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Modeling Sparsely Reflecting Outdoor Acoustic

Scenes using the Waveguide Web
Francis Stevens, Damian T Murphy, Lauri Savioja, Senior Member, IEEE, and Vesa Välimäki, Fellow, IEEE

Abstract—Computer games and virtual reality require digital
reverberation algorithms, which can simulate a broad range of
acoustic spaces, including locations in the open air. Additionally,
the detailed simulation of environmental sound is an area of
significant interest due to the propagation of noise pollution
over distances and its related impact on well-being, particularly
in urban spaces. This paper introduces the waveguide web
digital reverberator design for modeling the acoustics of sparsely
reflecting outdoor environments; a design that is, in part, an
extension of the scattering delay network reverberator. The
design of the algorithm is based on a set of digital waveguides
connected by scattering junctions at nodes that represent the
reflection points of the environment under study. The structure
of the proposed reverberator allows for accurate reproduction
of reflections between discrete reflection points. Approximation
errors are caused when the assumption of point-like nodes does
not hold true. Three example cases are presented comparing
waveguide web simulated impulse responses for a traditional
shoebox room, a forest scenario and an urban courtyard, with
impulse responses created using other simulation methods or
from real world measurements. The waveguide web algorithm
can better enable the acoustic simulation of outdoor spaces and so
contribute towards sound design for virtual reality applications,
gaming and auralisation, with a particular focus on acoustic
design for the urban environment.

Index Terms—Acoustics, acoustic propagation, acoustic signal
processing, IIR digital filters, numerical simulation.

I. INTRODUCTION

A
RTIFICIAL reverberation research has, until recently,

striven mainly for the realistic imitation of rooms, concert

halls, and other indoor acoustic spaces [1], [2]. For this

purpose, there are several specialized modeling techniques,

such as the ray-tracing [3], image-source [4], [5], digital

waveguide [6], [7], feedback delay networks (FDNs) [8]–[10],

and finite-difference time-domain (FDTD) [11]–[14] methods.

However, there has been relatively little research looking

at modeling of sparsely reflecting outdoor acoustic scenes,

although environmental sound is of significant importance,

particularly because of the propagation of noise pollution over

distances and its impact on human health and well-being [15].

This paper proposes a new modeling technique for reverberant
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open acoustic environments, considering both forests and urban

scenes. Such spaces are important for wider study in relation

to how green infrastructure (e.g. trees and other similar natural

interventions) and architectural design might have a positive

impact on the soundscape of urban areas [16], [17], as well

as in more creative applications such as sound design for film

soundtracks and interactive computer games [18].

Early research contributions have considered the acoustic

properties of outdoor environments, such as streets [19]

and forests [20], both of which have a special character

that contributes to the sonic experience a person has of

these particular locations. For instance, in [21] it was shown

that acoustic scattering from the tree trunk is a key factor

affecting the behavior of mid-frequency attenuation for sound

propagation through trees. Surprisingly, a bamboo forest has

good acoustic characteristics for certain types of music [22]

and outdoor acoustics also have a connection to concert halls,

as shown in a study by Lokki et al. who demonstrated that

the finite difference time domain (FDTD) technique is suitable

for modeling the acoustics of ancient amphitheaters, which

are open but can have excellent acoustic properties [23]. A

related study, that considered the acoustic characteristics of

an historic street, combined impulse response measurement

of the existing site and geometric acoustic modeling of the

historic environment as part of an analysis of its suitability for

dramatic performances [24].

Recent research has shown a growing interest in the modeling

of urban environments. Kang modelled the acoustics of a town

square using image-source and radiosity methods to predict

the sound pressure level [25]. Collecchia et al. studied the

acoustic characteristics of narrow alleyways and simulated

their interesting behavior using the image-source method [26].

Recently, Stienen and Vorländer demonstrated how to auralize

the propagation of traffic noise in an urban environment [27].

An outdoor urban environment was also at the centre of a

study that explored how spatial impulse response measurement,

and reflection analysis can be used to help determine source

localisation [28], [29].

Some researchers have also been interested in modeling

natural environments, such as those containing forests and

hills, which strongly reflect sound. Pieren and Wunderli [30]

have studied how cliffs in an Alpine valley reflect noise and

have proposed a model to account for this phenomenon in

sound propagation calculations. Shelley et al. measured forest

acoustics in a distant location in Finland, both in the summer

and in the winter, to provide impulse responses for convolution-

based reverberation [31]. In [32], recorded sound scenes were

combined with modelled soundscape interventions, in this case,
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a FDTD simulation of a sonic crystal noise barrier, and used

as part of a virtual soundwalk perceptual evaluation in order

to elicit the effectiveness of applying such design strategies.

Spratt and Abel have proposed a general waveguide method

called Treeverb for modeling the acoustics formed by trees

in a forest [33]. Their model can be interpreted to be 2.5-

dimensional, as it describes the geometry, including the

locations of the source, trees, and the receiver, on a plane, and

the structure is then extended in the third dimension. However,

as more trees are added into the model, it quickly becomes

too large for efficient computation, in terms of both number

of operations and memory use, so Spratt and Abel chose to

implement an image-source version of their method for faster

simulation [33].

Another example digital reverberator representing an exten-

sion of the waveguide method is the scattering delay network

(SDN) [18], [34], a method conceptually similar to the feedback

delay network (FDN) [8] that consists of a set of discrete

nodes representing the reflection points of a given environment

connected by a set of waveguides.

This work extends the Treeverb model by formulating a novel

type of waveguide network [6], [7] called a Waveguide Web

(WGW). Like the SDN, a WGW is a network of discrete nodes,

including, source, receiver and a number of reflection points,

which can be, for example, trees or other reflective surfaces.

The WGW differs distinctly from the digital waveguide mesh,

which is a regular grid structure of scattering nodes and

interconnections, used for modeling multidimensional wave

propagation, also usually in closed systems [35]–[38]. This

paper shows that the proposed WGW has similarities to, but

is also different from, the recently introduced scattering delay

network (SDN) approach to reverberation design as it extends

the design of the SDN to incorporate directionally-dependent

filtering at the node positions.

This paper is organized as follows. Section II gives a

brief overview of the Treeverb and SDN methods, which

are those closest to the proposed WGW method. Section

III introduces the theory of the WGW model. Section IV

presents the evaluation of the method by way of three case

studies: the acoustic simulation of a shoebox room, a forest-like

environment, and an urban courtyard. Section V concludes this

paper.

II. BACKGROUND

A. Treeverb

Although the acoustics of forests have been studied previ-

ously (e.g. [20], [22]), to date, as cited in [1], only one study

has attempted to simulate this reverberant effect. Spratt and

Abel’s Treeverb is a digital reverberator designed to model

the scattering of acoustic waves between a number of trees as

might be found in a forest environment [33].

In this work, the forest environment is considered as a

two-dimensional geometry, with defined source and receiver

locations, and a random arrangement of trees. This establishes

a fixed network of connected paths between each node, defined

as either source, receiver or tree. Each path is modelled using

a time delay and attenuation factor, or spreading loss, in much

+

×
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T2
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S

R

Fig. 1. A simple Treeverb, or digital waveguide, network topology for modeling
forest acoustics, consisting of three tree-nodes, T1, T2, T3, and a single source,
S, and receiver R. The tree-nodes are connected via bidirectional delay lines,
with the source and receiver connected to these tree-nodes via unidirectional
delay lines. Each delay line has an attenuation factor associated with it and
directional dependent filtering and scattering takes place at each tree-node
connection. After [33].

θ

Incident

Scattered

T
D1
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Fig. 2. An acoustic wave incident on a tree trunk T, represented as a rigid
cylinder, and the resultant scattered wave at angle θ as formed by the two
paths, D1 and D2, around the tree. After [33].

the same way as in other reverberation algorithms. However, in

this case boundary reflections are better considered as tree-node

interactions, where a tree is modelled as a rigid cylinder. Signals

incident on a tree-node are scattered in a frequency dependent

manner, with appropriate proportions of the incident signal

being transmitted to other connected nodes (either receiver or

tree), or reflected and returned along the path of the incident

signal. Hence Treeverb can be considered as a closed network

of lossless bidirectional waveguides connected via tree-node

scattering junctions with attenuation losses also lumped at

these discrete points in the network, and so belongs to the

digital waveguide network family of digital reverberators, first

proposed in [6] and developed further in [7]. A simple example

network is shown in Fig. 1 consisting of three interconnected

tree-nodes, T1, T2, T3, and a single source, S, and receiver,

R. The tree-nodes are connected via bidirectional delay lines,

with the source and receiver connected to these tree-nodes via

unidirectional delay lines. Each delay line has associated with

it a distance dependent attenuation factor.

Scattering at a tree-node interaction point takes place in a

frequency dependent manner, based on Morse’s solution to

the acoustic scattering from a rigid cylinder [39]. In [33] an

approximation of this solution is used to model the scattering

occurring at each tree. In this, a plane wave incident on a

rigid cylinder produces a result formed of two parts, defined

by movement of the acoustic wave both clockwise and anti-

clockwise around the cylinder.

Figure 2 demonstrates this effect where the scattered wave of

interest is at an angle θ, with respect to the angle of incidence,
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α2(z)z−τθ

+
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Fig. 3. A block diagram of the tree-node scattering filter defined according
to τθ , the angle dependent delay in samples. After [33].

due to interaction with a rigid cylindrical tree trunk, T, with

radius, r. The two path lengths around T are defined as D1

(clockwise) and D2 (anticlockwise) and hence the path length

difference Dθ = 2rθ, or, for a given sampling rate 1/fs,

τθ = 2rθfs/c where c is the speed of sound and τθ is the

angle dependent delay in samples.

The signal to arrive first has a high-pass characteristic

for all scattering angles. The second signal has a high-pass

characteristic for small scattering angles, where the wave

essentially passes straight through the cylinder, and a low-

pass characteristic for large (and hence back) scattering angles.

Fig. 3 expresses the required angle dependent scattering filter

in block diagram form as used in [33]. z−τθ is the sample

delay equivalent to the path distance between the two parts

of the scattered signal, α1(z) represents the filtering action

associated with the shorter of the two scattering paths, and

α2(z) represents the filtering associated with the longer path.

As stated in Section I, this two-dimensional Treeverb

network geometry definition is essentially 2.5-dimensional,

and both spherical spreading losses, assuming a perfectly

absorbing forest floor, and cylindrical spreading losses can be

considered, resulting in different, if non-physical in the latter

case, reverberant effects. Although Treeverb was conceptually

derived as a digital waveguide network, computational limits in

terms of both run-time costs and memory requirements resulted

in an implementation based on the geometrical acoustics image-

source method instead [5]. This implementation creates an

offline impulse response as the system output for use as part

of a convolution based reverberation algorithm.

B. Scattering Delay Networks

Another digital waveguide network based digital reverberator

design is the scattering delay network (SDN) [18], [34]. An

SDN reverberator is similar to the Treeverb system in that

it decomposes the space to be modeled into a set of nodes

representing the first-order reflection points, interconnected with

bidirectional waveguides. A signal is introduced to the SDN

from source node, S, and output at receiver, R, both connected

via unidirectional delay lines. In the Treeverb reverberator the

tree-nodes make up the whole of the physical surroundings,

resulting in a relatively sparse set of possible reflection paths

for multiple reflection orders. However, the wall-nodes in a

SDN system are accurate for first-order reflections but only

approximate acoustic behaviour at higher orders as the much

larger surfaces involved and typically closed nature of the

system result in many more possible connected paths.

A block diagram representing the operation of the SDN

reverberator is shown in Fig. 4 after [34] where a detailed

description of each stage can be found and is presented here in

overview. The input signal, x(n), is applied at the source node,

and through the application of input delay and attenuation

matrix operators (Ds(z) and Gs respectively), this signal is

transmitted to each wall-node. The scattering matrix S̄ is then

applied to scatter this incoming signal between wall-nodes with

H(z) applying frequency dependent absorption at each.

For higher than first-order reflections, a feedback loop

comprising inter-node delays Df (z) in series with permutation

matrix P is applied to recursively model the higher order

reflection behavior of the system. Attenuation matrix Gr

and delay factors Dr(z) associated with each wall-node to

receiver connection are then applied for generating output

signal y(n). The matrices γs and γr represent the directivity

patterns between the SDN nodes and the source and receiver

respectively. Note that for all of the simulations included here

the source and receiver are modelled as omnidirectional, so

neither γs nor γr will be considered further. Finally, z−Dsr and

gsr represent the direct path delay and attenuation respectively,

Of particular interest are the scattering matrix S̄ and

permutation matrix P. The former represents the scattering

associated with the SDN system as a whole, and is formed

of identical smaller scattering matrices, S, representing the

scattering at each individual wall-node:

S =
2

N − 1
1(N−1)(N−1) − I (1)

where N is the number of wall-nodes in the system, 1 is a

matrix of ones, and I is an identity matrix. For outgoing wave

pressure signal p−ij and incoming wave pressure p+ij from wall-

node i to wall-node, j, S determines the outgoing pressure

signal from one wall-node to the other wall-nodes in the system

given knowledge of the incoming pressure signal:

p−ij = Sp+ij (2)

This can be extended to characterise the whole system S̄:

S̄ = diag(S . . .S
︸ ︷︷ ︸

N

) (3)

The scattering matrix S̄ is therefore a N(N−1)×N(N−1)
matrix that determines the spread of acoustic energy among

the bidirectional delay lines connecting the wall-nodes. For the

system to work recursively and model higher order reflection

paths it is required to re-arrange the result of this scattering

in the feedback loop ready for input and a new scattering

operation. Note that, after scattering, the outgoing pressure

value p−ij is equivalent to the incoming pressure values p+ij at

the next scattering instance, which, in order to be the correct

input to the next scattering operation, must be rearranged to

form the vector multiplied by the scattering matrix S̄. Hence

the permutation matrix P is defined to rearrange the elements

appropriately.

For an N node SDN, each node has N − 1 permutation

terms. Given wall-node m such that 1 ≤ m ≤ N , connected to

n other wall-nodes where 1 ≤ n ≤ N and n 6= m, we define:

Pm,n =

{
m− 1 + (n− 1)(N − 1), n < m
mN + (n−m+ 1)(N − 1), n > m

(4)

Such that the required permutation, σ, is given by:

σ =

(
1, 2, . . . , N − 1, . . . , (N − 1)(N − 1) + 1, . . . , N(N − 1)

P1,2, P1,3, . . . , P1,n, . . . , Pm,1, . . . , Pm,n−1

)

(5)
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❼

x(n)
1
2

γs Ds(z) Gs + S̄ H(z) Gr Dr(z) γr

2
N−1

+
y(n)

Df (z)P

z−Dsr

gsr

Fig. 4. The scattering delay network overview block diagram, taking account of explicit direct sound and first reflection paths via wall-nodes for a given
source and receiver position, with higher order reflections derived via the main feedback loop, after [34].

The input scaling factor of 1
2 is included in order to provide

the intended pressure at each node [34]. This input scaling is

then compensated for by the output being scaled by a factor of
2

N−1 . The denominator value of N−1 in this case compensates

for the N − 1 ‘copies’ of the input signal being applied

to each of the N nodes by the input delay and attenuation

matrices, copies which are made to allow the output result

of the application of Gs to be combined with the results of

applying the permuation matrix.

The application of P to the incoming pressure values

p+ij therefore results in the required input reordering. This

alternating scattering-permutation matrix operation allows

the SDN to successively model the interaction defined by

the bidirectional delay elements connecting the wall-nodes.

The SDN is, therefore, an efficient and effective method

of reverberation design for room acoustic simulation, with

accurate first-order reflections and good perceptual accuracy

[34]. However, for correct scattering paths between nodes, to

potentially incorporate direction dependent filtering as found

when considering reflections from objects similar to a rigid

cylinder, a modified approach is required.

III. WAVEGUIDE WEB

This section introduces the WGW, a novel type waveguide

network that has been designed to allow for the implementation

of directionally dependent filtering at each node. As such it

allows for the precise characterization of second-order reflection

attenuation, following previous work indicating the importance

of first- and second-order reflections in the characterization of

the acoustics of sparse outdoor spaces [28].

A. Design Overview

The design of the Waveguide Web is similar to the SDN

where the modeled space is represented by a set of scattering

nodes connected to one another via bidirectional delay lines.

Source and receiver nodes are also connected to these scattering

nodes by unidirectional delay lines. Where the WGW differs

from the SDN is in the scattering action at each node. Whereas

the SDN implementation allows for one filtering action only at

each node, the WGW design allows for directionally dependent

filtering to be implemented. Like the SDN, the WGW method

presents an abstracted representation of a space, based on an

interconnected network of significant reflection points. These

points can be at any 3D position, as required by the geometry

of the system being modeled.

1) WGW Connections: Fig. 5 shows all of the connections

and filters associated with a node j in an N -node structure,

including the source-to-node connections, inter-node connec-

tions, and node-to-receiver connections. In this diagram K is a

vector, formed of N − 1 elements, denoting the indices of all

nodes present in the system apart from node j. For example,

if N = 4 and j = 3, then K = [1, 2, 4]. If the case was that

j = 2 however, then K = [1, 3, 4].

In the SDN, each node only has a single filter associated with

it. As shown in Fig. 5, in the WGW design each node has N2

filters: one filter for the first-order reflection between source

and receiver occurring at that node; N−1 filters corresponding

to incoming signals from all other nodes and outgoing to the

receiver; N−1 filters corresponding to the signal incoming from

the source and outgoing to all other nodes; and (N−1)(N−1)
filters corresponding to recirculating signals incoming from all

other nodes and then also outgoing to all other nodes.

The notation for these filters is as follows: Hijk represents

a filter at node j acting on a signal arriving from node i that

will ultimately be sent to node k. In the case of the signal

arriving from the source node, S is used in place of i, and

where the signal is ultimately being sent to the receiver node,

R is used in place of k.

The delay lines present in Fig. 5 are absorptive, as repre-

sented by the lumped gain factors placed at the end of each one.

In the case of second order reflections the gain values for the

‘middle path’ of each one are combined with the attenuation

multiplier for the final node to receiver path. In Fig. 5 it is

shown that there are three steps in the WGW structure where

this attenuation takes place: between the source and each node

(gSj in Fig. 5), between each node and the receiver (gjR),

and between each node and the receiver where the incoming

signal is from each of the other nodes and not from the source

(gKijR . . . gKN−1jR).

In order to maintain correct attenuation according to 1
r

,

where r is the distance traveled, the delay line attenuation

values present at each of the points identified in Fig. 5 are
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Fig. 5. Structure of the source-to-node, inter-node, and node-to-receiver connections at a single WGW node. The implementation of the directionally dependent
filtering at each node is shown, including how the the elements of the scattering operator S are applied to the incoming signal from each node.

calculated using the following equations:

gSTM
=

1

‖xS − xTM
‖

(6)

gTMR =
1

1 +
‖xTM

−xR‖

‖xS−xTM
‖

(7)

gTMTNR =
1

1 +
‖xTN

−xTM
‖+‖xR−xTN

‖

‖xS−xTM
‖

(8)

where gSTM
is the attenuation between the source and the node

indicated by TM , gTMR is the attenuation between node TM

and the receiver, and gTMTNR is the attenuation associated with

the total path from node TM via node TN to the receiver. Note

that (6) and (7) are formulated identically in the SDN [18]

to give correctly attenuated first-order reflections. The WGW

extends the SDN algorithm in this regard with the addition

of (7) providing correctly attenuated second-order reflections.

Higher order reflections are reproduced less accurately, and do

not follow the 1/r law, but still produce a rich reverberation

tail. In Fig. 5, the gain quantities defined by (6)-(8) are

represented by the multiplication operators labeled gSj , gjR,

and gKijR . . . gKN−1jR respectively.

Also shown in Fig. 5 are the elements of the scattering matrix

S and how they are applied to incoming signals at each node.

In Fig. 5 each multiplier marked Sij indicates the element in

row i and column j of the matrix S, as in (1). There is an

important distinction here between the WGW and the SDN.

In the case of the SDN, the scattering operation is applied

to incoming signals at each node regardless of their point of

origin and further destination. Here the scattering operator

allows for directionally dependent filtering to be applied by

making N − 1 copies of each incoming signal and filtering as

appropriate.

B. WGW Structure

Presented in Fig. 6 is the overall structure of the WGW

in block diagram form. A comparison with Fig. 4 shows the

similarity between the designs of the WGW and the SDN as

well as their differences. In the case of the WGW the first-

order reflections are calculated separately along with the direct

path. This is because the filters associated with first-order

reflections (i.e. from source-to-receiver via a single tree) are

not appropriate to be fed back via scattering and permutation

operations. Instead, the main section of the WGW is used to

model the second-order reflections represented by the given

tree layout, with reflections of third-order and above calculated

using the feedback loop.

Starting with the first-order reflection feed-forward path in

the block diagram of Fig. 6,

DS(z) = diag(z−DS1 , z−DS2 , . . . , z−DSN ) (9)

DR(z) = diag(z−D1R , z−D2R , . . . , z−DNR) (10)

are the source and receiver delay matrices for the first-order

section.

HSTR(z) = diag(HS1R(z), HS2R(z), . . . , HSNR(z)) (11)

is the N ×N matrix that contains the filters representing the

first-order reflections, and z−DSR and gSR are the direct path
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❼

x(n)
1
2

DST (z) GST HSTT (z) + DTT (z) P HTTR(z) GTTR DTR(z)

2
N−1

+

+

y(n)

S∑ SWGW HTTT (z) P2

DS(z) GS HSTR(z) GR DR(z)

z−DSR

gSR

Fig. 6. Block diagram of the WGW reverberator. Here there are paths for the explicit calculation of first-order reflections, alongside the direct sound path,
separate from the main path for the calculation of reflections of second-order and above.

delay and attenuation respectively. Considering the second-

order reflection feed-forward path in the block diagram of Fig.

6,

DST (z) = diag(z−DS1 . . . z−DS1

︸ ︷︷ ︸

N−1

, z−DS2 . . . z−DSN ) (12)

DTT (z) = diag(z−D12 . . . z−D12

︸ ︷︷ ︸

N−1

, z−D1N . . . z−DN (N−1))

(13)

DTR(z) = diag(z−D2R , . . . , z−DNR , . . . , z−D1R , . . . , z−D(N−1)R)

(14)

are the source-node, inter-node, and node-receiver delay

matrices, and

HSTT (z) = diag(HS12(z) . . . HS1N (z), . . . , HSN1(z), . . . , HSN(N−1)(z))

(15)

HTTR(z) = diag(H12R(z), . . . , H1NR(z), . . . , HN1R(z), . . . , HN(N−1)R(z))

(16)

are the source-node-node, node-node-receiver filter matrices.

Note that these filters also include the effect of absorption at

a node due to the process of reflection.

GST = diag(gS1 . . . gS1
︸ ︷︷ ︸

N−1

, gS2 . . . gSN ) (17)

GTTR = diag(g12R, . . . , g1NR, . . . , gN1R, . . . , gN(N−1)R)
(18)

are the second-order source-node and node-receiver attenuation

matrices respectively, and

GS = diag(gS1, gS2, . . . , gSN ) (19)

GR = diag(g1R, g2R, . . . , gNR) (20)

are the source and receiver attenuation matrices for the

first-order section. The permutation matrix P is formulated

according to the SDN design as described in Section II-B.

C. Feedback Loop

Besides the feedback path, there are N(N − 1) channels

used in the calculation of second-order reflection paths. In

order to accommodate directional dependent filtering at each

node N − 1 copies of each channel must be made. This action

is in effect performed by the matrix P2, creating N − 1 copies

of the output from P.

In order to do this P2 must take the form of an N(N −
1)(N−1)×N(N−1) matrix. P2 is formed of multiple copies

of a sub-matrix P2s given by:

P2s = [IN−1 . . . IN−1
︸ ︷︷ ︸

N−1

]T (21)

P2s is then an (N − 1)(N − 1)× (N − 1) matrix. If we then

apply the following tensor product operation (as denoted by

⊗:

P2 = IN ⊗P2s (22)

we get the desired N(N − 1)(N − 1) × N(N − 1) matrix

P2. The result of applying P2 can then be input to HTTT (z),
which is formulated according to

HTTT (z) = diag(H212(z), . . . , HN1N (z), . . . , H1N1(z), . . . , H(N−1)N(N−1)(z))

(23)

and represents the N(N − 1)(N − 1) × N(N − 1)(N − 1)
node-node-node filters.

Following the application of the directionally dependent

filtering, the scattering operation can take place. SWGW is

given by:

SWGW = diag(vec(S)T . . . vec(S)T
︸ ︷︷ ︸

N

) (24)

and allows for the correct element of S to be applied to

each incoming filter signal. The result must then be summed

appropriately to give the total scattering output at each node,

using the operator S∑:

S∑ = IN(N−1) ⊗ [1 . . . 1
︸ ︷︷ ︸

N−1

] (25)

In this way, the application of both SWGW and S∑ recombines

the N(N − 1)(N − 1) channels present in the feedback loop

back into the N(N − 1) inter-node wave variables required

for reinsertion and further propagation through the system.

Since the WGW makes use of essentially the same scattering

operation as the SDN, it is similarly stable [10] regardless of

the length of the delay lines connecting the nodes. As a result

the addition of losses at the nodes will always result in a stable

network.

This section has detailed the design and structure of the

WGW. Highlighted are the key points where its design differs

from that of the SDN, namely: the separate calculation of

first-order reflections as well as the direct path; the extension

of the structure at each node to accommodate directionally
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dependent filtering; and the accordant changes made to the

scattering operation.

IV. EVALUATION

This section includes three case studies for evaluating the

performance of the WGW:

• A comparison of IR simulations for a shoebox room using

the SDN and the WGW. The purpose of this comparison

is to validate the WGW and see where the differences

in design between the two manifest themselves in the

resultant rendered impulse responses.

• A simulation of a forest environment using filters designed

according to Spratt and Abel’s Treeverb design [33]

and Morse’s solution to acoustic scattering from a rigid

cylinder [39]. The forest environment used is formed

of 25 trees arranged in a semi-regular grid pattern. It is

evaluated with reference to Chobeau’s results regarding the

sound propagation in forests [40], and Wiens’ MATLAB

implementation of Treeverb [41].

• A simulation of an urban courtyard where impulse

responses have been previously measured [28], [29]. These

measurements were used to inform the structure of the

WGW model as an approximation of the space, and to

compare with the resultant simulated impulse response.

All of the IRs generated using the WGW here were calculated

at a sample rate of 48 kHz, and have been made available

online as part of the OpenAIR Library [42].

A. SDN Shoebox Comparison

In order to validate the design of the WGW, presented here

is a comparison of a simulation for a 9m×7m×4m shoebox

room (with an absorption coefficient α = 0.2 defined for all

surfaces) made using the SDN [18], and the same simulation

made using the WGW. Fig. 7 (a) shows the two results overlaid

on one another (with the WGW results marked in red), and

Fig. 7 (b) shows the remainder following subtraction of the

WGW result from that of the SDN.

The results presented in Fig. 7 validate the design of the

WGW as they indicate identical reproduction of the direct sound

path and first-order reflections (i.e. at those sample instances

the difference between the SDN and WGW simulations is

0). This figure shows the difference in second-order reflection

amplitude between the WGW and SDN results, where the

WGW calculates them correctly according the the 1
r

law. This

difference is second-order reflection amplitude accordingly

leads to further small differences for the reflections beyond the

second-order, and as such the reverberant tail of the response.

These results can also be validated with reference to Fig. 8

which shows reverberation time for octave bands from 125 Hz to

16 kHz, based on derivation of the T30 room acoustic parameter

[43], [44].

The results shown in Fig. 7 and Fig. 8 validate the WGW

results as they are close to those obtained from the SDN, but

differ according to the novel design elements implemented in

the WGW (i.e. the attenuation values given by (6)-(8)). The

results shown in Fig. 8 are clearly similar, and fall within

the 30% just-noticeable-difference (JND) associated with T30
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Fig. 7. (a) Comparison of SDN result (black) with WGW (red). (b) Difference
between the two.
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Fig. 8. Octave band reverberation time results for SDN and WGW derived
impulse responses obtained from a 9m × 7m × 4m shoebox-like room
simulation.

measurement [45], indicating the results from the SDN and the

WGW to be perceptually alike. On this basis the WGW can

be used to obtain simulation results for further case studies.
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B. Forest Environment

This section includes a comparison of results from the WGW

with those from two previous studies regarding the acoustic

properties of forest environments: Spratt and Abel’s Treeverb

design as mentioned in Section II-A; and Chobeau’s modeling

of forest environments using the transmission line matrix (TLM)

method [40].

Chobeau’s work was chosen for comparison as its results

contain a set of impulse responses based on two-dimensional

reflection and scattering from regular arrays of tree positions.

This method therefore represents approximate acoustic model

of a forest that is suitable for comparison with results gathered

from the WGW.

1) Filter Design: As suggested by Spratt and Abel [33],

the filtering used at each node when simulating a forest

acoustic is designed to emulate scattering from a rigid cylinder

(representing a tree trunk). As detailed in Section II-A when

a plane wave is incident upon such a cylinder the result is

formed of two parts, with scattered propagation paths traveling

in each direction around the cylinder.

In Fig. 3, z−τθ represents a delay equivalent to the path

distance between the two parts of the scattered signal, α1(z)
represents the filtering action associated with the shorter of

the two scattering paths, and α2(z) represents the filtering

associated with the longer path.

In the current design of the WGW, these filters are imple-

mented using first-order IIR filters that can be used to perform

both high and low pass operations. Two of these filters are

used in the configuration shown in Fig. 3 to emulate the two

scattered paths shown in Fig. 2. A high pass filter is applied to

the shorter of the two scattering paths with cut-off frequency

fc defined by:

fc =
c

(π + θ)r
(26)

where fc has a wavelength equal to the total length of the longer

scattering path around the tree. For small scattering angles the

longer of the two paths has a high pass characteristic with the

same break frequency. For large scattering angles it changes

to a low pass filter with cut-off frequency:

fc =
c

r · θ
π

(27)

where fc has a wavelength equal to the proportion of half of

the tree’s circumference represented by the scattering angle.

This filtering is applied at each tree node together with

the additional application of a reflectance factor determined

by the total amount of scattered energy according to Morse’s

solution. Fig. 9 shows how the total scattered energy changes

with the scattering angle. At θ = 0 there is effectively complete

transmission, but at θ = π the reflectance value is reduced to

about 0.25. This represents an average tree trunk with radius

r = 0.2m, and is representative of values of r between 0.1
and 0.5m.

Fig. 10 compares Morse’s solution to acoustic scattering from

a rigid cylinder with results made using the design detailed here

at three different scattering angles. These plots indicate a good

match at high frequencies with greater discrepancies appearing
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Fig. 9. Plot of reflectance against scattering angle as used in the forest reverb
example. These values are generated using Morse’s solution to scattering from
a rigid cylinder.

at lower frequencies below around 100 Hz. Whilst more

sophisticated (i.e. higher order) filters could be implemented

to match more closely Morse’s solution, the results presented

in Fig. 10 are sufficient for use here.

2) Treeverb Comparison: In order to compare WGW results

with those made using Treeverb, a MATLAB implementation

of the image-source based Treeverb algorithm [41] was used

to generate a forest environment (shown in Fig. 11 where 25

trees with radii between 0.2 m and 0.5 m have been distributed

over a 30× 30m region. This layout of trees was input to this

algorithm and used to generate the IR shown in Fig. 12, as

obtained when considering up to fifth-order scattering paths.

This same tree layout is also used to generate the WGW IR

shown in Fig. 13. Fig. 14 shows the same IR with a focus on the

first 200 ms. Comparison with the Treeverb result shows this

to be more plausible with distinct initial reflections followed

by a much less reverberant tail.

The lack of more objective analysis of the results obtained in

the Treeverb paper make more detailed comparisons somewhat

difficult to make. As such, in the next section results made

using the WGW method will be compared with results from

Chobeau’s use of the Transmission Line Matrix (TLM) method

to simulate a forest acoustic.

3) Chobeau Comparison: Chobeau made use of multiple

forest layouts to determine the effect that tree placement has on

sound attenuation level. In Chobeau’s thesis it was determined

that a major factor affecting the acoustic properties of a forest

environment is the filling fraction, i.e. the fraction of the space

occupied by the trees (represented by cylinders). For an aligned

square grid of cylinders the filling fraction F is given by:

F =
πd2

4a2
(28)

where d is the diameter of the cylinders and a is the ‘lattice

constant’, or the distance between the cylinders’ central points

[46]. The filling fraction has an affect on the bandwidth of

the spectral gaps produced by the environment. According to
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Fig. 10. A comparison of Morse’s solution to acoustic scattering from a rigid
cylinder with the approximation formed of first-order filters as used in the
WGW. For all examples r = 0.2m, the three examples represent the following
reflection angles: (a) θ = 0

◦ (b) θ = 60
◦ (c) θ = 180

◦.

Bragg’s law, the centre frequency of such a band gap can be

approximated using:

fc =
c

2 · a
(29)

where c is the speed of sound in air and a is, again, the lattice

constant [47].

The three distributions used to generate WGW results are

shown in Fig. 15, and were chosen to emulate the different

distributions used by Chobeau. For all distributions the trees

have a radius of 0.2m. In D1 the lattice constant is 1.42m, for

D2 it is 2m, and for D3 it is 1m. The filling fractions for these

distributions therefore range from about F = 0.15 to about

F = 0.03.
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Fig. 11. Forest configuration formed of 25 trees with radii between 0.2-0.5m,
one source, S, and one receiver, R, distributed over a 30× 30m region, used
to generate the impulse response shown in Fig. 5.
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Fig. 12. Impulse response for the forest configuration shown in Fig. 11
generated using Spratt and Abel’s Treeverb methodology based on the
MATLAB implementation presented in [41].

Using (29), for each of the regular distributions presented

here, the centre frequency of an expected band gap can be

calculated: for D1, fc = 121Hz; for D2, fc = 86Hz; for D3,

fc = 172Hz. These band gaps would typically be expected to

be observed in topologies with filling fraction 0.4 < F < 0.6
[48]. However, one would still expect to see pseudo-bands gaps

for low filling fractions [40] corresponding to the distributions

used in this paper. Fig. 16 shows a spectral comparison between

results for these four distributions.

The results shown in Fig. 16 do line-up with these predictions

somewhat, in that the first dip in each spectra for each

distribution is near its predicted fc value. As predicted, however,

the low filling fraction associated with the distributions used
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Fig. 13. An IR generated using the WGW for the forest layout shown in Fig.
11. The red lines indicate the timing of first-order reflections.
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Fig. 14. A closer view of the first 200 ms of the IR shown in Fig. 13.

means that these spectral band gaps are not very prominent.

This is in accord with Chobeau’s key findings, where no

pronounced band-gaps were observed in simulations of similar

forest environments.

Also in accord with Chobeau’s results are the global

attenuation levels associated with each of the three distributions

(−7.57 dB for D1,−6.8 dB for D2, −10.1 dB for D3), where

the greatest attenuation is associated with the distributions

showing the highest filling fraction. These attenuation levels

are calculated as the average of the calculated sound level

across all frequencies relative to an environment where no

trees are present. The absolute values of these attenuation

values are less important than how they relate to one another:

they show that attenuation increases with the density of the

distribution (i.e. the filling fraction), which is one of two main

factors identified by Chobeau as having an effect on attenuation

levels.

C. Urban Courtyard

While the WGW’s design lends itself to the simulation

of a forest acoustic, it is also intended for the modeling of
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Fig. 15. Schematics of the three distributions used in the forest simulations,
each with 30 ‘trees’ of radius r = 0.2m: (a) D1 aligned distribution with
1.42m spacing; (b) D2 Aligned distribution with 2m spacing; (c) D3 aligned
distribution with 1m spacing.
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Fig. 16. Frequency responses of simulations made using the three distributions
shown in Fig. 15.

more general sparse outdoor spaces. This section presents a

comparison of results with sparsely reflecting IRs as obtained

from acoustic measurements in a semi-enclosed courtyard [28].

The node positioning is determined from a full 3D model

(shown in Fig. 17) used to calculate the main reflection paths

based on a geometrical acoustics approach [29], with nodes

placed at a selection of identified main first- and second-order

reflection points. The resultant node layout is shown in Fig.

18.

Initial simulations were made using acoustic absorption

coefficient (α) values for the materials observed in the internal

courtyard buildings (predominately brick) with no filtering

applied at each node (due to the relatively minimal frequency

dependence in the acoustic absorption coefficients for these
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Fig. 17. The 3D model of the urban courtyard considered here, based on actual
measurements, and also used to identify the main reflecting surfaces. The
labels S and R denote the position of the source and the receiver respectively.
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Fig. 18. WGW node layout used for the simulations of the urban courtyard,
corresponding to the main reflecting surfaces in Fig 17.

materials). However, it was found that these simulations

produced overly reverberant IRs due to the location’s open

nature not being compensated for. As such an extra, totally

absorptive, node was added as a ‘sky-node’ to compensate for

the open nature of the courtyard.

The ‘sky-node’ is implemented simply by adding a node at

some arbitrary position and assigning it an α value of 0. In

terms of Fig. 5 this in practice means all of the filter centered at

that node will now include a coefficient such that all incoming

samples are multiplied by zero.

Fig. 19 presents reverberation time for octave bands from

125 Hz to 16 kHz based on T30 for two WGW simulations

compared with reverberation times obtained from the measured

IR. In this figure the effect of adding a sky-node to the

simulation can clearly be seen. Both WGW simulations in

this case also had air absorption added using an analytical

solution as presented in [49].

Fig. 19 shows general good agreement in reverberation time
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Fig. 19. Octave band reverberation time results for the IR measure-
ment/recording obtained from the urban courtyard and from two WGW
simulations made using the same 5-node layout with one also including
an absorptive ‘sky-node’.

results between the recorded and simulated IRs in octave bands

from 500 Hz to 4 kHz but a larger deviation in the octave bands

centered at 1 kHz and below. There remains considerable scope

for further investigation into how best to model such a space,

given the large number of possible node positions.

D. Computational Requirements

Table I shows the run time and memory required to run

a WGW simulation of a forest environment with different

numbers of nodes. For each simulation the source and receiver

were positioned 10m apart, and the nodes were positioned at

random within a 10m2 space between the source and receiver.

Each simulation was computed to give 1s of audio output at a

sampling rate of 48 kHz. From this table it can be seen there is a

very large increase in memory usage with an increasing number

of nodes. This exponential increase is due to the implementation

of directionally dependent filtering at each node, which requires

the implementation of N2 filters at each of the N nodes—

resulting in the number of filters required for implementation

therefore increasing with N3.

TABLE I
RUN TIME AND MEMORY REQUIRED FOR DIFFERENT NUMBERS OF NODES.

Nodes Times (s) Memory (MB)

5 4.35 5.65
10 9.58 18.32
15 39.65 672.10
20 155.89 5 508.98
25 358.38 27 350.03
30 667.23 102 404.16

V. CONCLUSION

This paper has presented the Waveguide Web, a new rever-

berator design for outdoor, or sparsely reflecting, environments,

which offers an extension to De Sena’s SDN reverberator

to include accurate second-order reflections and directionally

dependent filtering at each node. Following the presentation
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of the WGW’s design, several case studies were presented

comparing WGW results with other examples. Firstly, a

comparison was made with the SDN shoebox example as

a validation of WGW operation. Secondly, a forest acoustic

was modeled and compared with results from Spratt and Abel’s

Treeverb, which showed that the WGW produced more realistic

results. This was further verified by considering the band

gap absorption effect of a regular, grid-based, arrangement

of trees. The results showed some agreement with prior work

by Chobeau, indicating how acoustic attenuation due to the

presence of such a regular arrangement of trees varies with

tree/grid spacing. Spacings based on a higher filling fraction

were also shown to increase global attenuation levels to some

extent. The final case study was a comparison with impulse

response measurements obtained from a semi-enclosed urban

courtyard. Reverberation time results were in fairly good

agreement following the incorporation of air absorption effects

and the addition of a totally absorptive ‘sky-node’.

The are several avenues for further research. The reflec-

tion/absorption filtering function for a node is well defined

in the ideal specular case, and for the forest environment

considered here. The boundary interactions observed in more

general spaces, such as the urban courtyard example, are not so

well defined in the context of this approach. The more formal

use of acoustic bidirectional reflectance distribution functions

to categorize reflecting nodes, as outlined in [2], may help in

this regard. It would also be beneficial to implement analytical

air absorption compensation directly as part of the WGW itself.

The filtering currently used to represent a tree-node could

also be extended to include filters of higher order, to better

approximate Morse’s solution to acoustic scattering from a

rigid cylinder. It is also important to note that a limitation

of the current forest model is that, like Treeverb, it does not

include ground reflections or foliage. As such future work

could also consider the addition of these aspects to the WGW

by using results from [50].

This work represents an important step in the general

development of reverberation algorithms more capable of

modeling open acoustic scenes. Although this paper was in part

inspired by the simulation of reverberant forest environments,

the results can be applied in more general circumstances, with

the WGW algorithm additionally offering improvements in

terms of accuracy over other existing reverb algorithms. The

WGW offers a new simulation tool for researchers interested

in the perception of environmental acoustics and the associated

effects that sound and our built or natural environment can

have on human health and well-being.
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Prof. Välimäki is a Fellow of the Audio Engineering Society and a Life
Member of the Acoustical Society of Finland. In 2007–2013 he was a Member
of the Audio and Acoustic Signal Processing Technical Committee of the
IEEE Signal Processing Society and is currently an Associate Member. He is
a Founding Member of the EURASIP Special Area Team in acoustic, sound
and music signal processing (2015 to present). He served as an Associate
Editor of the IEEE SIGNAL PROCESSING LETTERS in 2005–2009 and of the
IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING in
2007–2011. He was in the Editorial Board of the Research Letters in Signal

Processing, of the Journal of Electrical and Computer Engineering, and of
The Scientific World Journal. He was the Lead Guest Editor of a special
issue of the IEEE SIGNAL PROCESSING MAGAZINE in 2007 and of a special
issue of the IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE

PROCESSING in 2010. In 2015, he was a Guest Editor of the special issue of
the IEEE SIGNAL PROCESSING MAGAZINE on signal processing techniques
for assisted listening. In 2016, he was the Lead Guest Editor of the special
issue of Applied Sciences on audio signal processing. Since 2015 he has been
a Senior Area Editor of the IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH

AND LANGUAGE PROCESSING. In 2008, he was the Chair of DAFX-08, the
11th International Conference on Digital Audio Effects. He is the Chair of the
Sound and Music Computing Conference SMC-17, which is held in Espoo,
Finland in July 2017.


	Introduction
	Background
	Treeverb
	Scattering Delay Networks

	Waveguide Web
	Design Overview
	WGW Connections

	WGW Structure
	Feedback Loop

	Evaluation
	SDN Shoebox Comparison
	Forest Environment
	Filter Design
	Treeverb Comparison
	Chobeau Comparison

	Urban Courtyard
	Computational Requirements

	Conclusion
	References
	Biographies
	Francis Stevens
	Damian T. Murphy
	Lauri Savioja
	Vesa Välimäki


