards the wall, with a slightly 

counteracting effect from the added mass and pressure gradient forces also observed. Overall, 

however, the force analysis shows the dominant role of the gravity-buoyancy force and the 

balancing effect of the drag force that is generated as soon as the bubbles start to migrate 

towards the upper surface. 

 

  

  

Figure 9. Forces acting in the wall normal direction on ݀௕ = 220 µm bubbles at ݐା = 200. (a) 

and (b) for ܴ ݁ఛ = 150, (c) and (d) for ܴ݁ ఛ = 590. Plots (b) and (d) show an expanded scale to 

give relative magnitude of smaller forces (FD = drag force, FGB = gravity-buoyancy force, 

FSL = shear lift force, FAM = added mass force, FPG = pressure gradient force).  
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Lastly, results from a simulation made with an extended version of the model that takes into 

account bubble collision and coalescence are presented. More specifically, results are given 

from the now four-way coupled model for a shear Reynolds number ReĲ = 150 flow with a 

bubble size db = 110 ȝm. In the various flows considered in this paper, coalescence can be 

expected to be highest near the upper wall of the channel in regions where turbulence levels 

are relatively high because the concentration of bubbles in such regions increases due to their 

migration with time. The rate of migration of bubbles towards the upper wall increases with 

the bubble diameter and decreasing Reynolds number. However, since the void fraction of 

the bubbles was the same in all simulations, this means that a significantly larger number of 

bubbles are present in the flow with the smallest bubble diameter, and such large numbers of 

bubbles promote collision and coalescence events. For all the flows examined, therefore, 

bubble coalescence was greatest in the ReĲ = 150 case with a bubble diameter db = 110 ȝm. 

 

Results are shown in Fig. 10, where the various plots give the number of collision and 

coalescence events as a function of time (Fig. 10(a)), the evolution of the bubble population 

with larger bubbles (consisting of two primary bubbles (2), three primary bubbles (3), etc.) 

generated by coalescence events (Fig. 10(b)), and the spatial distribution of collision and 

coalescence events (Fig. 10(c)) and bubbles of any size (Fig. 10(d)). In Fig. 10(a), the number 

of collisions continuously increases as the simulation progresses and virtually all collision 

events result in coalescence, with collisions without coalescence only occurring from t+ = 

190. This almost 100% coalescence efficiency is due mainly to the low Reynolds number, 

since the relatively low levels of turbulence in this flow result in high bubble contact times 

that are sufficient for the liquid film trapped between the bubbles to drain off. As a 

consequence of the coalescence events, the number of 110 ȝm bubbles reduces over time and 

progressively more large bubbles, generated by the coalescence of two or more smaller 

bubbles, are formed. Figure 10(b) shows that bubbles with a volume equivalent of up to five 

primary bubbles are formed over the time period considered. The spatial distribution of 

collisions and coalescences is presented in Fig. 10(c), and this confirms a coalescence 

efficiency of almost 100%. Overall, however, the total number of coalescence events is rather 

small and, as expected, the largest number of such events occurs near the upper wall where 

the concentration of the bubbles is highest (Fig. 10(d)). Therefore, the migration of bubbles 

towards the upper wall can increase coalescence in flows where it might be expected to be 

insignificant, even though the total number of coalescences was not enough in the case 
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considered to significantly affect the continuum flow characteristics. As already noted, even 

lower levels of coalescence were found in the other flows considered above. Nevertheless, 

the model described will be of value in future work which will consider different flows where 

coalescence, and bubble break-up, play a more significant role.  

 

 

 

Figure 10. Bubble collision and coalescence statistics for ܴ݁ఛ = 150 and ݀ ௕ = 110 µm flow: 

(a) number of bubble collisions, coalescences and collisions without coalescence, (b) number 

of bubbles of various sizes formed after coalescence, (c) spatially averaged number of bubble 

collisions and coalescences with height in the channel at t+ = 200, and (d) number of bubbles 

(of any size) with height in the channel at t+ = 200. 
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a bubble diameter of 220 µm show acceptable agreement with the DNS predictions of Pang et 

al. (2014) for single- and two-phase flows, and in terms of the mean velocity and turbulent 

stress results available from the latter work. The results show the low density microbubbles 

migrating towards the upper channel wall with time under the influence of buoyancy, with 

the accumulation of microbubbles near the upper wall modifying the liquid velocity field 

such that the mean velocity profile becomes asymmetric, in agreement with DNS predictions 

(Pang et al., 2014). Some slight modification of the turbulent stresses is also noted. Using the 

same computational grid, the simulations were extended to a shear Reynolds number ܴ݁ఛ = 

590. At higher mean velocity and turbulence levels, the buoyancy effect is partially 

overridden by the turbulent dispersion of the microbubbles, which migration towards the 

upper channel wall significantly reduced as a consequence.  

 

At both shear Reynolds numbers, the influence of microbubble diameter was also 

investigated, with simulations performed for 110 µm, 220 µm and 330 µm diameter bubbles. 

Buoyancy, being proportional to the bubble volume, increases bubble migration towards the 

upper channel wall and segregation of the bubbles in the upper half of the channel with 

increasing bubble diameter, with this effect reduced with increasing Reynolds number. 

Predictions made incorporating bubble coalescence effects also confirm that the migration of 

bubbles towards the upper wall can cause coalescence in flows where it might be expected to 

be insignificant, even though the total number of coalescences in the flows considered was 

not large enough or sufficient to significantly affect the continuum flow characteristics.  

 

Overall, the LES and Lagrangian bubble tracker are able to reproduce the turbulent flow, 

dispersion and concentration of microbubbles in a horizontal channel. More specifically, LES 

captures with a sufficient level of detail the flow structures that are responsible for 

interactions with microbubbles and that affect bubble behaviour. Therefore, the present 

model can be used with confidence to predict not only channel flows, but other flow 

configurations and conditions that are of engineering interest. Application of these techniques 

to upward and downward flows in vertically orientated channels is underway, as is an 

extension of the model described to consider bubble break-up due to shear effects. These 

flows will be used to consider bubble coalescence and break-up in more detail due to the 

increased prevalence of coalescence in this flow configuration. 
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