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Abstract

We study for the first time the inverse backward problem fer $trongly damped wave equation. First, we show that
the problem is severely ill-posed in the sense of Hadamahe:nTunder the priori assumption on the exact solution
belonging to a Gevrey space, we propose the Fourier triorcatethod for stabilising the ill-posed problem. A stailit
estimate of logarithmic type is established.
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1. Introduction

The strongly damped wave equation (SDWE), see (1.1) belogyrs in a wide range of applications modelling the
motion of viscoelastic materials [3, 7, 9, 10]. From both theoretical and numerical point of view, the initial value
problem for this equation has been extensively studied, (&.g5, 11]). However, to the best of our knowledge, the final
value (backward) problem has not been solved yet (thoughwibrth mentioning that in [6], Lattes and Lions introduced
the problem (1.1)-(1.2) but they did not regularize it). @uajor objective is to provide a regularization method for
solving the ill-posed nonlinear problem (1.1)-(1.2).

Let T be a positive number ard be an open, bounded and connected domaR"im > 1 with a smooth boundary
0Q. We are interested in the following inverse backward probl&ind the initial datau(x, 0) for x € Q, whereu(x, t)
satisfies the following semilinear SDWE:

Ut — AU — Au = F(X t,u(x, 1)), (Xt)eQx(0,T), (1.1

subject to the conditions
u=0, (xt)edQx(0,T),
ux,T)=g(x, (xt)eQx(0,T), (1.2)
u(xT)=h(x), (xt)eQx(0,T),

wherea > 0 is a given damping constam(x) andh(x) are given functions, and the source functlmvill be defined
later. Here, the operatafl : D(A) c L%(Q) — L(Q) is a linear, positive-definite, self-adjoint operatoriwitompact
inverse inL%(Q). For instanceA = %7, a%(lii(x)a%j)v x € Q is a linear second-order elliptic operator with smooth
coeﬁcients{lij}szl being symmetric and uniformly positive definit&.hen, the Dirichlet eigenvalued|jey- of —A
satisfy, see Chapter 6.5in [2],041 < 1 < A3 < ... < A5 < ... and limj_e Aj = co.

In practice, the datag(h) is obtained by measurement contaminated with noise. Hémgtead of ¢, h), we have the
observation datay(, h) € L2(Q) x L?(Q) satisfying

I9° = dlliz@) + IIN° = hlliz) < €, (1.3)

where the constart> 0 represents a bound on the measurement error. We will shaivthil inverse backward problem
(1.1)-(1.2) is ill-posed in the sense of Hadamard in Sec®ioin order to stabilise the solution, in Section 3 we develop
a regularization method based on the truncated Fourieradéitr which a stability estimate of logarithmic type is
established.
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2. lll-posedness of theinverse problem (1.1)}(1.2)

Assume that the problem (1.1)-(1.2) has a unique solutidindrseries form
uet) = > ui()(x), (2.4)
j=1
whereg; denotes the eigenfunction corresponding to the eigenviglaad

{“'j'(t) +adui(t) + 4u(t) = Fi(u)(®), te(0,T), 25

ui(T) =gj, uj(T) =hy,

whereF;(u)(t) = [, F(x t.u(x. t))¢;(x)dx gj = [, g(¥)¢j(x)dxandh; = [ h(X)¢;(x)dx
For given fixed damping > 0, consider the decomposition

N* :(Dlz{j e N4 > iz})u(mzz{j eN|A; = iz})u(m:{j e N|A; < iz})
(04 a a

Then, the solution of (2.5) is given by:
(i) if j € Dy then

/l}re(Tft)ﬂj‘ _ /lj—e(Tft)ﬂj* T-04) _ oT-07; T (04 _ o(s-04)

L hi + S
w0 T TR

uj(t) = Fi(u)(s)ds (2.6)
(i) if j € D, then
2 2 2 T 2
uj(t) = (™ [1— =(T- t)] gj - e« TT - t)h; + f (s— t)erSIF;(u)(9)ds
07 t

(iii) if j € Ds then

uj(t) =

mlj
2e7 (T-1) \/——A] \/——A] adj . \/——A]
-y [ 5 cos 5 (T-1) +75|n 5 (T-9{]9
2670 (\/—A,— T 2670 (\/_Aj
- sin sin
[-A; 2 t J-Aj 2

(T- t)] hj + (s—- t)] Fj(u)(s)ds

where

+ _
/lj—

. Aj=aP28 -4 (2.7)

adj + ‘[0’2/112—4/“ adj - ‘[02/112—4/“
A =
2 T 2
Hence, the solution (2.4) can be represented as

ueet) = " Ui+ > uig; + > uide;.

jeDy i€, j€Ds

From above observations, we can show that the tgrm, uj(t)¢; + X jen, Uj(t)¢; containing sin and cos trigonomet-
ric functions is bounded and stable, and no regularizasoneied it for it. We only need to regularize the first term
>jen, Uj(t)¢; which contains the exponential terms in (2.6). Alterndjiveve can takeD; = D, = 0 by assuming that
a?a1 > 4, as will adopted in the remanding of the paper. Note thatalso implies»*A5 — 44; > 0 for all j € N*, and
hence the roots in (2.7) are real and distinct.

From now on, we denote by, -) and|| - || the inner product and norm I?(Q), respectively. Fop € L?(Q), defining

o /lq_.et/l.‘ _/l__et/lf' IRV R ¥ 3
Sty = Z % (¢.05)9;, PO¢= Z % (¢.01) i, (2.8)
J J J

=1 =1 j

we can recast (2.4) in the form
u(x,t) = S(T = )g(x) + P(T — t)h(x) — f ! P(s—-t)F(u(s))ds (2.9)
t
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Next, we give an example which shows that the solutigfx, t) (for anym € N*) of problem (1.1)-(1.2) (if it exists)
is not stable. Letr , andvr m andFq be defined as follows:

e—(tT/l i

LGN Fo(W)=i o (W D). 47) ). Ywe LA(Q). (2.10)
=1

m

Un(X, T) =Urm(X) =0, dtUm(XT) = vrm(X) =
Let uy, satisfy the integral equation
Un(X,t) = P(T = )V m — jt‘ ! P(s-t)Fo(un(s))ds (2.11)
First, we show that (2.11) has a unique solutigne C([0, T]; L%(Q)). Indeed, we consider the function
HW)(t) = P(T = t)vrm(X) — j; ! P(s—t)Fo(W(s))ds (2.12)
Then, for anys, v, € C([0, T]; L%(Q)), we have

)
OO - HOAO! < [ P61 (Fota() - Fova(9)) s

T | & S0 _ (5072
= jt‘ JZ [i] <F0(V1(S)) - FO(VZ(S))»¢1>2dS
j=1

—
Ap =4

1 fT i [e(st)/lj _ e(s—t)/lj+
= — T —
2 \G1 4 -4

Using the the inequalite™? — e < |a— bl for a, b > 0, we have

2 a-20T
T4

(va(9) - va(9). ) s (2.13)

(D47 _ (s 12 o-2aT . -2
e i —e i e J 1oy oS0 (s —2aTA; ~2aTAj
_ 2(s-H)(7+47) - af i 1
[ /l}r—/lj’ ] T4 = J+J|:e AJ,-*—Z’ ‘] eT4J S(S—t)2e2 (&t)AJeTAJ <. (2.14)
From (2.13) and (2.14) we deduce that
171 1
[IH (va)(t) = H (v2) (D)1l < > ?llVl(S) —V2(9)llds< §||V1 ~Valleqo, 2@y, Yt €[0,T]. (2.15)
t
This implies that
1
1H (v1) = H(V2)llcqo, 2@ < §||V1 = Valleqo, L2 () - (2.16)

Hence,H is a contraction. Using the Banach fixed-point theorem, weckmle thatH(w) = w has a unique solution
um € C([0, T]; LA(Q)).
It is easy to see that (here, noting tika(0) = 0)

)
1
[ f P(s— )Fo(Un($)dg| = IH(Um)(®) = HOYON < 5llumllogo i) (2.17)
t
Hence,
T 1
lum(®) > |P(T = vr - | f P(s - OFo(un(9dg| = [P(T - v - Slumloomiizey.  (2.18)
t
This leads to
2
lUmllcqo,m;L2(0) = 3 Sup ||7D(T - t)VT,m“- (2.19)
O<t<T

We continue to estimate the right hand side of this inequalie have

2T, (1 _e (T \/QZA%—4Am)2 2(T-01, (1 _e (™ \/M)Z

— >
Am A (A — A7) Am (@?A%, = 42m)

[e(T—t)/l‘ _ e(T—t)/l,“;r 1

HP(T - t)VT'”‘HZ - A= Ay
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Since the functiom(t) = e -9m (1 —e (™0 V"Zﬂi““l) is a decreasing function, we deduce that

e(T—t)/l;‘ (1 _ e—(T—t) \/(yle%—4/11) (1 \/(yle 4/11) e(yT/lm/Z (1 V(rz/i 4/11)
|P(T —tvr, m“ > sup = 2 .

OeteT A (0222, — 427) Am (@23~ 4m)  VAm(@223 - 4dm)

(2.20)

sup
0<t<T

Combining (2.19) and (2.20) yields
5 e Tm/2 (1 _ e—T \/(tlei—ll/ll)

lUmllco,m;L2@) = 3

(2.21)
Am (@222, = 41,

Asm — +oo, we see that

1
lim (Ju + ||V = lim — =0,
Jm_ Gl + Ivrl) = fim | ——
5 e(rT/im/Z (1 _ e—T V(ylei—4/11)

Aim lumlleo iz = lim 5 = +o0. (2.22)
mIIC([0,T];L2(Q)) M—+00 3 /lm(a'z/l?n_4/lm)

This shows that problem (1.1)-(1.2) is ill-posed in the semisHadamard in the?-norm.

3. Fourier’struncation method
For ¢ € L?(Q), let us define the truncated version of (2.8) as
Nt — el Nt _ iy
— J J N
Sn(t)e = g T (e Pu0es g Tx - (e.03) 6. (3.23)

Let us define the regularized solution by Fourier’s truraratnethod as follows:

uMe(x, 1) = Sn(T = )ge(X) + Pn(T — Hhe(X) — f ! Pu(s—)FUN)(x, s)ds (3.24)
t

whereN is a parameter regularization to be prescribed.

Lemma 3.1. The following estimates hold:

202 + 8T2
SNl gz < 4/ a—e““” IPN Ol 2@y < TEM™,  Vte[0,T]. (3.25)

Proof. Lety € L?(Q). From (3.23) we have

N

ISN@l? = )"

=1

- +
e -4 et

Aret 2 2
i i (A +47) .
+ - ¢’¢ e2t |: - :| ¢’¢ N (326)
=4 ] ! Z AF -4 < J>

Using the inequalityd + b)? < 2a® + 2b? for a, b € R and the inequalitye™® — €| < |a— b| for a,b > 0, we obtain

et - aetip? . e _ et )
[—’ : =|e" + ] ———— | <2 + 217t

- - )
2
2tA; 2, 872
<2+ j L +28T . (3.27)
adj+ Ja22 - 4] @
It follows from (3.26) and (3.27) that
20 + 8T . 2 222 +8T2 O 2 22+ 8T2
2 (/1 +/i ) atd . atdy 2
ISN Dl < —— Zez Hedi) < =——— ) @ (p.0)) s =gl (3.28)

=1

This completes the proof of the first part of (3.25). Alsongge 2 — e | < |a— b| for a, b > 0, we obtain

N e _ 12 , N . i_@ 2 2 N +y 9 2
PN ()¢l = Z [— <‘P»¢j> = ZeZI(A M )[ﬁ <‘P»¢j> < TZZ AU +47) <‘P»¢j> ) (3.29)
i T

B by
j=1 /11 /lJ j=1 j=1

which completes the proof of the second part of (3.25). O
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At this stagejn order to obtain the convergence rate (3.31) given in tieviing theorem we introduce the abstract
Gevrey class of functions of ordgr> 0 and indexr > 0, e.qg, [1], defined by

Gy = {v cL?(Q): i A2 Kv,qﬁj(x)}'z < oo},
j=1

which is a Hilbert space equipped with the inner product

Wi V), 1= <(—A)7e” VA, (—A)Ve(’ﬁv2>, Wi V2 € G,

2
and the corresponding norfull;, = \/ZTl /lfye&”i |<v,¢j(x)>‘ < 0.
We also assume thé&tis globally Lipschitz, i.e. there exists a consté&nt 0 such that

IF(x.t,u) — F( V) < Kllu=v], YuvelL*Q), V(xt)eQx(0,T). (3.30)

Theorem 3.1. The nonlinear integral equatio(8.24) has a unique solutionf € C([0, T]; L3(Q2)). Assuming further
thatue L*(0, T; G, 1) for somey > 0O, then we have the following estimate:

202 + 8T2

> vt e [0, TJ. (3.31)

yaT) |

[UN<(, 1) — u(, b < et ekT [(

T —
+T|e™We + 4] Ul
(04

Remark 3.1. If we choose N= N(e) such thatly < % In (%) for somes € (0, 1), then the errofju™<(-, t) — u(-, t)|| is of
logarithmic order[ In(%)]_y. Also, if F(x,t,u) = F(x,t) does not depend on u then we do not need to employ the Gevrey

space but only require that @ L*(0, T; L%(Q2)). To remove the assumption on u belonging ®{Q. T; G, 1), we can
employ a new regularization method described in [8] for theu€hy problem for semilinear elliptic equations, but its
extension to the present damped semilinear wave equtidjis deferred to a future work.

Proof. Part 1. The existence and uniqueness solution of the nonlineagraitequation (3.24).
Forw € C([0, T]; L%(©))), we define

T
GW)(X, 1) = Sn(T = 1)g(X) + Pn(T — t)he(x) — I Pn(s—t)F(w(x, 9))ds (3.32)
We shall prove by induction that

(KTeTn (T —1)"

<
C(0,TL;L2(Q) — m!

lg™wa) - g™(we)| Iws — Wolloqoyizy, VWi Wo € C(IO,TT LA(Q).  (3.33)

Form =1, we have
.
16(m) - 6wl = | [ Puts =) (Fiws(9) - Fle(s) o
T
< ft TN IF(wy(9) - Fwa(9)llds< KT e (T = t)llwy — Wallego.my:2())- (3.34)
Assume that (3.33) holds fon = p. We show that (3.33) holds fen= p + 1. Indeed, we have
T
167 (wa) - GP*H(we) = | f Pr(s -1 (FGP(wi)(9) - F(G°wa)(9) ds|

T T
< f T F(GPwa)(9) - F(GPwa)(9)||ds < KTe™™ f I6Pwa(9)) - GP(wa(9)lds

T (kTeTN(T - 9) (KT - 1)
< KT ™ jt‘ o W1 = Wallego. ;L2 @) dS < 1) W1 = Wolleqomg @) (3-35)
(KTZelT/lN)m

Therefore, by the induction principle, we have that (3.383k. Since ling, ;o = = O there exists a positive inte-
germg such thagg™ is a contraction. It follows that the equatigii*w = w has a unique solution™¢ € C([0, T]; L%()).
We claim thatg(uN<) = uM<. Indeed, sincgg™ (uN€) = uN<, we know thaiz (ng(uN’f)) = G(uN€). This is equivalent to

Gg" (Q(UN*E)) = g(uN€). HenceG(uN9) is a fixed point ofg™. Moreover, as noted above< is a fixed point olg™.
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Part 2. Denote .
UN(X, t) = Sn(T = H)g(x) + Pn(T — H)h(x) — f Pn(s-t)FUN(x, 9)ds (3.36)
t

Step 1. Firstly, we estimatgu™<(-,t) — UN(-,1)||. Using Lemma 3.1, we have

U0 = UNC O < [[Su(T = 0(g - o)+ [Pu(T - (- 1) + | f " Puts- O(FWC.9) - FUMC.9))d]

[242 2 T
< M@(T—MN “g _ g€“ + TéY(Tfl)/lN ”h _ he” +T f eoz(&t)/lN
@ t

It follows from (1.3) and (3.30) that

202 T2 T
UM ) - UNG Bl < [V e ”]eﬂﬁ_%” €T [ et - U gids (2.38)

Multiplying both sides by and applying Gronwall’'s inequality, we derive that

2 2
eatAN”uN,e(.,t) - UN(-,t)H < [\/@ + T] TN K(T-HT
04
202 + 872
”uN'E("t) - UN(',t)|| < eKT(T_t) ( % + T] ea(T—t)/lN €. (339)
(04

Step 2. Secondly, we estimatgi(-, t) — UN(., t)||. First, it is easy to see that

F(UN’S(', 9) - F(UN(., s))“d 5(3.37)

Hence,

N T
D Ui (9 = Sn(T = )g(3) + Pn(T - Hh(x) - f Pr(s— F(U(x 9)ds
j=1

Using Lemma 3.1, we obtain

)~ UV 00 < a0 - 3 00,0 | 3 050 - UM
j=1 j=1

© T
< | D) e e une + f Pr(s- |[FuC, 9) - FUNG, 9)|ds

j=N+1
T
< A€M Ullie 16,0 + KT f g 0y(., ) — UN(, 9)llds (3.40)
t
Multiplying both sides by and applying Gronwall’s inequality, we derive that
UG 1) = UNG I < €TT Ul i, Ay €. (3.41)
Combining (3.39) and (3.41) we deduce (3.31). O
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