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ABSTRACT 

Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) allows an accurate 

determination of low-resolution structural features of proteins. Yet, the presence of proton 

dynamics, observed already by us for DNA in the gas phase, and its impact on protein structural 

determinants, have not been investigated so far. Here, we address this issue by a multi-step 

simulation strategy on a pharmacologically relevant peptide, the N-terminal residues of amyloid-

 peptide (A(1-16)). Our calculations reproduce the experimental maximum charge state from 

ESI-MS and are also in fair agreement with collision cross section (CCS) data measured here by 

ESI/IM-MS. Although the main structural features are preserved, subtle conformational changes 

do take place in the first ~0.1 ms of dynamics. In addition, intramolecular proton dynamics 

processes occur on the ps-timescale in the gas phase as emerging from quantum 

mechanics/molecular mechanics (QM/MM) simulations at the B3LYP level of theory. We 

conclude that proton transfer phenomena do occur frequently during fly time in ESI-MS 

experiments (typically on the ms timescale). However, the structural changes associated with the 

process do not significantly affect the structural determinants. 
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MAIN TEXT 

   Native electrospray ionization/ion mobility-mass spectrometry (ESI/IM-MS) is emerging as a 

powerful technique for capturing key structural features of proteins and their complexes.1-7 Next 

to the mass-to-charge ratio (m/z), it provides the charge state distributions (CSD) and collision 

cross sections (CCS) for all species present in the gas phase. From these, one can extract their 

stoichiometry, topology, connectivity, dynamics and shape, as well as distribution of co-

populated assembly and folding states.8-16 In spite of lacking atomic resolution, ESI/IM-MS has 

distinct advantages over high-resolution methods such as X-ray crystallography and NMR 

spectroscopy as well as lower-resolution techniques such as cryo-electron microscopy (EM)17 

and tomography.18 Indeed, it does not require crystallization and it is already sensitive at 

biomolecule concentrations well (roughly 1000 times) below those required for most of these 

techniques.10, 19-20 In addition, it can characterize species distributions, i.e. co-populated folding 

and assembly states of proteins and complexes. 

    To further advance the impact of ESI/MS for structural biology, it is imperative to investigate 

the effect of charge in the absence of solvent, as experienced by the protein ions in the vacuum 

of the mass spectrometer, on protein structure and dynamics. In particular, proton dynamics 

between different ionizable residues (such as H, D, E, R, K) could play a role, as in nucleic 

acids,21 which is so far unrecognized. Molecular simulations, performed by several groups 

including ours, may provide atomistic models of proteins under ESI-MS conditions,22-30 

consistent with available, low-resolution ESI/IM-MS structural data29-30 and charge states.22-23 

Still, the key question on proton dynamics in protein – which requires a quantum mechanics 

treatment – remained elusive. To address this issue, we combine here a multi-step computational 

protocol already established for a variety of proteins in the gas phase22-23 with a quantum 
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mechanics/molecular mechanics (QM/MM) approach. Our multi-scale approach is applied to a 

peptide fragment containing the 16 N-terminal residues of the ~40 amino acid-long amyloid- 

peptide (A(1-16)), a promising therapeutic target to reduce cognitive deficits for Alzheimer’s 

disease patients,31 which is broadly studied by MS characterization in aspects of structure32 as 

well as their aggregation behaviors.33-34 

The maximum charge state (highest charge) of A(1-16) is here predicted to be 4+ by our 

established hybrid Monte Carlo (MC)/MD-based protocol22-23 (see Figure S1 in Supporting 

Information for details). Accordingly, the mass spectrum of the peptide shows a maximum 

charge state detectable at 4+ and a narrow CSD dominated by 3+ (main charge state, see Figure 

S2 in Supporting Information). 

The lowest-energy protonation state, identified here by the MC/MD protocol at the main 

charge state (q=3+) in the gas phase, underwent MD simulations with three different initial 

microscopic conditions (called here “MD_gas1”, “MD_gas2”, “MD_gas3”). Simulation 

MD_gas1 was 0.129 ms-long, and equilibrium was reached after ~0.1 ms, as determined by 

Hess’s cosine content analysis35 (Table S1 in Supporting Information), and time-evolution plots 

of the backbone Root-Mean-Square-Deviation (RMSD, Figure 1A), CCS (Figure 1B), and end-

to-end C distance (Figure 1C). Such a relaxation timescale compares well with experiments 

based on native electron capture dissociation.36-37 Upon dehydration, the radius of gyration (Rg) 

and the solvent accessible surface area (SASA) decrease, with respect to the solution structure 

solved by NMR,31 by 13% and 15%, respectively (Table S2 in Supporting Information). The 

SASA reduction indicates a moderate compaction of protein conformation, due to the absence of 

hydrophobic/hydrophilic interactions with interfacial water molecules in gas phase. At the same 

time, the number of intramolecular hydrogen bonds of A(1-16) significantly increases by ~80% 
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(Table S2 and MD1 in Table S3 in Supporting Information). These features have also been 

observed for other biomolecules.23, 26 The secondary structure shares similarities to that in 

aqueous solution (Table S2 in Supporting Information).31 In particular, the gas-phase structure 

preserves the turn centered at residues 7-8 31 (Figure 1D). However, the N-terminal region is 310-

helical in water solution, as established by NMR measurements31 while it is -helical in the gas 

phase. This could be related either to the change from gas to solution and/or to known bias of 

AMBER force field-based MD, which disfavors the 310-helix relative to the -phase at helical.38-

42 

The calculated CCS value is 531 ± 15 Å2 (Figure 1B). This value is in agreement with the 

experimental value measured in this work (539 ± 16 Å2) for the same charge state (Figure S3 in 

Supporting Information). The structural properties from the other, slightly shorter (0.12 ms), MD 

simulations (“MD_gas2” and “MD_gas3”) are overall similar to that of “MD_gas1” simulation, 

in spite of a significant variability of the secondary structure: the calculated values of CCS, 

SASA, HBs and Rg differ from those calculated from the “MD_gas1” simulations by 8% or less 

(Table S2).  
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Figure 1. MD simulations in the gas phase of A(1-16) at its main charge state (3+) found in 
ESI/(IM-)MS experiments. Result from the first simulation performed here (called “MD_gas1”) 
are reported. (A)-(C), Time-dependence of: backbone atoms RMSD from the starting 
conformation (A); CCS values, where the experimental CCS at main charge state is indicated by 
a red solid line and its error bar is indicated by the dashed lines (B); distance between C atoms 
of N- and C-terminal residues (C). From left to right, conformations at 0 ms, 0.02 ms 
(RMSD=2.8 Å), 0.06 ms (4.9 Å), 0.09 ms (4.2 Å) and 0.12 ms (4.1 Å) (D). The N- and C-
terminus are indicated by blue and red spheres, respectively. 

 

We next switched to a QM description at the B3LYP level of theory of the ionizable residues 

of the protein forming intramolecular interactions (E3, H13, and H14) – E3 and H13 being 

neutral and H14 doubly protonated in our MD model (Figure 2A-B). The rest of the system is 

described, as before, using the AMBERff99SB-ILDN force field.43-46 To capture the possible 
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impact of the conformational differences on proton dynamics, three 12 ps-long QM/MM 

simulations were performed, starting from the representative conformations of the first three 

most populated clusters of the MD trajectory (“Traj_1”, “Traj_2”, “Traj_3”, with populations of 

88.1%, 5.7%, 2.3%, respectively). These clusters covered almost all (>96%) of the 

conformational space sampled in the MD (Figure S7). 
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Figure 2.   QM/MM simulations of the A(1-16) peptide, starting from structures representative 
of the three most populated clusters of “MD_gas1” (“Traj_1”, “Traj_2”, “Traj_3”, respectively). 
Conformations showing H13- (A), H14- (B) E3 hydrogen bonds (black dashed lines). (C) Proton 
atomic distance (in Å) from O3 and N13 (O3-H3 and N13-H3, respectively) and from N14 and 
O3 (N14-H14 and O3-H14, respectively) plotted as a function of time, for each QM/MM 
simulation. 

 

 

  

 

Figure 3. Time evolutions of the backbone atoms RMSD (A) and the CCS values (B) of A(1-
16) peptide in the QM/MM simulation starting from the representative conformation of the first 
cluster (the other simulations are reported in Fig. S8). The experimentally measured CCS at the 
main charge state (Fig. S3) is indicated by a red solid line. Its error bar is indicated by blue and 
green dashed lines. The occurrence of proton transfer is indicated by vertical dashed lines. 

 

In all cases, we observed proton transfer between E3 and H13 more than half a dozen times 

(Figure 2C). No proton transfer occurred between E3 and H14. The most populated protonation 

state by far (79% overall in our three simulations) is the protonation state with both E3 and H13 

being neutral (Table S4). This result is in line with previous experiments47-52 and calculations,53 

showing that the ionic salt bridges are not particularly favored in the gas phase for the amino 

acids with weak or moderate proton affinities (such as histidine in this case). But the novel 
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observation of an ionic salt bridge from the less populated protonation state (21%, Figure S6) 

leads us to suggest that the neutral and ionic forms of interactions do co-exist in the gas phase, 

interconverting in the ps time scale.  

The proton transfer process does not affect the structure of the protein significantly: A 

weighted average of the three observed CCS resulting from the QM/MM simulation (544 ± 15 

Å2, 489 ± 8.2 Å2, 482 ± 5.1 Å2, for Traj_1-3, respectively) gives a value of 539 ± 14 Å2 (Figure 3 

and Figure S8). This turns out to be in agreement with the experimental ones, (539 ± 16 Å2) (see 

Figure S3) and it is very similar to those observed in classical gas-phase MD, 531 ± 15 Å2. The 

weighted average of the donor-acceptor distance of the hydrogen bond between E3 and H13 is 

2.8 ± 0.2 Å (2.8 ± 0.2 Å, 2.7 ± 0.14 Å and 2.7 ± 0.1 Å, for “Traj_1-3”, respectively), which is 

very similar to what observed in classical MD in the gas phase (2.9 ± 0.5 Å). 

   Combination of experiments, classical dynamics and for the first time dynamical quantum 

mechanical simulations provides a complete picture of the nuclei and electron dynamics of 

proteins in the gas phase during an electrospray experiments. First, our predictions of the 

maximum charge and of the CCS are fully consistent with experimental data measured here, 

validating our computational protocol. Second, our QM/MM simulations at the B3LYP level of 

theory for the QM part points to the importance of proton transfer, for the first time discussed 

here in proteins. We found that contrary to general assumptions in the field, electron dynamics is 

not negligible leading to unpredicted changes in the topology of the protein related to previously 

uncharacterized, easy and fast proton-transfer events. Our results strongly suggest that proteins in 

ESI/IM-MS experiments are not expected to behave as single covalent entities, with well-defined 
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charge positions, but as an ensemble of charge sub-states generated by a flux of proton across 

ionizable residues.1 

   Several limitations associated with the QM/MM simulations should be discussed here. First, 

the QM model consists of residues E3, H13, and H14, without inclusion of residues interacting 

with them. Including those residues would from one hand increase the computational cost.  On 

the other hand it is not expected to change the main result of the simulations, namely the 

presence of proton dynamics in the Aȕ(1-16) peptide in ESI/IM-MS experiments. Next, one 

would like to use as accurate levels of theory as possible to describe the QM region. However, 

using high accurate methods, such as coupled cluster,54 would make the calculations extremely 

expensive, most likely without changing the main findings here. Indeed, B3LYP, the level of 

theory used here, is known to perform reasonably well for H-bonding and proton transfer 

processes.55  Finally,  one could use polarizable force fields.56 These could include the response 

of the protein frame electronic cloud to change of the QM electronic structure during proton 

dynamics. However, the reliability of such force fields for ESI-MS simulations, in contrast to the 

standard biomolecular ones,22-23, 43-46, 57 still needs to be tested. Therefore, we have opted here for 

the AMBER ff99SB-ILDN force field,43-46 successfully used by us in a variety of simulations of 

biomolecules in the gas phase.22-23, 57-59  Therefore, we expect the main findings reported here to 

be confirmed by a computational effort even larger than the considerable one employed here. 

 

                                                 

1This is not the case for the scarcely populated protomer: our QM/MM simulations show that the 
peptide does not rearrange in this protonation state and it makes no sense to follow structural 
rearrangements of the system on a longer time-scale than that (ps) associated with proton 
dynamics. 
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In conclusion, our multi-scale molecular simulations reproduce the experimental maximum 

charge state by ESI/IM-MS. They also predict fairly well the CCS measured here. The predicted 

overall structure of the peptide upon dehydration differs subtly from the one calculated in 

solution. B3LYP functional-based QM/MM simulations uncover proton dynamics between E3 

and H13 proton sites. This affects the charge of the residues involved in the process, while 

mostly preserving the structural determinants. In particular, the CCS calculated by QM/MM 

starting from the representatives of the most populated clusters is also in line with experimental 

data. Proton transfer processes as those uncovered here for A(1-16), as well as for DNA,21 in 

ESI/IM-MS conditions have never been observed in solution. Hence, we anticipate here that 

proton dynamics is a previously unrecognized fingerprint of biological structures during ESI/IM-

MS experiments. 
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MATERIALS AND METHODS 

Experimental Material. The peptide was synthetized according to the sequence 

DAEFRHDSGYEVHHQK-Ome by Proteogenix (Schiltigheim, France). The deconvoluted, 

average mass is 1968.768 (± 0.3311) Da (calculated average mass 1969.034 Da). 

Nano-ESI-MS. Nano-ESI-MS analyses on 1mM A(1-16) in 10 mM ammonium acetate pH 

7.4 were performed under “native” conditions on a hybrid quadrupole-time-of-flight mass 

spectrometer (Qstar Elite; ABSciex, Framingham, MA) equipped with a nano-ESI ionization 

sample source. Metal-coated borosilicate capillaries (Proxeon, Odense, Denmark), with medium-

length emitter tips of 1ȝm internal diameter, were used to infuse the samples. The instrument 

was calibrated by the standard Renin-inhibitor solution (ABSciex, Framingham, MA) on the 

intact molecular ion (M+2H)2+ (879.97 Da) and its fragment (F+H)+ (110.07 Da). Data were 

acquired in positive-ion mode with ion-spray voltage 1.2 kV and declustering potential 80 V, and 

were averaged over 2-min acquisitions. The interface was kept at room temperature (interface 

heater off).  

IM-MS. IM-MS was performed on a Synapt G2 Q-TWIMS-TOF instrument (Waters, 

Manchester, U.K.) using N2 as the drift gas. Ions were generated under “native” conditions by 

nano-ESI using in-house prepared gold-coated borosilicate glass needles. Critical voltages 

throughout the instrument were 1.2 kV capillary voltage, 25 V sampling cone, 0 V extraction 

cone, 4 V trap collision energy, 42 V trap DC bias and 0 V transfer collision energy. Pressures 

throughout the instrument were 2.82, 2.41 x 10-2, 3.07 and 2.53 x 10-2 mbar for the source region, 

trap collision cell, ion mobility cell, and transfer collision cell, respectively. All mass spectra 

were calibrated using 10 mg/ml CsI, and ion mobility drift times were calibrated against 

polyalanine clusters of known CCS to obtain experimental values.60 The error in the CCS 
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measurements was determined by repeat measurements under slightly different tuning conditions 

(variations in trap DC bias, wave velocity and wave height), which dictate the separation power 

as well as the duration of the experiment (see Figure S3). The variation between measurements 

while changing settings lies within 3%, whereas repeated experiments with similar settings 

varied by less than 0.3%. 

MD simulations of A(1-16) peptide in aqueous solution. We performed classical MD 

simulations in aqueous solution based on the twenty structures of the NMR conformational 

ensemble of A(1-16) (Ac-1DAEFRHDSGYEVHHQK16-NH2, PDB ID: 1ZE731). The structure 

showing the best agreement with the averaged properties of the ensemble, out of all the twenty 

NMR structures present in the PDB (see Table S3), was selected as the initial structure for the 

MD simulations. The protonation states of residues in solution at neutral pH were assigned 

according to the corresponding pKa values calculated by using the H++ webserver.61 As a result, 

the three histidine residues, H6, H13, and H14 were protonated at N nitrogen atoms; R5 and 

K16 were positively charged; and D1, E3, D7, and E11 were negatively charged. The peptide 

was inserted into a cuboid with each edge length of 52 Å containing 50 mM NaCl 

(corresponding to the salt concentration used in the NMR study of the peptide31) and ~4,400 

water molecules. The overall system was neutral. The AMBER ff99SB-ILDN force field43-46 and 

TIP3P force field62 were used for the peptide and ions, and for water, respectively. Periodic 

boundary conditions were applied. Electrostatic interactions were calculated using the Particle 

Mesh-Ewald (PME) method,63 and van der Waals and Coulomb interactions were truncated at 10 

Å. All bond lengths were constrained using the LINCS algorithm.64 First, the systems underwent 

1000 steps of steepest-descent energy minimization with 1000 kJ·mol−1·Å−2 harmonic position 

restraints on the protein complexes, followed by 2500 steps of steepest-descent and 2500 steps of 
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conjugate-gradient minimization without restraints. The systems were then gradually heated 

from 0 K up to 298 K in 20 steps of 2 ns. After that, four independent 1000 ns-long MD 

simulations were carried out in the canonical ensemble (298 K, 1 bar and 2 fs time-step) with 

different microscopic initial conditions (MD1 to MD4, hereafter). Constant temperature and 

pressure conditions were achieved by coupling the systems with a Nosé-Hoover thermostat65-66 

and an Andersen-Parrinello-Rahman barostat.67 All the calculations of classical MD in this work 

were carried out using the GROMACS 4.5.5 code.68 The CCS of the peptide was calculated 

using the trajectory method69 implemented in the MOBCAL code.70-71 Backbone atoms’ RMSDs 

are reported in Figure S4. 

Determination of the lowest-energy protonation states of A(1-16) peptide in the gas 

phase. Our force field-based hybrid MC/MD protocol22-23 was used for the determinations of the 

most probable protonation state of A(1-16) in each charge state from q=0 to q=4+ in the gas 

phase. This procedure was implemented by considering that protons are mostly exchanged 

among a few sites, i.e. R, K, H, Q, E, and D side chains.72 Hence, we protonated and 

deprotonated only these groups. We used the AMBER ff99SB-ILDN43-46 force field augmented 

with a key modification that allows for proton exchange.22-23 We previously showed that three 

different force fields (GROMOS41a1,73 AMBER99,74 and OPLS/AA75) give the same most 

probable protonation states for nine proteins of different size and fold, when the calculations 

were limited to protonation states containing the ionized residues common to all of the three 

force fields.22 The modified force field was shown to successfully reproduce protonation-state 

energetics for folded peptides, proteins and a protein complex22-23, 76 as calculated with density 

functional theory (DFT)-based simulations with dispersion corrections (for details see Ref. 23). 
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We first optimized the temperature used in the MC/MD simulations. As the internal 

temperature of ions just emitted from droplets is associated with uncertainties, there is, up to 

now, no clear connection between simulation and experimental temperatures.77 Specifically, 5 

ns-long MD simulations in the gas phase were carried out on the A(1-16) peptide for a 

randomly generated protonation state with temperatures of 300, 350, 400, 450, 500, 550, and 600 

K coupling with a Nosé-Hoover thermostat.65-66 By calculating the backbone atoms’ RMSDs of 

the peptide obtained from these MD simulations at various temperatures (Figure S5A), we 

verified that only the structures for tested temperatures lower than 550 K are conserved. 

Therefore, 500 K was selected for the MC/MD simulations, since such temperature represents a 

good compromise between structural preservation and conformational sampling (Figure S5B). 

Our MC/MD approach is expected to discriminate between high- and low-energy protonation 

states, but not to capture small energy differences on the order of 10 kJ/mol.22, 76 Hence, we 

considered the lowest-energy protonation state for each charge state (q=0 to q=4+), along with 

the protonation states whose energy differences from the lowest-energy one are less than 10 

kJ/mol. This leads to the identification of one or two low-energy protonation states for each 

charge state of A(1-16). 

MD simulations of A(1-16) peptide in the gas phase. We carried out three sets of 

independent MD simulations on the lowest-energy protonation state of the main charge state at 

298 K in the gas phase (MD_gas1 to MD_gas3) by using the Nosé-Hoover thermostat.65-66 The 

simulations covered 0.129 ms, 0.12 ms, and 0.12 ms, respectively. They differ for the initial 

velocities. The calculations were based on the AMBER ff99SB-ILDN force field.43-46 AMBER 

ff99SB-ILDN is one of the most extensively used force fields for gas-phase simulations.58-59 

Moreover, compared with other force fields (e.g. CHARMM78 and OPLS/AA75), the AMBER 
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ff99SB-based force field has reproduced best the secondary structure propensity of peptides with 

310-helix (as the case of A(1-16) studied here).38  

QM/MM simulations. The three most representative structures obtained from the equilibrated 

trajectories of the gas-phase MD simulations were used as starting structures for B3LYP 

functional-based QM/MM simulations. Three ionizable residues form by far the most persistent 

H-bond interactions during the entire classical MD (E3, H13, and H14, see Table S6). Hence, 

these three residues are the most suitable groups to study proton dynamics. They were included 

in our QM region. In the QM part, the electronic wave function was expanded on a plane-wave 

basis set up to an energy cut-off of 90 Ry. This part was treated at DFT level and only the 

valence electrons were treated explicitly while the core ones were described through norm-

conserving Troullier-Martins pseudopotentials.79 The Kohn-Sham equations were solved using 

the B3LYP exchange-correlation functional.80-81 Periodic boundary conditions were applied to 

the entire QM/MM box, while isolated system conditions in the QM part were imposed by using 

the Martyna-Tuckerman scheme for the Poisson solver.82 Grimme’s empirical corrections83 were 

applied to provide an inexpensive yet reliable description of the van der Waals interactions. The 

dangling bonds in between the QM and MM regions84 were saturated using an adapted 

monovalent carbon pseudopotential. The MM part includes the rest of the system and was 

described by the same force field as in the MD simulations. Constant temperature conditions 

were achieved by using the Nosé-Hoover chain thermostat with a reference temperature of 298 

K. The electrostatic coupling between the QM and MM part were calculated using the fully 

Hamiltonian hierarchical approach of Ref.85-86 In particular, the same QM/MM interface 

developed by that group was employed to couple the CPMD code (http://www.cpmd.org/, 
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