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Conver gence of bond lengths with supercell size
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Fig. S.1. Convergence of the bond length between each dopant and its nearestrezighbour with supercell
size, calculated using the PBE+ TS functional. The 7x7 cases breadritleslightly due to the difference in k-
point spacings.

bond cell siZ 2x2 ax4 6x6 X7 8x8
C(nearest) toN 1.42536 A | 1.42248 A | 1.41335A | 1.40951 A | 1.41156 A
C(nearest) to B 1.46275A | 1.48544 A | 1.48885A | 1.48497 A | 1.48782 A

Table. S.1. Data from Fig. S.1.



Conver gence of K-edgeswith supercell size

Convergence of EELS with supercell size - B (ground state) K edge
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Fig. S.2. Convergence d8 K-edge with supercell size for ground state and core-hole calculations.



Convergence of EELS with supercell size - C(+core hole) K edge
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Fig. S.3. Convergence of C K-edge with supercell size for core-hole calculation.
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Convergence of EELS with supercell size - N (ground state) K edge
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Fig. S.4. Convergence of N K-edge with supercell size for ground stateapehole calculations.



Conver gence of K-edges with vacuum thickness: boron
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Fig. S.5. Left panels: Convergence of B K-edge with vacuum thickness using 4x 4 supeRigl$ panels. The
differences between each spectrum and the spectrum calculated with 'w@@An. Note that since 4x4
supercells were used for the vacuum convergence tests, these spectiafidieaonverged with respect to in-
plane supercell dimensions. All spectra were normalised relative to the cell vdlimae26A cell.



Conver gence of K-edges with vacuum thickness: nitr ogen
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Fig. S.6. Left panels. Convergence of N K-edge with vacuum thickness using 4x 4 supeRigli$ panels. The
differences between each spectrum and the spectrum calculated with wa@0An. Note that since 4x4
supercells were used for the vacuum convergence tests, these spectiafidleaonverged with respect to in-
plane supercell dimensions. All spectra were normalised relative to the cell voltiree26f cell.
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Fig. S.7. Monkhorst Pack k-points grid used for the main EELS calculatiepsijriks used for the bandstructure
calculations, reciprocal space lattice points, high symmetry points, Brillonéaod Monkhorst Pack zone.

Defining the direct-space lattice vectors of thg 7 supercell as

A%, =7(5)(V3,1) anddP, =7 (%) (v3,-1)

7X7 2 2

with the graphene unit cell lattice parameter 2.46381A' (PBE+TS functional), the corresponding reciprocal-
space lattice vectors are



Bry = 71\/5 (1,v3) andB{?, = % (1,-v3).

. . -l 1= = 1,701 =(2 . . Ly
Using the high symmetry pointé,,,, = 537(><)7 andK ., = 5(37(><)7 - B7(X)7) which lie within the Monkhorst
Pack zone, the k point spacingjg in the bandstructure calculations are:

Bk = = Mz | = 8.369x1CA™ (3 d.p.).
By = 5 |Kaxry = Mizxr)| = 9.664x10°A™ (3 d.p.).

Ak = = |Kioxp| = 7.731x1FA™ (3 d.p.).

Bandstructur es comparison for 6x6 and 7x7 super cells
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Fig. S.8 Bandstructures showing the contact or neaitact made by the & and n* bands at the I" point in 6x6
cells and at the K point in 7x7 cells.



LDA / PBE+TS functional comparison
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Fig. S. 9 The insignificant consequences of having to pick between the LDA an@-FBFfunctionals as
shown by the very similar spectra. One standout feature is the "rt" peak straddling the Fermi energy in the B
ground state case, which is noticeably less intense with the LDA, althougtestilly present.



Slater transition state (half core-hole) calculations with PBE+TS functional
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Fig. S. 10 The comparison of experimental results with half core-holes (Slater transtiite) for the B-doped,
N-doped and pure graphene cases, using a background potamdiahadf extra Kohn Sham state for
neutralisation. These can be compared with the ground-state andr&Hhole calculations shown in Figure 1
in the main text.



EELS The dependence of spectral features on
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Fig. S. 11 Calculated spectra using 4x4 supercells with fractional number of oteg fhom 0.1 to 2.0 in pure
and doped graphene. (i) Boron K-edges, (ii) Carbon K-edgegiigrditrogen K-edges. (iv) Mulliken charges
vs. effective ionic charge of nucleus with fractional core-hole.
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Figure S.12 Aluminium K-edge EEL spectrum compared with published experimentathiradsl X-ray
absorption spectruii.Calculation was carried out using identical calculation parameters (bouUiS van
der Waals correctiof§ to the main calculations. 2x2x 2 supercells were used.



