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Collective intelligence is the ability of a group to perform more ef-
fectively than any individual alone. Diversity among group members
is a key condition for the emergence of collective intelligence, but
maintaining diversity is challenging in the face of social pressure to
imitate one’s peers. Through an evolutionary game-theoretic model
of collective prediction we investigate the role incentives may play
in maintaining useful diversity. We show that market-based incen-
tive systems produce herding effects, reduce information available to
the group and restrain collective intelligence. Therefore, we propose
a new incentive scheme that rewards accurate minority predictions,
and show that this produces optimal diversity and collective predic-
tive accuracy. We conclude that real-world systems should reward
those who have demonstrated accuracy when the majority opinion
has been in error.

collective intelligence | game theory | diversity | markets

he financial crisis and its aftermath have reopened long-

standing debates about the collective wisdom of our so-
cietal organisations [1-3]. Financial and prediction markets
seem unable to foresee major economic and political upheavals
such as the credit crunch or Brexit. This lack of collective
foresight could be the result of insufficient diversity among
decision-making individuals [4]. Diversity has been identified
as a key ingredient of successful groups across many facets of
collective behaviour [5-7]. It is a crucial condition for collec-
tive intelligence [6-10] that can be more important than the
intelligence of individuals within a group [11]. As collective
behaviour ultimately results from individual actions, incen-
tives play a major role for diversity and collective performance
[12, 13]. While most previous research has focused on ex-
plaining how collective intelligence emerges [14], less is known
about how to optimise the wisdom of crowds in a quantitative
sense.

Harnessing collective wisdom is important. Global sys-
tems of communication, governance, trade and transport grow
rapidly in complexity every year. Many of these real world
problems have a large number contributing factors. For ex-
ample, predicting future economic fluctuations requires inte-
grating knowledge about credit markets and supply chains
across the world, as well as the ramifications of political de-
velopments in different countries and the shifting sentiments
of individual investors and consumers. Political developments
are themselves the result of many factors, both direct (e.g.
political parties’ strategies) and indirect (e.g. technological
change). Scientific questions are also increasingly complex. For
instance, building a complete model of an ecosystem requires
bringing together expertise on many scales, from individual
animal behaviour to complex networks of predation and co-
dependency [15]. In each case, knowledge about the diverse
contributing factors is dispersed. For these high-dimensional
problems, it is becoming impossible for any single individual
or agency to gather and process enough data to understand
the entire system [16]. In many cases we do not even have full
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knowledge of what the potential causal factors are, let alone a
full understanding of them.

Attention is therefore shifting towards distributed systems
as a means of bringing together the local knowledge and
private expertise of many individuals [12, 17]. In machine-
learning, researchers have found that a pluralistic modelling
approach maximises prediction accuracy [18]. In politics, the
forecasts of prediction markets [19, 20] are now commonly
reported alongside opinion polls during elections. Scientists
are also turning to crowd-sourcing collective wisdom as a
validation tool [21-23]. However, as highlighted by the failure
of financial and prediction markets to foresee the results of
recent elections in the UK and USA, collective wisdom is not
a guaranteed property of a distributed system [2], partly due
to herding effects [24, 25]. In science as well, the incentive
structure undervalues diversity: low-risk projects with assured
outcomes are more likely to be funded than highly novel
or interdisciplinary work [26, 27]. Rewards for conformity
with institutional cultures can severely limit useful diversity
[28]. Previous work [29] has investigated mechanisms to elicit
truthful minority views to counter herding effects in expressed
opinion. This raises the question: how can minority viewpoints
be fostered in the first place, so as to enhance diversity and
its potential benefits for collective intelligence?

Here we analyse an evolutionary game-theoretic model of
collective intelligence amongst unrelated agents motivated
by individual rewards. We show that previously proposed
incentive structures [13] are sub-optimal from the standpoint
of collective intelligence, and in particular produce too little
diversity between individuals. We propose a new incentive
system that we term ‘minority rewards’, wherein agents are
rewarded for expressing accurate minority opinions, and show
that this produces stable, near-optimal collective intelligence at
equilibrium. Our results demonstrate that common real-world
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reward structures are unlikely to produce optimal collectively
intelligent behaviour, and we present a superior alternative
that can inform the design of new reward systems.

Results

To investigate the effect of incentives on collective intelligence,
we use an abstract model of collective information gathering
and aggregation [13]. Complex outcomes are modelled as a
result of n independent, causal factors. A large population of
individual agents gather information in a decentralised fashion,
each being able to pay attention to just one of these factors
at any given time. Collective prediction is achieved by aggre-
gation of individual predictions via simple voting. Agents are
motivated by an incentive scheme that offers rewards for mak-
ing accurate predictions. It is assumed that the accuracy of an
individual’s prediction can be judged after the event. We ex-
clude cases where the ground truth is either never discoverable
or where no such ground truth exists (for instance in questions
regarding taste or voter preferences). Instead we consider
questions such as the prediction of future events (which are
known once they occur) or scientific questions (which may be
resolved at some later point in time). For example, one might
consider whether national GDP will rise above trend in the
coming year, whether a certain party will win an election, or
whether global temperatures will change by more than 1°C in
the next decade. The proportion of agents attending to differ-
ent sources of information evolve depending on the rewards
they receive, where less successful agents tend to imitate their
more successful peers.

Consider a binary outcome, Y, which is the result of many
factors, x1,x2,...,x,. We model this outcome as the sign of
a weighted sum of the contributing factors:

Y = sign <Z Bi%‘) . (1]

For simplicity we assume that each contributing factor takes
binary values, such that Y, z; € {—1,1}, and that the values of
these factors are uncorrelated (see SI Appendix for instances
with correlated factors). Without loss of generality 8; > 0 for
all factors.

An individual attending to factor ¢ observes the value of
x;. Having observed the value of z;, this individual then
votes in line with that observation. Thus, if the proportion of
individuals attending to factor ¢ is p;, the collective prediction

Y is given by:
n
Y = sign (Z pi%) . (2]

i=1
Collective accuracy, C, is the probability that the collective
vote agrees with the ground truth, given the distribution, {p},
of agents attending to each factor:

C=P(Y=Y|{p}). 3

The reward given to an agent for an accurate vote depends on
the proportion of other correct votes in any given collective
decision. Let z; be the proportion of agents that will vote
identically to those attending to factor i, i.e. the proportion
of agents attending to factors whose value matches x;: z; =
>y Pidz,z;, where § is the Kronecker delta. Then the
reward is determined by a function, f(z;), such that an agent

2 | www.pnas.org/cgi/doi/10.1073/pnas. XXXXXXXXXX

receives a reward proportional to f(z;) if and only if their
prediction is accurate. We will investigate three potential
reward systems for deciding how each agent is rewarded for
their accurate votes, the first two of which are taken from
previous work by Hong et al. [13]. The first of these is
‘binary rewards’: agents receive a fixed reward if they make
an accurate prediction, corresponding to the reward function
f(zi) = 1. The second is ‘market rewards’: a fixed total reward
is shared equally amongst all agents who vote accurately,
corresponding to the reward function f(z;) = 1/z;. This adds
an incentive to be accurate when others are not, and closely
mimics the reward system of actual prediction markets. Finally,
we introduce ‘minority rewards’: agents are rewarded for an
accurate prediction when fewer than half of the other agents
also vote accurately, corresponding to the reward function
f(z:) =1— H(z; —1/2), where H(-) is the Heavyside step
function. This explicitly rewards agents who hold accurate
minority opinions, and incentivises agents to be accurate on
questions where the majority prediction is wrong.

The expected reward a player receives by attending to fac-
tor ¢ is determined by the expected value of f(z;), conditioned
on voting accurately (see eq. 8). Players adapt their behaviour
in response to the rewards they and others receive. In align-
ment with previous evolutionary game theory work, we model
changes in individual attention to factors as being the result
of imitation; agents who are observed to be gaining greater
rewards are imitated by those gaining fewer. This leads to the
classic replicator equation [30], describing the evolution of the
proportion of agents, p;, that pay attention to factor ¢ (see eq.
6)

We studied the behaviour of the model under the three
incentive schemes described above. We initialised the model
by assigning uniform proportions of agents to each factor, with
values of 8 randomly drawn from a uniform distribution (the
absolute scale of 8 does not affect the model). We followed
the evolutionary dynamics described by the replicator equa-
tion until the population converged to equilibrium. This was
repeated over a range of problem dimensionalities from n = 3
to n = 10000. Expected rewards were calculated either by
exhaustive search over all possible values of z1,...,x, (for
n < 10) or by using appropriate normal-distribution limits for
large numbers of factors (see Methods).

Figure 1 shows how collective accuracy and diversity evolve
towards equilibrium for the three rewards systems of binary,
market and minority rewards in simulations with n = 100,
n = 1000 and n = 10,000 independent factors. Note the
logarithmic scale on the x-axis, to better illustrate the early
evolution. For each reward system two initial allocations of
agents’ attention are used: (i) a uniform allocation to each
factor; and (ii) an allocation where half of all agents attend
to the single most important factor, with others allocated
uniformly across the other factors. This demonstrates that the
equilibrium distribution of attention is the same, no matter
whether agents initially attend to arbitrary factors or initially
favour the most obvious ones. The convergence time to equilib-
rium depends on the magnitude of rewards; in our simulations
we normalise rewards such that the mean reward per agent is
one at each time step.

Figure 2 shows how the resulting collective accuracy varies
across problem dimensionalities from n = 3 to n = 10000 for
the three different reward systems and for a uniform allocation
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of agents to factors. For simple problems (n < 10), all reward
schemes produce high collective accuracy (over 90%). In
these cases the strong predictive power of only one or two
meaningful independent factors means that individual accuracy
is high, and collective aggregation only leads to relatively small
increases in collective accuracy. However, even for these ‘small
n’ problems we observe that minority rewards outperform
other schemes. The differences in collective accuracy become
more substantial as n increases. As Figure 1 shows, these
differences become apparent after only a few iterations, well
before equilibrium is reached. Consistent with [13], we find
that market rewards increase diversity and collective accuracy
relative to binary rewards. However, collective accuracy under
market rewards declines rapidly with increasing n, falling
to ~ 65% for n = 10000. For comparison we also show
the accuracy achieved under a uniform allocation of agents,
which reaches a stable value of approximately 80% for large
n. Market rewards therefore produce lower accuracy than
a uniform allocation for all but the lowest values of n. In
contrast, minority rewards lead to a far higher accuracy than
any of the investigated alternative reward systems, regardless
of system complexity, and achieve close to 100% accuracy up
to n = 10000. Our mathematical analysis shows that minority
rewards will continue to produce near-perfect accuracy for
any problem size, if the population of agents is large enough
(see SI Appendix). Our analysis of finite group sizes shows
that minority rewards outperform other reward schemes for
problem dimensions up to ten times bigger than the population
size, assuming best-response dynamics (see SI Appendix, Fig.

S1).

The different levels of collective accuracy across reward sys-
tems are a reflection of the differing equilibrium distributions
of the proportion of agents attending to each factor. Minor-
ity rewards outperform both market rewards and unweighted
approaches, as attention is automatically redirected if the
collective prediction would otherwise be wrong; only those
outcomes where the majority opinion is wrong contribute to
agents’ rewards. Under minority rewards the system converges
towards a state where the number of agents paying attention
to any factor is proportional to factor importance. This opti-
mal distribution is both a stationary and stable state of the
minority rewards system (see our mathematical analysis in
the SI Appendix). Further analysis (see SI Appendix, Fig.
S2) shows that varying the cutoff value for minority rewards
(for example by rewarding those voting with less than 40% of
the group, or 60%), invariably reduces collective accuracy. In
Figure 3 we plot the equilibrium distribution for each reward
system for a high-dimensional problem (n = 10000). Using
binary rewards, almost all agents attend to the single most
important factor. Under market rewards agents distribute
themselves in proportion to the predictive value of the factors,
but only among the top 10% of factors; 90% of factors receive
essentially no attention at all (this proportion decreases as
n increases, and is therefore larger for smaller values of n).
By comparison, under minority rewards the proportion of
agents paying attention to a factor is also proportional to its
importance, but agents cover the full range of factors down
to the least important ones, thereby providing more informa-
tion to the group and improving predictions.The evolution of
this distribution towards equilibrium is shown in detail in SI
Appendix, Fig. S3.
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Discussion

We proposed a novel reward system, minority rewards, that
incentivises individual agents in their choice of which informa-
tional factors to pay attention to when operating as part of a
group. This new system rewards agents both for making accu-
rate predictions and for being in the minority of their peers or
conspecifics. As such it encourages a balance between seeking
useful information that has substantive predictive value for
the ground truth, and seeking information that is currently
under-utilised by the group. Conversely, where the collective
opinion is already correct, no rewards are offered and therefore
no agent is motivated to change their strategy. Over time,
therefore, agents are motivated to change their behaviour only
in ways that benefit collective accuracy.

The poor performance of market rewards relative to a
uniform unweighted allocation for n > 10 shows that a market
reward system incentivises herding behaviour and suppresses
useful diversity, as illustrated by the equilibrium distribution
in Figure 3b. This suggests that stock markets and prediction
markets tend to systematically underweight a large pool of
informational factors that are of limited predictive power
individually, but which can contribute powerfully to aggregate
predictions if agents can be persuaded to pay attention to
them. This sheds doubt on the accuracy of existing markets
as a tool for aggregating dispersed knowledge to predict future
profits or events, and motivates further work on how to design
collectively more accurate market mechanisms. The relatively
high performance of uniform allocations of attention supports
work showing that models with equally weighted predictors
can match or even improve on more closely fitted prediction
models [31, 32]. The inclusion of all relevant predictors is often
more important than determining their appropriate weights
in making predictions; too much diversity is less harmful than
too little, especially for complex problems.

Incentives are a fundamental part of any effort to harness
the potential of collective intelligence. In this paper we have
presented evidence that rewarding accurate minority opinions
can induce near-optimal collective accuracy within a model
of collective prediction. Therefore, to maximise the collective
wisdom of a group, we suggest that individuals should not
be rewarded simply for having made successful predictions
or findings, nor should a total reward be equally distributed
amongst those who have been successful or accurate. Instead,
rewards should be primarily directed towards those who have
made successful predictions in the face of majority opposition
from their peers. This can be intuitively understood as reward-
ing those who contribute information that has the potential
to change collective opinion, since it contradicts the current
mainstream view. In our model groups rapidly converge to
an equilibrium with very high collective accuracy, after which
the rewards for each agents become less frequent. We antic-
ipate that once this occurs, agents would move on to new,
unsolved problems. This would produce a dynamic system
in which agents are incentivised not only to solve problems
collectively, but also to address issues where collective wisdom
is currently weakest. Future work should investigate how our
proposed reward system can be best implemented in practice,
from scientific career schemes, to funding and reputation sys-
tems [33], to prediction markets, and democratic procedures
[34]. We suggest experiments to determine how humans re-
spond to minority rewards, and further theoretical work to
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determine the effects of stochastic rewards, agent learning
and finite group dynamics. In conclusion, how best to foster
collective intelligence is an important problem we need to solve
collectively.

Materials and Methods

Terminology. Throughout this paper we use the following conven-
tions for describing probability distributions:

o E(z) denotes the expectation of x

* N(xv /1/70'2

with mean p and variance o

) denotes the normal probability density function
2 evaluated at

o N(z;u, ) for vector-valued z and mu, and matrix X denotes
the multi-variate normal probability density function with
mean 4 and covariance matrix X, evaluated at =

e ®(x) denotes the standard normal cumulative probability dis-
tribution function with mean 0 and standard deviation 1.

Ground truth and voting. We consider a binary outcome, Y that is
the result of many independent factors, z1,x2,...,zn (for corre-
lated factors see SI Appendix). We model this outcome as being
determined by the sign of 1: a weighted sum of the contributing

factors.
Y= Z Biwi. [

In computational implementation of thls model we sample values of
{8} independently from a uniform distribution (the scale of which is
arbitrary and does not influence the analysis). We assume without
loss of generality that factors are ordered such that 8; > Bit1,
and further we normalise the values of the coefficients such that

:L:l B; = 1, without affecting the value of Y. Our analytical
results (see SI Appendix) do not depend on the exact distributon of
{B8}. Any sampling distribution for {3} that has a finite moment of
order m, m > 2 will obey the Ljapunov and Lindeberg conditions
[35], guaranteeing convergence in distribution of ¢ to a normal
distribution, from which our results are obtained.

Each individual attends to one factor at a given time; an individ-
ual attending to factor ¢ therefore observes the value of z;. Having
observed the value of z; this individual then votes in line with that
observation. The collective prediction, Y is given by the sign of
the collective vote V', which is a sum over the contributing factors,
weighted by the proportion of individuals attending to each factor:

YV = sign(V Z pi;. [5]

Evolutionary dynamics. We model changes in individual attention
to factors as being motivated by imitation; agents who are observed
to be gaining greater rewards are imitated by those gaining fewer
[30], leading to the classic replicator equation [36-38] describing the
evolution of p;, the proportion of agents attending to factor i:

D riER)) | 6]
j=1

where Z?:l pi = 1 by definition. The expected reward (E(R;) = 1)
is the mean reward an agent attending factor ¢ will receive, averaging
over all possible values of both x; and the other factors x;. It is
thus determined by both the proportion of times that the agent
will vote correctly (when z; = Y") and the magnitude of the reward
received on those occasions (determined by the reward system).
To calculate this expectation we either exhaustively enumerate all
possibilities (for n < 10) or numerically evaluate an approximation
considering the normally distributed limiting behaviour (see below).
When solving these n equations (one for each factor) numerically, we
normalise the rewards given to all agents such that Z?il piE(R;) =
1. This is equivalent to adaptive variation of the time step and

= sign(¢

pi = pi | E(R;) —
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does not change the relative rewards between options, nor the final
steady state, but ensures smoother convergence to that state. This
also mimics a real constraint on any practical reward system where
the total reward available may be fixed. In our model we assume
that agents reliably receive the expected reward for the factor that
they attend to. Similar models with stochastic rewards (e.g. [13])
may show slower convergence to equilibrium. In our simulation of
the collective dynamics of the system we used the Runge-Kutta
order 2(3) algorithm, as implemented in R by Soetaert et al. [39].

The three reward schemes. We present three possible systems for
rewarding agents for making accurate predictions. Each reward
scheme corresponds to a choice of reward function, f(z), which
determines the magnitude of the reward when an agent makes an
accurate prediction, as a function of the proportion, z, of other
agents that also do so. These are:

1. Binary rewards: f(z) =1
2. Market rewards: f(z) =1/z

3. Minority rewards: f(z) = 1 —
Heavyside step-function.

H(z — 1/2), where H is the

The expected reward an agent receives for attending to factor 4
is therefore the expected value of f(z;), conditional on their vote
being accurate:

1
E(R;) = / F(z)P(Y = z; | 2)p(2)d. (7]

where z; is the proportion of agents voting identically to those
attending to factor i: z; = =1 Pi 6%@] , where ¢ is the Kronecker

delta. The lower limit of the integral above is € > 0 to account for
the limiting case of a single individual attending to the factor. As
the population size N tends to infinity, € tends to zero. For our
implementation we take e = 10~6.

Normal approximation for expected rewards. For n > 10 an exhaus-
tive search over all 2™ combinations of z1,...xy, is computationally
infeasible. Instead we use the Central Limit Theorem to approxi-
mate the expected reward received for attending to any given factor.
Focusing on a single individual who attends to factor i, we can
calculate the expected reward received by the individual as follows.
Firstly, we assume without loss of generality by symmetry that the
focal individual observes z; = 1. The expected reward, E(R;) is
then:

1
B(R;) = / FE)P@ >0 |2 = 1, 20)p(2i)de g
€
Given the independence of the individual values of z;, the mean and

variance of ¢ can be determined by the linearity of expectations
and by the sum rule for variances of independent variables:

E@ |z =1) = 6; ZﬁjE(%‘) =

JF#i
)= 8 9]

i

VAR( | i = 1) = Z B2E(z?
J#i

=P o= 1) =N (658, ) 8
J#i
In the case of binary rewards, where f(z) = 1, the value of z; does

not impact on the reward for attending to any factor. In this case
the expected reward is calculated directly from the distribution of

P
]Ebinary(Ri) = P(w >0 ‘ Ti = 1)

Bi
— =
(s2%)

For other reward schemes where the value of z; affects the reward,
we also require an approximation for p(z;). Again we calculate the

(10]
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mean and variance of z;:

E(zi | zs =1) = p; +Zﬂj(E($j) +1)/2=(1+pi)/2

i
i 1
VAR(z; | @ = 1) = Z(Pj/z)QIE(“'?) 1 Zp? (11]
i I#
1+p 1
=>p(zi |z =1) 2N | z; QPI’ZZ’)JZ

JF#i
The convergence of z; in distribution to a normal distribution
depends on the values of {p} meeting the Lindeberg condition
[35]. In practice this means that all elements of {p} should tend
to zero as the number of dimensions, n tends to infinity, i.e. the
distribution should not be dominated by a small subset of elements.
As illustrated in Figure 1, when the system is initialised in a state
conforming to these requirements it will remain so for market and
minority reward systems, but not for the binary reward system.
Since the binary reward system does not depend on the value of
z; the failure of this approximation in this case does not have any

repercussions for our results.

Y and z; are correlated due to the shared dependence on the

values of z1,...,x,, with a covariance of:
Z Bip; [12]

Z Z ijkr]E -rgxk:
J#i

JjF#i k#i

cov(zg, ¥ |z =1)

In the normal distribution limit,the joint distribution may be ap-
proximated as

p(P,zi |z =1) :N({ﬂ [Nw} [l[?/w f{w,zD

[13]
Mz P,z 2,z

with,

pyp =E(@ [ 2 =1)

Mz = ]E(Zz | Ti = 1)
Kw’w = VAR('I,Z) | xT; = 1)
Kz,z = VAR(ZZ‘ ‘ T; = 1)
K,z =cov(y,z; | z; =1)

Using standard relations for conditional normal distributions we
therefore have:

6 121 = L) = N (i + (51— ) 2y = b
P | wi=1,2) = o+ (i = i) e K = 7
KI
Nw+(zz ,UZ) w
P>0|z;=1,2)=® e
Kw,w—xfz

14]

Combining the above expressions gives the complete equation for
the expected reward of attending to factor i, conditioned on the
values of 3, the current distribution of attention, p, and the reward
function f(z)

! B + (25 — p12) Kf:
= f(zi)N(Zi§MZ7Kz,z)q) e - dz;
‘ Ky = 722
[15]

This integral may be evaluated numerically to give the expected
reward for any general reward modulation function f(z).

Calculating collective accuracy. The collective accuracy, C, is the
probability that the collective vote will correctly predict the ground
truth, conditioned on the current distribution of attention to dif-
ferent factors. For small numbers of factors (we use n < 10) this
can be determined exactly by exhaustive search over all 2™ possible
combinations of the values of x1,...x,. For larger values of n we
use the following normal approximation (similarly defined as above)

Mann et al.

).

for the joint distribution of the latent ground truth function v and
the collective vote V.

~ Y110 [Svw Syv
P v) *N({V} ’ M ' [Sw,v Sv,v [16]
where
— 2 _1! 2 _1! D,
Svw =) B Svv = 1 > 02 Suv 5 > B, 017]
=1 =1 i=1

implying the following conditional probability distribution for V'

given :
2
S’,D,V)
R

Considering without loss of generality the case where Y =1,

C=PY =1|Y=1)
=P(V>0]|¢>0)

p(V|¢) =N (V (18]

Sww

S2
= 2/ / ( 1) “"V,Sv,v - SW> dVN (450, Sy, db577
Sy, P,y 578

Sy, v
L

AVN (130, Sy ) do,

oo
:2/q>
0

which can be evaluated numerically. The normal approximation

2
.V
Sy,

Sv,v —
[19]

limit becomes invalid when the distribution of {p} is concentrated
on very few elements; in these cases (which we identify as 99% of
the distribution mass being concentrated on fewer than 10 elements)
we use exhaustive search over the values of {z} corresponding to
the remaining factors with non-negligible values of p.
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1. Evolution of collective accuracy (left) and diversity (right) for binary rewards

(black line), market rewards (blue line) and minority rewards (red line) in simulations

with

n = 100 (a,b), n = 1000 (c,d) and n = 10, 000 (e,f) independent factors.

Solid lines indicate results from a uniform initial allocation of agents over factors, while
dashed lines indicate an initial allocation of 50% of agents to the single most important
factor, with the remainder allocated uniformly over the remaining factors. Note that
the number of time steps is plotted on a logarithmic scale.
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Fig. 2. Collective accuracy at equilibrium as a function of the number of in-

dependent factors across different reward systems. Solid lines and shaded
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each curve show the precise values of n for which simulations were carried
out, equally spaced within each multiple of 10.
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Fig. 3. Equilibrium proportions of agents paying attention to each factor, as
a function of the coefficient associated with that factor. Results are shown
for simulations with n = 10000 factors, and for the three reward systems
of binary rewards (a), market rewards (b), and minority rewards (c), as well
as the uniform allocation (d). Binary rewards drive almost all agents to the
single most important factor (the greatest coefficient). Market rewards create
a distribution proportional to coefficient size across the most important 10% of
factors, while minority rewards distribute agents almost perfectly in proportion
to the magnitude of the coefficient.
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