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Abstract. The perceived spatial frequency of low-frequency sinusoidal gratings is elevated when 
the gratings are temporally modulated sufficiently rapidly. Although this phenomenon is usually 
called 'spatial-frequency doubling', the magnitude of this spatial-frequency elevation depends on the 
spatial and temporal parameters of the grating and may be less than or greater than doubling. 
Adaptation to such a pattern produces contrast-threshold elevation whose spatial-frequency tuning 
is centred upon the grating's real rather than perceived spatial frequency. These results suggest that 
spatial-frequency elevation occurs later in the visual system than adaptation or that these two 
processes are independent of one another, at least under the conditions of these experiments. 

1 Introduction 

Blakemore and Campbell (1969) demonstrated size-selective threshold elevation 

following adaptation to a high-contrast sine-wave grating. This finding led them to 

propose that the underlying mechanisms of the effect were adaptable neurones in the 

visual cortex selective for stimulus size or spatial frequency. 

When Blakemore and Sutton (1969) and Blakemore et al (1970) demonstrated a 

suprathreshold distortion in perceived spatial frequency following adaptation to a 

grating, the possibility arose that these spatial-frequency mechanisms provided a 

direct correlate with the experience of seeing. Furthermore the similarity between 

the properties of these spatial-frequency mechanisms in man and those of single 

neurones in the visual cortex of cat and monkey was striking. Indeed, Blakemore 

et al (1970) state: 

"These findings provide further evidence that the visual system of man, like those 

of the cat and the monkey contains neurons selectively sensitive to the orientation 

and dimensions of retinal images, and that these adaptable cells are actually 

involved in the encoding and perception of the size of simple patterns." 

The suggestion that seeing can be directly correlated with activity in neurones in 

the visual cortex is an important one which we have tried to test by a simple 

experiment. We have utilized the phenomenon of 'spatial-frequency doubling', first 

described by Kelly (1966), who reported that when a sine-wave grating of low spatial 

frequency is flickered sufficiently rapidly its perceived spatial frequency is twice its 

true value. Following adaptation to such a stimulus we have measured the threshold 

elevation produced on a range of test gratings. If the neurones "involved in the 

coding and perception of" size are those most adapted by a 'frequency doubled' 

stimulus then the greatest threshold elevation should occur at the perceived spatial 

frequency of the adaptation grating rather than at its true spatial frequency. 

^Present address and address for reprints: Department of Psychology, University of York, 
York YOl 5DD, England 
§Deceased, 5 January, 1978. 
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2 Methods 

Two experiments were carried out. In both, the stimuli were sinusoidal gratings 

generated on the screen (P31 phosphor) of an oscilloscope by the method devised by 

J G Robson, as described by Campbell and Green (1965). Subjects sat 57 in from 

the screen, which was masked by a rectangular aperture 5 deg wide and 3 deg high. 

The area surrounding the aperture was matched for both colour and brightness to 

the mean luminance of the screen (15 cd m~
2
). All gratings in experiment 1 and the 

adaptation gratings in experiment 2 had a Michelson contrast of 0*40. Subjects were 

instructed to fixate a small circle placed centrally on the screen throughout both 

experiments. Of the three subjects Gail and Jennifer were naive to the purpose of 

the experiment and, though given a good deal of practice in making settings by the 

method of adjustment, had not taken part in any experiment before. Peter, one of 

the authors, is a seasoned observer. All three have normal vision. 

3 Results 

3.1 Experiment 1: the perceived spatial frequency of a counterphase modulated 

grating 

The purpose of the first experiment was to select the spatial and temporal parameters 

of a counterphase modulated grating so that its apparent spatial frequency was 

approximately twice its true spatial frequency. The method of successive matching 

was used. A counterphase modulated grating was presented on the screen for 6 s, 

followed by 6 s of a temporally unmodulated grating whose spatial frequency could 

be varied by the subject. Alternation of these stimuli continued until the subject 

considered that the spatial frequency of the unmodulated grating exactly matched 

that of the counterphase grating. This value was then recorded and a new trial 

initiated. In any one session the rate of temporal modulation of the counterphase 

grating was unchanged but a range of spatial frequencies was investigated, each 

frequency being matched twelve times, in random order. 
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Figure 1. Apparent spatial frequency of sine-wave gratings sinusoidally modulated at 2 Hz and 
20 Hz. The ratio of the apparent to the real spatial frequency is plotted as a function of spatial 
frequency. At 20 Hz low-spatial-frequency gratings have a greatly elevated apparent spatial frequency, 
which for subjects Gail and Peter exceeds doubHng. Vertical bars indicate the mean standard deviation 
for each condition. There were no systematic or large differences in the standard deviations at 
different spatial frequencies. 
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Figure 1 shows the perceived spatial frequency of gratings counterphase modulated 

at 2 Hz and 20 Hz for three subjects. The results are clear. At the low rate of 

counterphase modulation (2 Hz) the perceived spatial frequency of gratings is generally 

veridical although there is a tendency to perceive low-spatial-frequency gratings as 

having an elevated spatial frequency (especially by Gail in figure 1). 

At the high rate of counterphase modulation (20 Hz), as the spatial frequency is 

decreased its perceived spatial frequency is relatively increased. At a spatial frequency 

of 1 - 2 cycles deg"
1
 perceived spatial frequency is approximately twice its veridical value. 

3.2 Experiment 2: contrast threshold elevation following adaptation to a counter-

phase modulated grating 

From the results of experiment 1 it was possible to select a counterphase modulated 

grating of a suitable spatial frequency so that its perceived spatial frequency at a 

2 Hz modulation rate was close to its true frequency and yet it had a perceived 

spatial frequency close to double this value at a 20 Hz modulation rate. 

Experiment 2 investigated the contrast-threshold elevation of a range of temporally 

unmodulated (stationary) gratings following adaptation to such a 'frequency-doubled' 

stimulus. Three adaptation conditions were investigated, 

(i) Adaptation to a grating of low spatial frequency and 20 Hz counterphase 

modulation rate. This condition selected stimulus parameters from the results of 

experiment 1 so that the apparent spatial frequency of the grating was approximately 

twice its true value. 

(ii) Adaptation to a grating of low spatial frequency and 2 Hz counterphase modulation 

rate. The apparent spatial frequency of this grating was approximately equal to its 

true value. 

(iii) Adaptation to a grating of high spatial frequency and 2 Hz counterphase modulation. 

The spatial frequency was chosen to be equal to the apparent spatial frequency of 

the adaptation grating used in condition (i). 

In condition (i) the apparent spatial frequency of the adaptation stimulus was 

approximately twice its true value. If those mechanisms in the visual system which 

determine the appearance of a grating are also those whose sensitivities are reduced by 

adaptation then the maximum threshold elevation after adaptation in this condition 

should occur at the apparent (doubled) spatial frequency and not at the true spatial 

frequency of the adaptation grating. 

Adaptation conditions (ii) and (iii), described above, provide an indication of the 

spatial-frequency tuning of the threshold elevation following adaptation to gratings 

of spatial frequency equal to both the true (ii) and the perceived (iii) spatial frequency 

of the 'frequency doubled' adaptation stimulus in condition (i). 

The spatial frequencies used in this experiment (1-26 and 2-9 cycles deg"
1
) were 

chosen after the collection of pilot data. Ideally the ratio of the perceived spatial 

frequencies of the 'frequency doubled' stimulus (20 Hz, 1 -26 cycles deg"
1
) to the 

slowly flickering high-spatial-frequency grating (2 Hz, 2-9 cycles deg"
1
) should be 

unity. This latter grating is the control grating used in condition (iii) above. Actually 

the ratios used were 1 -09 for Gail, 1 -29 for Jennifer, and 1 -04 for Peter. 

The procedure was identical for each condition. Contrast thresholds were set by 

the method of adjustment both before and immediately after adaptation to a high-

contrast counterphase modulated grating. In the adaptation phase of the experiment 

an initial exposure to the adaptation stimulus of 2 min preceded the threshold 

settings. Following this adaptation 4 s periods in which the subject adjusted the 

contrast of a test grating were alternated with 22 s 'topping-up' periods of adaptation. 

Threshold settings made before adaptation followed the same procedure with a blank 

field of the same mean luminance substituted for the adaptation grating. 
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The results of experiment 2 are shown for the three subjects in figure 2. Regrettably 

condition (iii) was not run on one subject (Peter). The results show that the slow 

flicker (2 Hz) adaptation gratings gave rise to spatial-frequency-specific threshold 

elevation with the peak elevation at the adaptation spatial frequency. The fast 

flicker (20 Hz) adaptation grating also produced threshold elevation which, though 

smaller than that produced by the other adaptation gratings, also appears to have its 

peak at the real spatial frequency of the adaptation pattern (1-3 cycles deg"1) rather 

than at its perceived spatial frequency. 
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Figure 2. Detection-threshold elevation following adaptation to a frequency-doubled stimulus 
(open circles). For comparison the threshold elevation following adaptation to a slowly modulated 
grating of the same spatial frequency (filled circles) and a slowly modulated grating of a higher real 
spatial frequency (triangles) are also shown. Vertical bars indicate the mean standard deviation in 
each condition. Further details are in the text. 

4 Discussion 

Three interesting points can be made from the two experiments described. 

(i) The appearance of objects is not necessarily determined by the activity in those 

neural mechanisms which manifest adaptation of the type described by Blakemore 

and Campbell (1969) and Blakemore et al (1970). 

(ii) The term 'spatial-frequency doubling' is a misnomer. Temporal modulation of a 

low-spatial-frequency pattern leads to 'spatial-frequency elevation' which may be 

increased up to and even extended beyond doubling (see also Virsu et al 1974). 

(iii) This spatial-frequency elevation is mediated by a mechanism which is either more 

central than or independent of the site of adaptation. 

These latter two points provide some information as to the nature of the mechanism 

underlying spatial-frequency elevation. Virsu (Virsu and Nyman 1974; Virsu et al 

1974) has provided strong evidence that two different kinds of spatial effects can be 

produced by flickering gratings. One type, which is manifest only at low temporal 

frequencies and produces modest increases in perceived spatial frequency, is attributed 

by Virsu to the increase in sensitivity to low spatial frequencies brought about by 

temporal modulation (Robson 1966; Nachmias 1967). A similar explanation is 

invoked by Tynan and Sekuler (1974) to explain the perceived spatial-frequency 

elevation of briefly presented gratings. 
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The present experiments cannot address themselves to this mechanism of spatial-

frequency elevation. Our adaptation pattern in experiment 2, a fast flickering 

counterphase grating of low spatial frequency, gives rise to Virsu's second type of 

spatial-frequency elevation, that mediated by temporal summation of nonlinearly 

filtered intensity signals (Kelly 1966). It is this mechanism which our experiments 

suggest must be more central than or independent of the site of adaptation. 

Richards and Felton (1973), in an experiment somewhat similar to that reported 

here, found that disparity-specific adaptation occurs to the real and not to the 

doubled spatial frequency of a temporally modulated grating. Their conclusion that 

frequency doubling either occurs more centrally or is independent of disparity 

processing has been thoroughly examined by Tyler (1974), who has elegantly 

demonstrated that frequency doubling does indeed occur independently of disparity 

detection. This finding suggests that spatial-frequency elevation also occurs 

independently of the site of spatial adaptation. 

Tyler himself proposed a flicker-detection model in which a full-wave rectification 

of the instantaneous input, performed perhaps by the amacrine cells, gives rise to 

frequency doubling. That adaptation to a frequency-doubled stimulus produces peak 

threshold elevation to the real rather than the perceived spatial frequency is explained 

on this model only if it is assumed that there are separate channels for pattern and 

flicker detection, the latter being responsible for the rectification and hence the 

doubling. Evidence for such channels has been provided by, amongst others, 

Tolhurst (1973). 

Indeed, Tolhurst (1975) has proposed a model of frequency doubling based on 

sustained and transient channels. This model is essentially compatible with that of 

Tyler (1974) and may be the most satisfactory to date, but it does involve two very 

considerable assumptions: firstly that the doubled response of the amacrine cells 

(Tyler) or transient channels (Tolhurst) should result in a percept of a grating of 

twice its true spatial frequency and secondly that the relative responses of the two 

types of channel, flicker and pattern, are combined to produce an unambiguous 

percept of a grating of intermediate spatial frequency. 

If these assumptions are accepted, our adaptation stimulus in experiment 2 had an 

elevated perceived spatial frequency because it was detected mainly by the transient 

channels. Therefore it would also adapt the transient channels to a far greater 

extent than the pattern channels. However, our stationary test gratings would be 

detected by the little-adapted pattern channels, hence the relatively little threshold 

elevation found, tuned to the real spatial frequency of the adaptation grating. 

Two predictions can be made if this interpretation of our data is correct. Firstly, 

had we investigated the threshold elevation of flickering gratings following adaptation 

to the spatial-frequency doubled stimulus, the elevation would have peaked at the 

real spatial frequency of the adaptation grating, as both adaptation and test patterns 

would have undergone the same transformation. Secondly and more importantly, 

the amount of threshold elevation found should be far greater than that found in 

experiment 2 as it would now be the most adapted channels which were being tapped 

by the detection thresholds. 
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APPENDIX 

The equivalence between orientation and length changes 

Assume that a line segment in the image plane (the plane perpendicular to the Une of 

sight) rotates by 6°. Let / be the length of the line element in three-dimensional 

space, d be the projected length on the image plane, and a be the angle between the 

Une element and the image plane. The relation between the actual and the projected 

length is d .= ./ cos a. Let 0' be the rotation in space that produced the orientation 

difference of 6 in the image. 

Straightforward trigonometry establishes that a rotation in the image by 9 can be 

produced by a rotation of 6' in space if the following relation holds: 

sin£0' = sin%6 cosa. 

(Comment: in fact, this is the minimal rotation in space that can produce the required 

image rotation, since an additional rotation about the line segment itself will not 

affect its final orientation. I shall use this minimal rotation since I can assume that 

small rotations are more likely than larger ones.) 

A rotation by 6' in space can also give rise to a pure length change (in the image) 

with no change in orientation. This will happen if the rotation axis is perpendicular 

to the Une of sight. The initial length in the image plane was d = I cosa. The final 

length in the image plane, following the rotation, is d' = /cos(a+0') . The length 

ratio d'/d = cos (a 4- 0')/ cos a: is thus independent of the length /. For a given initial 

orientation a, this length ratio and an orientation difference of 6 are expected to be 

equivalent in terms of CS (i.e. a split motion can be expected), since both can be 

induced by the same rotation 6' in space. To obtain a measure of the CS equivalence 

independent of the initial orientation of the line element, one can now average over 

all initial orientations. This can be done by numerical integration, or, for small 

angles, the integration can also be expressed analyticaUy. The resulting expression is 

d[_ 6^_26_ 

d~ 4 7T ' 

This relation gives us a measure of the length ratio d'Id (on the assumption that 

d' < d) that is expected to be equivalent in CS to an orientation difference of 6 

(expressed in radians). The analytic expression is fairly accurate for 6 between 0 and 

30°. For 6 = 30°, a numerical integration (averaging over a every 1°) yields 

d'/d = 0*61, compared with 0-598 obtained from the analytic expression. 

p © 1980 a Pion publication printed in Great Britain 


