

This is a repository copy of *Effects of Dry and Wet Sieving of Soil on Identification and Interpretation of Microbial Community Composition*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/115313/

Version: Supplemental Material

Article:

Blaud, A., Menon, M. orcid.org/0000-0001-5665-7464, van der Zaan, B. et al. (2 more authors) (2016) Effects of Dry and Wet Sieving of Soil on Identification and Interpretation of Microbial Community Composition. Advances in Agronomy, 142. pp. 119-142. ISSN 0065-2113

https://doi.org/10.1016/bs.agron.2016.10.006

Article available under the terms of the CC-BY-NC-ND licence (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

Supplementary information

Effects of dry- and wet-sieving of soil on identification and interpretation of microbial community composition

Aimeric Blaud^{a, 1}*, Manoj Menon,^{a, 2}, Bas van der Zaan^b, Georg J. Lair^{c, d}, Steve Banwart^{a, 3}

^a Department of Civil and Structural Engineering, Kroto Research Institute, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, United Kingdom.

^b Deltares, Subsurface and Groundwater Systems, Princetonlaan 6-8, 3508 Al Utrecht, the Netherlands.

^c University of Natural Resources and Life Sciences (BOKU), Institute of Soil Research, Vienna, Peter-Jordan-Str. 82, 1190 Vienna, Austria.

^d University of Innsbruck, Institute of Ecology, Sternwartestr. 15, 6020 Innsbruck, Austria.

*Corresponding Author.

E-mail address: aimeric.blaud@gmail.com

¹ Current address: Agroecology Department, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.

² Current address: Department of Geography, The University of Sheffield, Sheffield, S10 2TN, UK.

³ Current address: School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK.

Target gene	Primer	Sequence 5'-3'	Annealing temp. (°C) and time (s)	References
Bacterial	519F	GCCAGCAGCCGCGGTAAT		Lane, 1991
16SrRNA	907R	CCGTCAATTCCTTTGAGTTT	58 (30 s)	Stubner and Meuser, 2000
Archaeal	Arch 0025F	CTGGTTGATCCTGCCAG	59 (20)	Vetriani et al., 1999
16SrRNA	Arch 364R	ACGGGGCGCACGAGGCGCGA	58 (30 s)	Vetriani et al., 1999
Fungal	ITS1f	TCCGTAGGTGAACCTGCGG	50 (45 s)	Gardes and Bruns, 1993
ITS	5.8s	CGCTGCGTTCTTCATCG	50 (45 8)	Vilgalys and Hester, 1990
nifH	nifHF	nifHF AAAGGYGGWATCGGYAARTCCACCAC		Rösch and Bothe, 2005
	nifHRb	TGSGCYTTGTCYTCRCGGATBGGCAT	02.5 (00 8)	Rösch and Bothe, 2005
amoA	amoA_F	GGHGACTGGGAYTTCTGG	55 3 (30 s)	Holmes et al., 1995
Bacteria	amoA_R	CCTCKGSAAAGCCTTCTTC	55.5 (50.8)	Okano et al., 2004
amoA	amoAF	STAATGGTCTGGCTTAGACG	55 (35 s)	Francis et al., 2005
Archaea	amoAR	GCGGCCATCCATCTGTATGT	55 (55 8)	Francis et al., 2005
narG	NARG F	TCGCCSATYCCGGCSATGTC	63 (30 s)	López-Gutiérrez et al., 2004
	NARG R	GAGTTGTACCAGTCRGCSGAYTCSG	05 (50 8)	López-Gutiérrez et al., 2004
nirS	NIRS4Q F	GTSAACGYSAAGGARACSGG	63 (30 s)	Braker et al., 1998
	NIRS6Q R	GASTTCGGRTGSGTCTTSAYGAA	05 (50 8)	Braker et al., 1998
nosZ	nosZ1840_F	CGCRACGGCAASAAGGTSMSSGT	67 (30 s)	Henry et al., 2006
	nosZ2090_R	CAKRTGCAKSGCRTGGCAGAA	07 (30 8)	Henry et al., 2006

Table S1. Description of the primers used to target each community and the annealingtemperature of each Q-PCR assays.

fractions and sieving methods	as factors. Signifi	cant P values (P <	0.05) are shown in bold.
Factors	F values	P value	
Sites	0.04	0.84	
Fractions	31.93	9.64 10- ¹⁰	
Sieving	0.07	0.79	
Sites: fractions	5.45	0.004	
Sites: sieving	0.0043	0.95	
Fractions: sieving	26.12	9.83 10 ⁻⁹	
Sites: fractions: sieving	8.65	0.00024	

Table S2. Overview table of the ANOVA of the aggregate distribution with sites, soil

Factors		Bacteria	Fungi	nifH	AOB	AOA	narG	nirS	nosZ
Sites	F value	296.87	65.35	277.08	116.70	6.36	0.69	191.4	147.83
	P values	<2 10-16	6.09 10-10	<2 10-16	1.99 10-13	0.016	0.41	<2 10-16	1.14 10-14
Fractions	F value	3.06	0.55	1.01	0.94	0.88	0.49	1.06	0.73
	P values	0.027	0.70	0.41	0.45	0.49	0.75	0.39	0.57
Sieving	F value	0.996	1.35	3.67	12.66	1.36	3.34	18.28	10.07
	P values	0.324	0.25	0.06	0.00098	0.25	0.07	0.0001	0.003
Sites: fractions	F value	2.49	1.24	0.37	1.29	0.86	2.49	0.43	0.86
	P values	0.059	0.31	0.82	0.29	0.50	0.06	0.78	0.50
Sites: sieving	F value	0.52	1.90	0.38	0.03	0.24	0.07	0.0007	0.50
	P values	0.47	0.17	0.54	0.86	0.62	0.79	0.98	0.48
Fractions: sieving	F value	1.45	0.53	0.16	0.19	0.60	0.062	0.18	0.079
	P values	0.24	0.71	0.96	0.94	0.67	0.99	0.94	0.99
Sites: fractions: sieving	F value	0.41	1.26	1.37	0.87	1.60	0.58	0.56	0.59
	P values	0.80	0.30	0.26	0.49	0.19	0.68	0.69	0.67

Table S3. Overview table of the ANOVA of the relative abundance of microbial genes, with sites, soil fractions and sieving methods as factors.

Significant P values (P < 0.05) are shown in bold.

Factors		nifH/16S rRNA	AOB/ 16S rRNA	narG/16S rRNA	nirS/16S rRNA	nosZ/16S rRNA
Sites	F value	33.47	1391.1	34.31	2.56	0.01
	P values	9.50 10-7	<2.2 10-16	7.49 10-7	0.12	0.91
Fractions	F value	8.13	6.92	0.85	11.56	8.57
	P values	6.80 10-5	0.00025	0.5	2.48 10-6	4.94 10-5
Sieving	F value	4.44	19.63	0.14	47.6	26.84
	P values	0.041	7.13 10-5	0.71	2.58 10-8	7.54 10-6
Sites: fractions	F value	2.33	4.86	1.61	2.59	8.36
	P values	0.07	0.0027	0.19	0.051	6.12 10-5
Sites: sieving	F value	4.95	0.32	2.8	1.026	0.27
	P values	0.03	0.58	0.1	0.32	0.61
Fractions: sieving	F value	3.06	3.2	0.44	5.17	3.88
	P values	0.027	0.02	0.78	0.0019	0.01
Sites: fractions: sieving	F value	3.71	1.4	0.15	2.51	3.64
	P values	0.01	0.24	0.96	0.57	0.01

Table S4. Overview table of the ANOVA of the microbial gene express as percentage of the bacterial 16S rRNA gene copies, with sites, soilfractions and sieving methods as factors. Significant P values (P < 0.05) are shown in bold.

Factors	Sites	Fractions	Sieving	Sites: fractions	Sites: sieving	Fractions: sieving	Sites:fractions:sieving
Acidobacteria		*	***	**	*		***
Actinobacteria		***	***	*	**		**
Armatimonadetes			***		*		***
Bacteriodetes		*	***				*
Chlorobi		*					
Chloroflexi	*	***	***	*			
Cyanobacteria			***		**		*
Firmicutes		*	***				***
Gemmatimonadetes			***				*
Nitrospirae	***	***		**			
Planctomycetes	***	**					
Proteobacteria	***	***					
Verrucomicrobia			***				**
WS3				*			

Table S5: Overview table of the ANOVA of the relative abundance of bacterial phylum, with sites, soil fractions and sieving methods as factors.

Significant P values (P < 0.05) are shown: * P < 0.05; ** P < 0.01; *** P < 0.001.

Fig. S1. Variation in microbial gene abundance of water from wet sieving method. All abundances are expressed on the basis of 1 g of dry mass of soil fractionated. Means values \pm standard error (n = 3) are shown. * indicate significant (P < 0.05) difference between cropland and grassland for a specific gene. AOB: amoA bacteria. AOA: amoA archaea.

Fig. S2 PCoA of archaeal community of four soil fractions obtained by dry- or wet-sieving method and bulk soil from cropland and grassland. The PCoA was based on relative abundance of OTU and generated using Bray-Curtis distance. The samples isolated from the rest of the samples correspond to water from the wet-sieving.

Fig. S3 PCoA of archaeal community of four soil fractions obtained by dry- or wet-sieving method and bulk soil from cropland (top) and grassland (bottom). The PCoA were based on relative abundance of OTU and generated using Bray-Curtis distance.