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This paper presents a comprehensive experimental study of impact damage 

detection for carbon fibre-reinforced polymer (CFRP) composites using an 

electromagnetic (EM) sensor with coupled spiral inductors (CSI). Two 

representative types of damage are detected and evaluated, i.e., barely visible 

impact damage (BVID) and delamination. A multi-frequency inspection is 

performed, where the resultant images indicate the potential of the CSI sensor in 

the characterisation of damage extent. The accuracy and efficiency of the CSI 

sensor are compared with the open-ended waveguide imaging, near-field 

microwave microscopy, microwave time-domain reflectometry, the 

complementary split-ring resonator and ultrasonic scanning. Applications and 

limitations of these non-destructive testing (NDT) methods for identifying impact 

damage are discussed. There is a free edge effect on the electromagnetic signal, 

which is illustrated for the first time with the proposed EM technique. Detection 

of the air gap produced by inserting a thin piece into a machined subsurface 

groove is carried out. It is found that the developed CSI sensor is able to 

accurately resolve the location and extent of the air gap. The experimental 

results demonstrate that the sensor could offer an alternative relatively low cost 

method that can be fully automated for structural monitoring of aircraft and 

other composite structures. 

 

Keywords: impact damage, carbon fibre-reinforced polymer (CFRP), non-destructive 

testing (NDT), electromagnetic sensor, coupled spiral inductors 

 



1. INTRODUCTION 

Carbon fibre-reinforced polymer (CFRP) composites are increasingly used in 

aerospace, marine and automotive industries, due to their superior stiffness and strength 

characteristics, good fatigue and corrosion resistance and a high strength-to-weight ratio 

that enables fuel savings [1]. However, the performance of aircraft composite structures 

can be affected by impact damage, caused by objects and events such as hail stones, 

runway debris, collision with ground equipment, tool drops and bird strikes. The types 

of composite damage induced by impact include surface dents, delamination (ply 

separation or debonding), matrix cracking and fibre breakage. In some low-energy 

impact cases, damage is hardly visible on the surface, but more severe damage may still 

exist underneath. Multiple delaminations could develop through the thickness, and the 

delamination area is significantly increased in comparison to the surface dent [2]. 

For this reason, different kinds of non-destructive testing (NDT) techniques have 

been adopted, such as, ultrasonic testing [3, 4], Eddy current technique [5–7], 

thermography [8], X-ray tomography, optical fibre sensing [9], digital image correlation 

(DIC) [10], Lamb waves [11] and microwave techniques (e.g., microwave imaging with 

an open-ended waveguide [12] and near-field microwave microscopy [13]). NDT 

methods play an important role in the maintenance of structural integrity by enabling 

timely detection before critical damage occurs. However, at present, no single method 

exists that can detect all types of defect and damage in all material systems, each 

method has its own specific advantages and limitations. 

Recently, a new kind of electromagnetic (EM) sensor with coupled spiral inductors 

(CSI) for CFRP composites [14–16] has been proposed. This sensor has several 

advantages, such as its low power consumption, low cost, potential for high speed 



scanning, non-contact, one-sided scanning capability and no need for piezoelectric 

transducers (e.g., Lamb waves) or couplants (e.g., ultrasonic testing). It operates over a 

frequency range where the penetration depth is comparable with the sample thickness. 

The ability to detect an air gap and cracks intentionally produced in a four-layer CFRP 

plate was reported [14]. Furthermore, the authors optimised the CSI sensor for better 

impedance matching [17] and extended the applications to the detection of subsurface 

grooves [18], delamination caused by three-point bending [17] and impact damage [19]. 

From the detection of subsurface grooves with varied depths and sizes, the pattern of the 

sensitivity curve was revealed and a linear relationship between the signal response and 

the location of the defect was established. In addition, an empirical engineering design 

tool was proposed to relate the setup to its detection performance. In previous work 

[19], the detection of impact damage using the CSI sensor was limited to either a 

specific frequency or post-processing of the images produced by the raw data.  

In this paper, the potential of the optimised CSI sensor for impact damage 

detection is thoroughly explored. Firstly, the mechanism and experimental setup are 

introduced. Two types of damage are discussed, i.e., barely visible impact damage 

(BVID) and delamination. The detection of the BVID in a plate, an I-shaped beam and 

samples with varied impact energy levels is carried out. A comparison of the CSI sensor 

performance with open-ended waveguide imaging, near-field microwave microscopy, 

microwave time-domain reflectometry (TDR), complementary split-ring resonator 

(CSRR) and ultrasonic testing is conducted. The effect of the orientation of the sensor 

on the detection performance and the air gap (one of the characteristics of the 

delamination) created by a filled subsurface groove are examined, and the effect of the 

air gap size on the signal response is further analysed. 



2. THE EM CSI SENSOR 

2.1 Damage Detection Principle 

As shown in Fig.1, two square spiral inductors are fabricated on the lower side of a 

printed circuit board (PCB). By using vias (electrical connections), each inductor is 

connected to a coplanar transmission line on the upper side to make a two-port sensing 

device. A sizable defect (e.g., dent, crack or delamination) in the conductive material 

under test will affect the electromagnetic coupling between the two coils, which can be 

characterised by the scattering transmission coefficient (S21) [20]. S21 is selected rather 

than other S-parameters because a higher signal-to-noise ratio (SNR) can be achieved. 

The CSI sensing is similar to Eddy current testing, as both methods are based on the 

Faraday’s principle of electromagnetic induction. However, there are some differences 

between the two methods, which are listed in Table 1. 

 
 

(a) Top side (b) Bottom side 

 

 

(c) Grounded coplanar transmission line (d) Perspective view 

FIGURE 1. Schematic diagram of the CSI sensor 



Table 1. Main differences between the CSI sensing and Eddy current testing 

 CSI sensing Eddy current testing 

Sensor Planar coils on a PCB  Three-dimensional coils 

Damage indicator S21  Impedance of the coils 

Frequency range 1-500 MHz Up to 10 MHz 

Measuring instrument Vector network analyser  Impedance analyser 

Direction of the magnetic field 

with respect to the surface  
Tangential [14] Orthogonal 

 

For the original design of the CSI sensor [14], the characteristic impedance of the 

coplanar transmission line is around 80 Ω, which implies that around 5% energy is 

reflected during the signal transfer from the SMA connector (normally 50 Ω) to the 

coplanar waveguide (CPW) transmission line. Here, for the optimised sensor the central 

track of the CPW line on the upper side shown in Fig.1 (c) is increased to 1.0 mm [17] 

resulting in reducing the reflected energy to 0.05 %. Detailed parameters of the sensor 

and corresponding values are presented in Fig.1 (a-c) and Table.2, respectively. 

2.2 Experimental Setup  

The EM sensor is mounted on an X-Y-Z scanning stage and connected to an 

HP8753B vector network analyser (VNA) by two coaxial cables for S21 measurement. 

As schematically illustrated in Fig.2, a personal computer (PC) is connected to the 

PIC18C452 Microchip® microcontroller for the logic control of the stepper motors, 

which have a high positioning accuracy of 1 µm. A VEE software® programme is 

applied for the implementation of precise and reproducible movements. In addition, the 

analyser is connected to the PC by an IEEE-488 cable for data acquisition. 



TABLE 2. Dimensions of the optimised electromagnetic sensor 

Length of the sensor  

(mm) 
38.40 

Inner dimension of each inductor 

(D, mm) 
2.00 

Width of the sensor  

(w1, mm) 
7.80 Number of turns 5 

Spacing between the tracks on top 

(g1, mm) 

0.20 

Width of the central track 

(w2, mm) 
1.00 

Spacing between two inductors 

(g2, mm) 

Thickness of the substrate  

(t, mm) 
1.50 

Spacing between each turn 

(g3, mm) 

Characteristic impedance  

(Ω) 
52.36 

 

 

FIGURE 2. Schematic diagram of the experimental setup using the CSI sensor 

 



3. BVID DETECTION  

3.1 Impact Damage in a Plate 

3.1.1. 2D scanning  

In this test, the dent on the top surface of a 4 mm thick CFRP [+45/90/-45/0]4s 

quasi-isotropic composite laminate was created by a drop-weight impact energy of 20 J. 

The diameter and depth of the dent observed by an optical microscope were roughly 

3.85 mm and 443 µm, respectively. This dent could not be easily found during general 

visual inspection using typical lighting conditions from a distance of 1.50 m. This kind 

of damage is categorised as BVID. A non-contact 2D scan was performed with a step 

size of 403 µm and a standoff distance of 100 µm. The median filtering and mean 

filtering were applied in the image post-processing for noise reduction and edge 

enhancement. The magnitude of S21 (i.e., |S21|) in decibels (dB) is shown in Fig. 3 (a), 

where the bright area showing higher values (less negative) indicates the location and 

extent of the dent due to impact at a chosen frequency of 300 MHz. In addition, by 

subtracting the minimum magnitude value (undamaged position) at each pixel, the 

magnitude variation Δ|S21| across the scanned area is presented in Fig.3(b). 

  

(a) Magnitude plot (b) Magnitude variation 

FIGURE 3. The distribution of |S21| at a frequency of 300 MHz 



3.1.2. Multi-frequency inspection  

Multi-frequency inspection is a common practice when using electromangetic 

NDT techniques [6], as the penetration of the radio frequency signal is strongly 

associated with the frequency. Theoretically, for the contact case, the penetration depth 

dp in conductive materials can be estimated by [20]: 

1
pd

f 
                                                         (1) 

where f is the operating frequency. µ  is the magnetic permeability of the material, and σ 

is the electrical conductivity of the sample. In the present case, µ  is the permeability of 

free space µ0 (i.e., 4π×10-7 H·m-1), as CFRP is nonmagnetic. The penetration depth will 

significantly decrease when a higher inspection frequency is adopted. It should be noted 

that the standoff distance used will affect the penetration depth, as the CSI sensing is a 

kind of near-field detection technique. The sensitivity to the defects would decrease 

with increasing standoff distance, and the signal response asymptotes to the free space 

condition [18]. 

The effective conductivity of the quasi-isotropic sample was measured using the 

two-probe method [21]. By substituting the conductivity 2.29 kS/m into Eq. (1), the 

variation of the penetration depth with respect to the frequency is illustrated in Fig.4, 

where the horizontal axis is in logarithmic scale for better presentation. The images of 

Δ|S21| at four other frequencies are presented in Fig. 5, where the scale of the colour 

map is the same as that in Fig 3 (b). The apparent size of the impacted region is 

increased at a lower frequency, which suggests that the internal damage within the 

penetration depth can be gradually revealed by selecting an appropriate range of 

frequency (10-500 MHz). Accurate determination of the depth of the delamination can 



be done by well-prepared calibration, such as detection of some purposely produced 

defects with regular shapes [18]. 

 

FIGURE 4. Variation of the penetration depth over 0.1 MHz-1 GHz 

  

(a) 500 MHz (b) 100 MHz 

  

(c) 50 MHz (d) 10 MHz 

FIGURE 5. Bright areas indicating the regions of interest at four inspection frequencies 



3.1.3. Comparison with other NDT methods 

In this section, the sensing performances of the microwave imaging with an open-

ended waveguide, near-field microwave microscopy, microwave TDR, a CSRR sensor 

and ultrasonic testing techniques are compared. The setup and results of each method 

are described in the following paragraphs: 

a) Microwave imaging with an open-ended waveguide: a K -band rectangular 

waveguide adapter with inner dimensions of 10.70 mm × 4.30 mm was used. A 2D scan 

was conducted with a step size of 530 µm, a standoff distance of 10 mm and a scanned 

area of 31.75 mm × 20.64 mm. As a single-port measurement shown in Fig.6 (a), only 

the reflection coefficient S11 at each point was recorded. Fig. 6 (b) illustrates the 

distribution of the magnitude at 18.5 GHz. The dent can still be identified, while the 

shape of the dent is slightly oval. The image distortion is mainly due to the intrinsic 

limited resolution of this technique that is dependent on the waveguide dimensions and 

standoff distance [22]. 

b) Near-field microwave microscopy: a near-field microwave profiler developed 

at the University of Manchester [23] was utilised. As schematically illustrated in Fig. 

6(c), the profiler is made up of a microwave closed resonant cavity coupled to a tapered 

probing tip. When the probe is kept at a fixed standoff distance, defects or a 

conductivity discontinuity on the surface of the sample can affect the resonance 

frequency of the cavity. In the test, the resonance frequency at each measurement 

position was retrieved from a Marconi 6200A scalar network analyser. A 2D scan was 

performed on the sample with a standoff distance of 100 µm and a step size of 280 µm. 

The standoff distance was set as small as possible, as only evanescent waves propagate 

from the tip. In Fig. 6 (d), the area of the dent is clearly defined. In addition, the 



symmetric and circular damage shape shows better image quality than the microwave 

imaging performed with an open-ended waveguide. However, the scanning process of 

this method is time-consuming. It took approximately 26 minutes to scan an area of 

121.64 mm2 in the present test. 

c) Microwave TDR: the methodology of the TDR is based on the fundamental 

transmission line theory. Any discontinuity in the characteristic impedance along the 

transmission line caused by the surface defects can be captured from a reflected signal 

in the time domain [24]. Simpler than the CSI sensor, a CPW transmission line with a 

length of 90.00 mm was developed [19]. This sensor was placed above the sample with 

the ground plane uppermost as illustrated in Fig.6 (e). Here, S11 (in the frequency 

domain) was acquired by an HP 3720D vector network analyser. The frequency range 

1-18 GHz was utilised with 401 sampling points. Then the data were converted into the 

time domain by Inverse Fast Fourier Transform (IFFT).  

The undamaged and damaged positions were measured with a standoff distance of 

100 µm. Signal difference between the two cases in the time domain is given in Fig.6 

(f), where the peak of the signal indicates the location of the damage and the horizontal 

axis is along the length direction. However, the resolution of the image provided is 

relatively low and unable to reveal the shape and extent of the damage. But it could be 

improved by optimal design of the sensor configuration; hence, further work is needed 

especially to optimise the line impedance for a good match in-situ.  

d) CSRR sensor: The CSRR sensor commonly used for crack detection in 

metallic surfaces and permittivity measurement [25] is introduced here. As one of the 

microwave resonance methods, the resonance frequency of the circuit is the indicator of 

damage. Similar to the CSI and TDR sensors, PCB fabrication was applied as well. The 



geometry of the developed CSRR sensor is given in Fig.6(g), and a microstrip line with 

a width of 2.8 mm was made on the top of the FR4 substrate. The scan was performed 

above the sample with a standoff distance of 100 µm. First, the location without impact 

damage underneath was measured as a reference; then, the region of interest was tested 

for comparison. The frequency spectrum obtained is illustrated in Fig.6(h). The 

resonance frequency is increased due to the existence of the damage. A 2D scan can be 

employed to obtain the location of the damage. 

e) Ultrasonic testing: The ultrasonic test was performed with an Olympus 

OmniScan MX-2®, equipped with a 64-element sensor (transmitter/receiver). The 

sensor is associated with an encoder that determines its position and enables spatial 

mapping across the specimen surface [26]. Water was used as the transmission medium 

in the test. B-scan and C-scan images based on the intensity of the reflected ultrasonic 

signals are generated. As shown in Fig. 6 (i) and (j), the B-scan reveals the damage 

distribution through the specimen thickness, while the C-scan is a surface contour plot 

with all the delaminations stacked together in the top view, which indicates the number 

and extent of delaminations.  

 

 

(a) Setup of microwave imaging 

with an open-ended waveguide  

(b) Image by microwave imaging 

with an open-ended waveguide 



 

 

(c) Setup of near-field  

microwave microscopy 

(d) Image by near-field  

microwave microscopy 

 

 

(e) Setup of microwave TDR (f) Image by microwave TDR 

  

(g) Geometry of the CSRR sensor (h) Spectrum of the CSRR sensing 



 

 

(i) B-scan from ultrasonic testing (j) C-scan from ultrasonic testing 

FIGURE 6. Evaluation of the impact damage using five other NDT methods 

In summary, among the six NDT methods, ultrasonic testing and CSI sensing 

could detect both the surface dent and subsurface delamination. However, only the 

surface defect could be identified by the other four EM NDT methods because of the 

high frequency range used that limits penetration. In Table.3, inspections using a CSI 

sensor and the other five above-mentioned NDT methods used for the detection of 

impact damage in CFRP composites are compared in detail. Some primary factors are 

listed (e.g., frequency range, cost, equipment setup and scan time) giving an indication 

of the advantages and limitations to the reader/user. 

3.2. Impact Damage in an I-shaped CFRP Composite Beam  

3.2.1. Magnitude and phase profiling 

An I-shaped composite beam similar to those used in an aircraft structure has been 

tested. As shown in Fig. 7 (a) and (b), the impact damage was induced on the surface of 

the top flange, the dimensions of which are 300 mm × 30 mm. The scanning area and 

the orientation of the sensor for the 2D scanning are presented in Fig. 7(c). The 

scanning was conducted with a step size of 427 µm and a standoff distance of 250 µm. 

 

 

 



TABLE 3. Comparison between CSI and five other NDT methods employed in the 

test for impact damage detection of carbon fibre composites 

NDT methods 

Frequency 

range 

Advantages Limitations 

CSI sensor 10-500 MHz 

Low-cost (<£10); 

Reasonable 

penetration 

Point scanning; 

Accurate positioning 

needed 

Microwave imaging 

with an open-ended  

waveguide 

18.0-26.5 GHz 

(K-band) 
Easy setup 

Limited penetration; 

Limited resolution 

Near-field  

microwave  

microscopy 

3.0-3.1 GHz High resolution 

Poor penetration; 

Point scanning; 

Accurate positioning 

needed 

Microwave TDR 1-18 GHz 
Low-cost; 

Simple fabrication 

Relatively 

complicated 

data processing; 

Limited resolution 

CSRR sensor 2-3 GHz 
Low-cost; 

Low-power 

Point scanning; 

Limited resolution 

Ultrasonic testing N/A 

Good resolution; 

3D imaging; 

Good penetration 

In contact; 

Couplants required 

 



 

(a) Cross section of the I-shaped beam 

 

(b) Photograph of the central area of the top flange illustrating the impacted 

region 

(c) Schematic diagram of the 2D CSI scanning over the top flange 

FIGURE 7. Detection of the BVID on an I-shaped carbon-fibre composite beam  

 



Images of S21 in the form of magnitude and phase plots are shown in Fig. 8, where 

the bright region within the red rectangle indicates the impact dent. It is seen that the 

phase information could be chosen as a damage indicator as well. However, it can be 

seen in Fig. 8 (a) and Fig.9 that the S21 values along the specimen edge are higher than 

those inside the flange area. This unexpected phenomenon is similar to the edge effect 

in the Eddy current technique, where the induced currents are distorted near the free 

edge [27]. Nevertheless, in the present case, the dent-peak in the image is still distinct 

from edge-peaks for recognition by an experienced operator, as the dent is located a 

sufficient distance from the edge.  

 

(a) Magnitude 

 

(b) Phase 

FIGURE 8. The S21 distribution obtained by the impact damage detection  

of the I beam at the frequency 300 MHz with the sensor perpendicular to X-axis 



 

FIGURE 9. |S21| distribution across A-A section (width direction) 

3.2.2. Effect of the orientation of the sensor 

The effect of the orientation of the sensor with respect to the scanning direction 

was studied. The vertical orientation along the X-axis was adopted in the tests 

mentioned above, while the setup of the horizontal case used here is illustrated in Fig. 

10. It is observed from Fig. 11 that the BVID is barely identifiable, which is primarily 

due to the anisotropic characteristics of the conductivity. Hence, the sensor is preferably 

placed along the fibre direction in order to enhance the sensitivity, as the induced 

currents flow along the fibres. This of course requires prior knowledge of the curing and 

stacking sequence of the composite plate for best performance. 

 

FIGURE 10. Horizontal scan across the surface using the CSI sensor 



 

(a) Magnitude 

 

(b) Phase 

FIGURE 11. The S21 distribution for the case with the CSI sensor parallel to X-axis 

3.3 BVID with Different Impact Energy Levels 

As shown in Fig.12 (a), four CFRP specimens were impacted at different energy 

levels, which are 30 J, 45 J, 54 J and 66 J. The location of the impact point for each 

sample is not the same. A 2D scan was performed with a step size of 403 µm and a 

standoff distance of 500 µm. As illustrated in Fig. 12(b), the origin of the scan is away 

from the edge so as to avoid the edge effect. The images of magnitude and phase 

variations produced at the same inspection frequency of 10 MHz are presented in Fig. 

13 and Fig. 14. The dent can be readily observed in all the images. It is found that the 

size of damage enlarges with the increasing impact energy. The impacted region is 

better defined at higher energies as would be expected. 



(a) Photograph of four CFRP samples 

 

(b) Schematic diagram of the 2D scan 

FIGURE 12. Detection of the impacted samples with varied impact energy levels 

  

(a) 30 J (b) 45 J 



  

(c) 54 J (d) 66 J 

FIGURE 13. Magnitude variations of S21 for four different impact energy levels  

at the same frequency of 10 MHz 

  

(a) 30 J (b) 45 J 

  

(c) 54 J (d) 66 J 

FIGURE 14.  Phase variations of S21 for four different impact energy levels  

at the same frequency of 10 MHz 



4. DETECTION OF AIR GAPS  

The capability of detecting the delamination induced by three-point bending has 

been reported in previous research [18]. Here, the effect of the air gap size (that could 

simulate delamination) on the signal response is further studied. In this test, three small 

fillers with the same width of the subsurface groove (i.e., 4.00 mm) and the same CFRP 

material were machined as illustrated in Fig. 15, so that an air gap could be produced by 

partially filling the groove. The thickness of the CFRP panel is 2.58 mm, and the strips 

are denoted by Strip A, B, C, respectively. The size of each induced air gap is 0.88 mm, 

0.54 mm and 0.07 mm, respectively.  

 

FIGURE 15. Schematic diagram of the subsurface groove and strips  

for the simulated air gaps 

The line scanning was conducted above the defect with a standoff distance of 250 

µm and a step size of 127 µm. The effect of the air gap size is evaluated by the signal 

sensitivity, which is defined as the difference of 21S (dB) between the origin and the 

present position. As shown in Fig.16, it is revealed that the sensitivity values is slightly 

reduced (less than 5%) as the air gap size decreases. This insensitivity to the air gap size 

could be acceptable in the real world, as real delamination ‘thickness’ is relatively small 

compared to specimen thickness. 



 

FIGURE 16. Variation of the sensitivity in the detection of the simulated 

delamination (air gap) 

In addition, the trend of the sensitivity curve is in agreement with the three-stage 

analysis introduced in [18], where the curve experiences increasing stage (Stage I), 

temporarily stable stage (Stage II) and decreasing stage (Stage III), see Fig.17. The 

width of the stable stage (approximately 4.00 mm) corresponds to the length of the 

subsurface groove. 

 

FIGURE 17. Analysis of the interaction between the sensor and the subsurface 

defect (length of the subsurface groove wg and the width of the coupling region ℓ) [18] 



5. CONCLUDING REMARKS 

In this work, the recently developed electromagnetic CSI sensor has been 

successfully employed for detection and evaluation of BVID and delamination in CFRP 

composites. The original Salski’s CSI sensor is optimised by improved impedance 

matching. A multi-frequency inspection is performed for the detection of BVID in a 

composite laminate. The damage propagation through the thickness is characterised by 

an increase of the region of interest with decreasing inspection frequencies. Five other 

non-destructive testing methods including microwave imaging with an open-ended 

waveguide, near-field microwave microscopy, microwave time-domain reflectometry, a 

complementary split-ring resonator technique and ultrasonic B- and C-scanning have 

been carried out for comparison. The advantages and limitations of each method for 

damage detection have been presented for the reader’s consideration. 

 In BVID detection of the I-shaped beam, it has been seen that not only the 

magnitude data can be used as a damage indicator but also the phase data can contribute 

to this effort. The edge effect of the CSI sensor is described here to the best of the 

authors’ knowledge for the first time. Current crowding is evident towards the edges of 

the CFRP and is revealed in this scan. The effect of the orientation on the performance 

is investigated as well. The optimal orientation of the sensor is dependent on the fibre 

architecture of the sample under test. The detection of BVID with different impact 

energy levels has been conducted as well. It is shown that the size of the detected 

damage increases with the increasing impact energy. 

Lastly, the air gap in the CFRP sample created by the combination of subsurface 

grooves and fillers of various thicknesses (in the effort to simulate delamination) has 

been examined. It is concluded that the sensor is highly sensitive to the presence of the 



air gap. However, further work is required on this since the smallest air gap detected in 

this work is 0.07 mm, while the gap created by ply debonding in a composite laminate 

subjected to impact may be smaller, especially if delaminations grow by shear stresses 

(sliding rather than an opening mode).  
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