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Introduction

Since its discovery in 1982 [1], the high confinement 

(H-mode) regime has been found to occur in all large-scale 

fusion devices, and forms the baseline operational scenario for 

ITER. The key role that E  ×  B sheared flows associated with 

the ion pressure gradient play in sustaining the H-mode has 

been well documented [2], but the mechanism that initiates 

the onset of the H-mode has remained elusive. As discussed in 

a recent review article [3], the key initiating event appears to 

be a transient in the poloidal plasma velocity in the regime just 

inside (~1 cm) the last closed flux surface (LCFS). Given the 

significance of this regime for planned ITER operations, as 

well as the underlying interesting fundamental physics, there 

is a strong motivation to obtain a deeper understanding of the 

origin of the H-mode transition.

The conditions for accessing the H-mode have been 

explored across many devices and the results have been used 

to formulate empirical scaling laws to access the H-mode 

regime. These studies usually define a minimum heating 

power threshold, Pth, which must be reached in order for 

the L-mode to H-mode (L-H) transition to occur. The power 
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needed to produce a non-zero turbulent Reynolds stress at and just inside the LCFS during 

L-mode discharges. This stress acts to reinforce the shear flow at this location and the flow 

drive gets stronger as heating is increased. The L-H transition ensues when the rate of work 

done by this stress is strong enough to drive the shear flow to large values, which then grows at 

the expense of the turbulence intensity. The drop in turbulence intensity momentarily reduces 

the heat flux across the magnetic flux surface, which then allows the edge plasma pressure 

gradient to build. A sufficiently strong ion pressure gradient then locks in the H-mode state. 

These results are in general agreement with previously published reduced 0D and 1D predator 

prey models. An extended predator–prey model including separate ion and electron heat 

channels yields a non-monotonic power threshold dependence on plasma density provided that 

the fraction of heat deposited on the ions increases with plasma density. Possible mechanisms 
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questions and unexplained observations are identified, and must be addressed and resolved in 

order to build a physics-based model that can yield predictions of the macroscopic conditions 

needed for accessing H-mode.
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threshold is then expressed in terms of macroscopic quanti-

ties like plasma density, magnetic field, plasma current, edge 

safety factor, and so on (see, e.g. Martin [4] for one such 

analysis). In addition, experiments show that the threshold is 

lower when the ion grad-B  ×  B direction points towards the 

X-point in a single null divertor [5], and that Pth is influenced 

by the X-point height from the divertor target and wall clean-

liness [6]. These empirical approaches have formed the pri-

mary means by which access conditions for, e.g. ITER are 

predicted. However, these approaches have significant uncer-

tainties associated with them, and thus the conditions neces-

sary to operate in H-mode are also correspondingly uncertain. 

A more physics-based approach to predicting the H-mode 

access conditions might then also reduce this uncertainty.

Background

Earlier experimental work in the ASDEX-UPGRADE device 

(AUG) [7] clearly showed the existence of an oscillatory 

regime when operating at heat fluxes that were close to the 

power threshold. At about the same time, theory [8] pro-

posed that the turbulence-driven Reynolds stress could act to 

amplify a pre-existing shear flow by nonlinearly driving the 

shear flow to large amplitude. Because of its similarity to such 

sheared flows in the core of the plasma, as well as to geo-

physical fluid systems, here we shall refer to this flow as a 

turbulent driven zonal flow (ZF). In this theory, the increase 

in ZF energy came at the expense of the turbulence energy, 

and thus the turbulence amplitude would die away as the ZF 

amplitude grew. However, once the turbulent drive was weak 

enough, the ZF would damp away in this model and, in the 

absence of any other mechanism to keep the turbulence level 

suppressed, the turbulence intensity would then recover. As a 

result, the system would execute a limit-cycle type behavior, 

and would not stay in a state of reduced turbulence/strong 

shear flow akin to the H-mode regime. Experiments in DIII-D 

[9] were interpreted in a similar vein, in which a growing fluc-

tuation amplitude would in turn drive a sheared E  ×  B flow 

that, in turn, acted to quench the turbulence, and resulted in a 

limit cycle behavior.

This predator–prey model was then modified to include 

the effect of a sheared flow associated with the ion pressure 

profile [10]. The essential new element of this model was the 

inclusion of a so-called mean shear flow (MSF) that can be 

sustained even in the absence of turbulent flow drive. As a 

result, when operating at conditions close to the threshold for 

transition, this new model could exhibit limit cycle oscilla-

tions (LCOs), between regimes of high turbulence/weak ZF 

and low amplitude turbulence/strong ZF. However, further 

increases in heat flux through the system would increase the 

MSF to the point where it was strong enough to maintain a 

state of reduced turbulence. In this case, since the cross-field 

heat flux was taken to be proportional to the turbulence inten-

sity, a steep edge pressure gradient would form at the apex of 

the LCO regime, and lock-in a state of high confinement that 

could be maintained indefinitely.

Work on TJ-II showed that the mean Er did not evolve 

prior to the L-H transition in that device, but the reported 

observation mentioned that low-frequency (1–10 kHz) Er fluc-

tuations could in fact evolve shortly before the transition [11]. 

Subsequent work on TJ-II by Estrada and coworkers [12] dem-

onstrated that a LCO regime between the L-mode and H-mode 

states that was characterized by an oscillation in the sheared 

E  ×  B flow and the turbulence amplitude existed in the region 

located just inside the LCFS. The data were interpreted to be 

consistent with the predator prey picture. More recent work on 

TJ-II [13] extended these studies to include one-dimensional 

(1D) effects, which showed evidence for radial propagation of 

the turbulence intensity and shear flow evolution. As a result 

of these 1D effects, the detailed turbulence intensity-shear 

flow phase space orbit dynamics can exhibit complex behav-

iors, including reversals in the direction of the phase space 

orbit at different positions.

Work in the AUG [14] and DIII-D [15] tokamak devices 

provided significant additional insights into the oscillatory 

regime lying between the L-mode and H-mode states. Both 

works show the formation of an oscillatory E  ×  B shear flow 

in the region just inside the LCFS together with modulation 

of the turbulence intensity in the same region of the plasma. 

In DIII-D, the modulations occur initially with a frequency of 

~2 kHz. Over the number of these oscillations, the background 

plasma pressure gradient was observed to slowly grow, and 

the oscillation period became gradually longer. Eventually 

one large final burst of shear flow would occur, the turbulence 

would collapse, and the H-mode state then ensued. In the 

AUG, the dynamics were different. Again, LCO-type oscilla-

tions would occur. However, in the time windows in which tur-

bulence suppression would occur, the sheared E  ×  B flow was 

modulated at a significantly higher frequency, possibly asso-

ciated with the geodesic acoustic mode (GAM). These win-

dows of strong E  ×  B activity would occur with a frequency 

of about 1 kHz, and the sheared E  ×  B drift would oscillate. 

Over a significant number of these windows, the background 

E  ×  B shear flow strength was found to increase. Eventually 

it then became strong enough to lock in the H-mode state, in a 

manner reminiscent of the results reported by Schmitz. More 

recently, work in EAST [16] has also shown similar essential 

features during the L-mode/LCO/H-mode transition in that 

device.

These studies provide strong experimental evidence in sup-

port of the predator–prey model [10, 17–19]. However, these 

earlier experimental studies did not directly address the under-

lying physics of the model, namely the nonlinear transfer of 

kinetic energy from the turbulent scale to the ZF scale, and 

the subsequent collapse of the turbulence, which then sets up 

the conditions necessary for the formation of a steep pressure 

gradient.

This paper aims to provide an up-to-date picture of the 

status of our understanding of the origin of the L-H trans ition, 

and in particular provide a detailed test of the hypothesis that 

turbulent driven shear flows act to trigger the H-mode. The 

approach taken in the experimental work discussed below 

attempts to make direct measurements of the key turbulence 

physics quantities underlying the theory. In order to do so, 

this paper presents a combination of recent work in HL-2A 

together with a number of new results from the ALCATOR 

Plasma Phys. Control. Fusion 58 (2016) 044003
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C-Mod device. Recent theory and modeling then complete the 

presentation.

This paper is organized as follows. We first use the reduced 

predator–prey model to motivate a description of the H-mode 

transition written in terms of the more primitive turbulent 

stress and the associated Reynolds work done by the turbu-

lence on the shear flow. This model provides expressions 

that can directly be evaluated with suitable turbulence data. 

Second, we examine the evolution of turbulent-shear flow cou-

pling in steady-state L-mode discharges that have increasing 

levels of heating that approach the L-H transition threshold. 

Those results, obtained in both limiter discharges on HL-2A 

and single null ALCATOR C-Mod diverted discharges show 

that the turbulence acts to reinforce the sheared E  ×  B flow 

that exists just inside the last closed flux surface (LCFS), and 

that the turbulent drive of the shear flow gets stronger as the 

heating is increased. Third, we then examine the fast (~1 ms) 

transient evolution of the turbulence, turbulent Reynolds 

stress, and turbulent flow drive during fast L-H transition in 

ALCATOR C-Mod. The results show that a rapid increase 

in the turbulent stress and turbulent flow drive occurs just 

before the L-H transition, and that this transient is localized 

to the region immediately inside the LCFS. Furthermore, the 

measurements show that the flow drive momentarily becomes 

strong enough to extract most of the fluctuation kinetic energy. 

This then leads to the turbulence amplitude collapse. The edge 

pressure gradient then builds in response, and locks in the 

H-mode state. Fourth, we compare these experimental results 

against recently published turbulent fluid models of the for-

mation of an edge transport barrier, and point out the similari-

ties between the experiment and simulations. Fifth, we then 

summarize recent theory work that extends the predator–prey 

model by separating out the electron and ion heat transport 

channels separately. This model can then provide a qualitative 

explanation for the non-monotonic dependence of the mac-

roscopic H-mode power threshold on line-averaged density. 

Finally, we summarize observations in other devices that sug-

gest there is no role for turbulent-induced sheared flows at 

the L-H transition, and that instead the sheared E  ×  B flow is 

either consistent with the ion pressure gradient alone (i.e. the 

so-called ion diamagnetic E  ×  B flow), or is consistent with 

ion orbit loss mechanisms. We also point out theory argu-

ments that toroidal flow damping caused by geodesic acoustic 

modes should provide strong damping of these effects. The 

paper then closes with suggestions for future work to try to 

resolve these apparent discrepancies.

Model summary

In order to design experiments and diagnostic/data analysis 

schemes that could be used to attempt to directly measure the 

turbulent stress and address its possible role in initiating the 

H-mode transition, the predator–prey model was then recast 

into a more primitive turbulent K-ε framework [20–23] that 

expressed the evolution of the turbulent and ZF scale kinetic 

energy explicitly in terms of the underlying turbulent flow 

production rate that is mediated by the Reynolds work done 

by the turbulence on the sheared ZF. In a simplified form, 

these two energy scales evolve according to the model
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of turbulent intensity and zonal flow intensity, andin corr
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γ γ  

denote the growth rate of the underlying instability driving 

the turbulence and the effective rate of turbulent decorrelation 

due to high-frequency dissipation effects, respectively, the 

low-frequency E  ×  B shear flow and its dissipation rate are 

given by VE×B and LFν , respectively, and the ion diamagnetic 

drift velocity is given as V i
dia and is related to the ion pressure 

gradient by the usual definition. Note then that the heat flux 

through the edge region relates the diamagnetic flow to the 

mean pressure gradient. Note also that this model implicitly 

assumes a separation of scales between turbulent timescales 

and slower so-called ‘mean’ quantities such as the pressure 

gradient and ion diamagnetic flow.
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It is expected that once the turbulence collapses, the non-

linear production, P, of the sheared flow will also collapse and 

the turbulent transport of heat will be reduced significantly. 

In this case, if the ion diamagnetic flow is able to grow to 

sufficient magnitude before the turbulent driven shear flow 

decays away at a rate LFν , then it can take over the task of 

turbulence suppression, and a state of reduced turbulence and 

steepened gradients can be maintained. This is the essential 

picture contained in the 0D and 1D predator-prey models put 

into a framework that can be addressed with suitable turbu-

lence data analysis. In the next section, we summarize recent 

experiments that address the key elements of this picture in 

both steady-state L-mode discharges that gradually approach 

the conditions of the L-H transition, as well as experiments in 

Alcator C-Mod that examine the evolution of the turbulence, 

the nonlinear shear flow production, and mean gradients 
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during fast L-H transitions. The results provide useful tests of 

the role of turbulence in initiating the L-H transition.

Turbulence-sheared E  ×  B flow interactions in 

L-mode

The existence of a sheared E  ×  B flow at the LCFS region 

of toroidally confined plasmas has been known for nearly 

30 years and was first demonstrated by studies on the TEXT 

device [24], and then subsequently in other tokamaks and on 

other types of confinement devices [25]. Such sheared E  ×  B 

flows can act to distort the turbulent eddies found in the edge 

plasma; in the absence of flow shear they tend to be roughly 

isotropic in the poloidal plane but with the application of a flow 

shear they become tilted and stretched [26, 27]. The resulting 

isopotential contours of the turbulent structures effectively 

form streamlines of the nearly two-dimensional (2D) turbu-

lent flow field and, as a result of this tilting and stretching, the 

radial and poloidal velocity fluctuations become correlated, 

resulting in the formation of a non-zero turbulent Reynolds 

stress.

Recent experiments in the HL-2A device and Alcator 

C-Mod show how this process evolves in L-mode as the 

heating power is increased. A two-dimensional probe array 

was used in HL-2A to try to measure the turbulent stress, 

edge plasma shear flow, and the resulting effect on the non-

linear production of sheared E  ×  B flow by the turbulence. 

The results (figure 1 below) showed that the shear layer gradu-

ally become stronger as ECH heating power was applied to 

these discharges. Furthermore, the turbulent stress was found 

to increase and thus the effective Reynolds force applied to 

the plasma by the turbulence also increased. As a result, the 

net shear flow production, P, also increased in L-mode. A fre-

quency resolved analysis of this process [28] showed that at 

low power, the power transfer was predominantly to a finite 

frequency oscillatory m, n  =  0,0 shear flow previously iden-

tified as a GAM. As the heating power was increased, the 

intensity of the drive of both the ZF and the GAM increased. 

However, the drive of the GAM eventually reached a peak and 

then began to decrease, while the ZF drive was found to mono-

tonically increase with increased heating power. Thus these 

two elements of the edge shear flow compete, but it would 

appear that with sufficient heating power the ZF becomes the 

dominant component of the turbulent driven shear flow.

These earlier results were made with Langmuir probes, and 

are thus subject to the usual concerns about probe measure-

ments in the edge of a tokamak plasma, e.g. does the probe 

make a large perturbation to the plasma, and are the measure-

ments corrupted by electron temperature fluctuation effects 

[29]? Motivated in part by these considerations, a similar 

study has been carried out on the Alcator C-Mod. However, 

in this work a toroidally localized 2D He gas puff imaging 

(GPI) diagnostic was used to image the turbulent dynamics 

across the edge, LCFS and SOL plasma regions. These experi-

ments were carried out in time-stationary L-mode discharges 

formed with a lower single null and with the ion grad-B  ×  B 

drift direction pointing away from the X-point. This effec-

tively raises the power threshold for the H-mode, allowing a 

wider range of heating power to be applied in time-stationary 

L-mode conditions. Detailed descriptions of the diagnostic 

and the data analysis technique can be found elsewhere [30, 

31]. The motion of time-resolved 2D light intensity fluc-

tuations is used to estimate a two-dimensional velocity field, 

and then, once these quantities are determined, the turbulent 

stress, flow production, and other quantities of interest can be 

determined.

The model introduced earlier suggests that the turbulence 

collapse that occurs at the onset of the L-H transition is associ-

ated with a power balance on the turbulence scales. Thus, an 

examination of the turbulent decorrelation rate, which (pre-

sumably) indicates the rate at which turbulence energy is dis-

sipated at high frequency/high wavenumber scales, as well as 

the rate of energy transfer into the low-frequency shear flow, 

is of interest. Because these particular experiments are time-

stationary, frequency-resolved Fourier analysis techniques 

can be used to determine this latter rate. In particular, using 

previously published bispectral analysis techniques [32], we 

can write the power transfer into the shear flow at frequency f 

in terms of the cross-bispectrum

Figure 1. (a) Reynolds force arising from the gradient of the turbulent Reynolds stress, (b) time-averaged radial profile of poloidal flow,  
(c) nonlinear turbulent flow production, P. data from HL-2A ECH heated discharges. Results from the HL-2A device. Figure taken from [22].

Plasma Phys. Control. Fusion 58 (2016) 044003
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For the purposes of this analysis, the upper bounds of the shear 

flow frequency is taken as f  =  3 kHz in this analysis, while 

the lower bounds of the frequency defining the ‘turbulence’ 

frequency band was set to 5 kHz. The results of this analysis 

from a series of L-mode discharges in C-Mod are shown in 

figure 2 below. At low heating power, the turbulent decorrela-

tion rate is about an order of magnitude larger than the rate of 

transfer into the shear flow. As the heating power increases, 

the rate of energy transfer associated with the nonlinear flow 

drive increases and, at the highest L-mode powers shown here, 

begins to approach the turbulent decorrelation rate. At low 

power, the shear flow has little effect on the turbulent scale 

power balance and thus, in the model presented above, the 

turbulence saturation is then determined by a balance of the 

instability growth rate and the turbulent decorrelation rate. 

However, as the heating power input is increased, the turbu-

lent decorrelation rate does not change substantially, whereas 

νNL, exhibits a pronounced increase and, at the largest L-mode 

heating powers used in these experiments begins to approach 

the turbulent decorrelation rate. This result would then indi-

cate that in strongly heated L-mode plasmas, the turbulent 

shear flow present at the plasma edge begins to play a signifi-

cant role in the saturation of the turbulence intensity.

Turbulent-shear flow interaction during fast L-H 

transition

These Fourier-domain approaches cannot be used to study the 

fast transient L-H transition, as the time-stationary assump-

tion is violated. However, working in the time domain, and 

using knowledge of the characteristic frequencies of the tur-

bulence and the shear flow scales, we can estimate the time 

evolution of the relevant quantities. A detailed discussion of 

this approach to the data analysis is available [23].

In order to close the predator–prey model of turbulent-

driven shear flow during the L-H transition, an analytic form 

for the turbulent stress verses shearing rate had to be assumed 

and was taken to be given by [10]

V
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ν ν ν ν

α
∝
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These experiments permit an experimental test of this ansatz. 

Figure  3 below shows the time evolution of the turbulent 

stress plotted against the shear rate during a fast L-H transition 

in C-Mod inferred from the He-GPI data. These data are for a 

position about 1 cm inside the LCFS, which, as shown below, 

is the position where the peak flow drive and turbulence sup-

pression occurs. The results show that the turbulent stress 

increases markedly as the shear flow begins to grow during 

the early portion of the L-H transition. As the shearing rate 

increases further, the turbulent stress reaches a peak value, 

and then falls as the shearing rate is increased further. The 

H-mode state then ensues, characterized by a strong shear 

and a weak turbulent stress. An examination of a number of 

ALCATOR C-MOD L-H transitions show a similar evolution 

Figure 2. Variation of the plasma-frame turbulent decorrelation 
rate, νdecor, and the rate of energy transfer into the low-frequency 

sheared E  ×  B flow, given by νNL  =  
∼

νT K/ZF . The rate of shear flow 

drive is found to increase monotonically with increased heat flux 
at the plasma boundary. Data taken in 5.4 T LSN Alcator C-Mod 
discharges with ion grad-B  ×  B drift pointing away from X-point. 
Heating from ALCATOR C-MOD Ohmic and ICRF heated 
discharges.

Figure 3. Transient evolution of turbulent stress verses the 
shearing rate during an L-H transition in ALCATOR C-Mod. The 
turbulent stress increases markedly as the shear flow begins to grow 
during the early portion of the L-H transition. As the shearing rate 
increases further, the turbulent stress reaches a peak value, and then 
falls as the shearing rate is increased further. The H-mode state then 
ensues, characterized by a strong shear and a weak turbulent stress.

Plasma Phys. Control. Fusion 58 (2016) 044003
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of stress versus shearing rate. This behavior is consistent with 

the above form, providing experimental evidence that one of 

the key assumptions involved in the predator–prey model.

The radial gradient of this stress is the poloidally directed 

Reynolds force, which acts to reinforce the shear flow by 

steepening it. This effect can be seen in figure  4(a), which 

shows how the poloidal velocity profile steepens in the 

region just inside the LCFS at the very beginning of the L-H 

transition, in the same region where a transient increase in 

the turbulent stress is also inferred from the GPI data (figure 

4(b)). The transient in the turbulent stress occurs over a short 

(~1 ms) period, and thus applies a short impulse-like Reynolds 

force to the plasma immediately inside the LCFS.

The temporal evolution of edge turbulence, the sheared 

E  ×  B flow, the normalized rate of Reynolds work RT, grad-

Pion, and the shearing rate during a fast L-H transition in 

Figure 4. (a) The dashed lines show radial profile of poloidal E  ×  B propagation speed just 2 ms before (blue) and 0.3 ms before (red) the 
onset of the Dα drop that is taken to indicate the moment of the L-H transition. (b) Turbulent Reynolds stress, profiles for the same two 
times. The radial E  ×  B flow gradient steepens considerably in the region just inside the LCFS across the L-H transition, consistent with 
effects of the turbulent Reynolds stress transient observed to occur in the same region. Data from ALCATOR C-MOD. EDD/IDD denote 
electron/ion diamagnetic direction, respectively. The LCFS uncertainty is limited by the diagnostic resolution to approximately  ±0.01 in 
normalized flux units.

Figure 5. Evolution of (a) Dα emission, (b) edge turbulence kinetic energy, (c) sheared E  ×  B flow, (d) normalized rate of Reynolds work, 

RT, (e) grad-Pe and (f) total E  ×  B shear rate, ωE×B  =  ′ ×V E B and estimated turbulence energy input rate, given by γNL  +  νdecor, the onset of 

the Dα emission drop is shown as a vertical pink line. The onset of the turbulence energy collapse is shown as a vertical blue dashed line. 
Data from ALCATOR C-MOD.

Plasma Phys. Control. Fusion 58 (2016) 044003
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an ALCATOR C-Mod are summarized in figure  5 below.  

As discussed above, the L-H transition is initiated by a tran-

sient increase in the turbulence amplitude and sheared E  ×  B 

flow, which both occur at about 902 ms. The time of the Dα 

drop, which is the usual indicator of the onset of H-mode, is 

shown as a vertical red line at about 903 ms. About 1 ms prior 

to this point in time, a small burst in the edge turbulence kinetic 

energy is observed. At about the same time, the poloidal comp-

onent of the E  ×  B velocity is observed to begin to increase. 

At about 902.4 ms into the discharge, the turbulence amplitude 

peaks and begins to then rapidly (~300 µs) collapse. As the tur-

bulence energy peaks and begins its collapse, the normalized 

rate of Reynolds work, RT, begins to increase, exceeds unity 

(which is when the turbulence collapse begins), and ultimately 

reaches a peak value of 2–3, indicating that the rate of energy 

extraction of the turbulent driven E  ×  B flow has, momentarily, 

exceeded the rate of energy input into the turbulence. During 

this whole period, the edge pressure gradient is then beginning 

to evolve. Note that the gradient shown here is the electron 

pressure gradient; however due to the high col lision rates in 

ALCATOR C-MOD, this is essentially equivalent to the ion 

pressure gradient [23]. Early on in the transition sequence, 

the changes in the gradient are quite small. As the turbulence 

collapse progresses, the gradient builds, and by the time that 

the turbulence collapse is nearly complete, the edge pressure 

gradient has nearly doubled. A comparison of the E  ×  B shear 

rate, ωE×B  =  V E B
′
× , against the estimated turbulence energy 

input rate, γin  =  γNL  +  Υdecor, shows how these quantities 

evolve on a slower timescale as compared to the transients in 

the turbulence energy and Reynolds work.

The work done by the turbulence on the shear flow is 

consistent with the change in the shear flow energy [23]. To 

see this, we first used time-stationary measurements in the 

L-mode regime immediately preceding the transition to esti-

mate the shear flow damping rate, νLF ~ 4  ×  103 s−1. The time 

evolution of the flow and its damping rate is then compared to 

the flow production, by comparing the terms K t K/ LFν∂ ∂ +  

and P Tr− ∂ . The results (figure 6) show reasonable agree-

ment, indicating that the turbulent flow drive would appear to 

be capable of inducing the observed flow evolution.

The nonlinear flow drive is localized spatially to the region 

about 0.5–0.8 cm inside the LCFS, as illustrated in figure 7. 

The observations show that the region of turbulence suppres-

sion during the L-H transition located at and inside the LCFS 

(figure 7(a)). The nonlinear flow drive is localized to a narrow 

zone about 0.5 cm inside the LCFS (figure 7(b)). This region of 

flow drive is consistent with the location of the strong increase 

in flow shear, as shown in figure 4 above. It is interesting to 

note that the region where the turbulence energy is suppressed 

is much wider, and extends deeper into the plasma than the 

region of localized velocity shear and shear flow production.

A number of other recent experimental studies of the origin 

of the L-H transition have also been published using a sim-

ilar analysis framework. Using probe arrays on EAST, Manz  

et al showed a similar picture of the transition [20]. In biased 

H-mode experiments on TEXTOR [27], it was also found that 

the H-mode onset occurred when the rate of Reynolds work 

was sufficiently strong to cause turbulence collapse in a biased 

H-mode experiment. In addition, that work provided elegant 

direct imaging of turbulent eddy tilting and stretching, illus-

trating the underlying mechanism that leads to the formation 

of a non-zero Reynolds stress that then amplifies the E  ×  B 

shear flow. Analysis of the imaging data from DIII-D [33] also 

showed a similar picture in which turbulent eddies are elon-

gated and distorted during the L-H transition, leading to a non-

zero Reynolds stress that then induces work at a rate sufficient 

to lead to turbulence collapse and the formation of an edge 

pressure gradient. We also note that these results bear a strong 

resemblance to those obtained in the transition to improved 

Ohmic confinement obtained in the HT-6M device [34].

Comparison to turbulent simulations

Recent turbulence-based simulations of the L-H transition 

have also been reported [35, 36]. In both studies, turbulence-

based models of the advection of pressure and vorticity are 

solved with certain assumptions about how, in the absence of 

turbulent flow drive, poloidal flows relax towards neoclassical 

values. In these studies the heat input was increased slowly 

to permit the study of the limit cycle regime that lies at the 

boundary between the L-mode and H-mode. In both cases, the 

system was found to form a region of steep edge pressure gra-

dient and reduced or suppressed turbulence intensity. Chone’ 

et al commented on the role that turbulent driven sheared 

flows play in starting the transition off by extracting energy 

from the turbulence, which then allows the pressure gradient 

to grow; if a sufficiently strong gradient developed before the 

turbulence recovered, a steep edge barrier would then develop 

and lock-in. In the study by Park et al the role of the Reynolds 

work in initiating the transition was explicitly examined. The 

results, summarized in figure 8 below, indicated that the nor-

malized Reynolds work first exhibited a peak strong enough to 

extract most of the turbulent energy, and that this peaking was 

followed by the formation of strong mean shear flow (asso-

ciated with the edge plasma pressure gradient) that satisfied 

the usual shear decorrelation criteria ωE×B  >  γiin. Thus the 

Figure 6. Time evolution of shear flow production, − ∂P Tr  
and flow inertia and damping, ν∂ ∂ +K t K/ LF  during a fast 
L-H transition. The fast transition occurs in this discharge at 
t  =  0.8309 sec. The two terms are in reasonable agreement. The 
production term, P, alone does not agree with the evolution of the 
shear flow energy. Figure taken from [23]. Data from ALCATOR 
C-MOD.
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turbulence collapse was determined to be associated with a 

transient nonlinear flow drive, and the pressure gradient then 

evolved in response to the change in transport so as to then 

allow the usual shear flow criteria to be satisfied in the new 

strong pedestal regime.

Making the link to macroscopic system behavior

These results show that the reduced predator–prey models 

capture many of the essential elements of the L-H trans-

ition, suggesting that they provide a route to link this 

Figure 7. (a) Turbulent kinetic energy profile just before (black) and just after (red) L-H transition. (b) Nonlinear flow production profiles. 
Strong flow production occurs about 0.5 cm inside the LCFS, in the same region where strong turbulence energy reduction occurs. Data 
from ALCATOR C-MOD.

Figure 8. Left: evolution of normalized Reynolds work, RT, during the development of an edge transport barrier. Right: evolution of the 
pressure gradient, mean flow shearing rate ωE×B and linear growth rate γlin in a resistive ballooning mode turbulent simulation of edge 
transport barrier formation. The momentary transient spike in RT  >  1 leads to a collapse in turbulence amplitude, allowing the edge 
pressure gradient to subsequently build. The shearing rate associated with the pressure gradient then subsequently satisfies the usual 
shear decorrelation criteria ωE×B  >  γlin, locking in the H-mode state. Time is normalized to major radius divided by Alfven speed, R0/VA. 
Figure adapted from [36].

Plasma Phys. Control. Fusion 58 (2016) 044003



G R Tynan et al

9

microscopic turbulence picture of the transition with the 

macroscopic conditions necessary to initiate an H-mode 

transition. Here we briefly point out one recent extension 

of the predator–prey model, which can qualitatively repro-

duce the non-monotonic density dependence of the power 

threshold for the L-H transition. We then briefly summarize 

ideas on how other important macroscopic control para-

meters for the L-H transition might be understood within 

a similar framework.

Recent work on the AUG [37] points towards the key role 

played by the ion heat flux in the L-H transition. In particular, 

by controlling the heat input into the ion and electron channels 

independently, Ryter et al showed that the power threshold 

could be related to a continuous increase in the ion heat flux at 

the boundary of the plasma. Secondly, in a separate analysis, 

a correlation between the density corresponding to the trans-

ition from linear Ohmic confinement to saturated Ohmic con-

finement (LOC–SOC), and the density corresponding to the 

minimum in the L-H transition power threshold was reported 

[38]. The LOC–SOC transition has been linked to the devel-

opment of significant collisional heat transfer between the 

electrons and ions. Thus this correlation also indicates that 

electron–ion heat transfer may also be linked to the L-H trans-

ition power threshold minimum.

Motivated by these considerations, Malkov and Diamond 

modified the 1D predator–prey model to now include sep-

arate electron and ion pressures, and allowed for a density 

dependent collisional energy exchange between the two spe-

cies [38]. In addition, they parameterized the relative fraction 

of heating to the two species and explored how this could 

then affect the power threshold evolution with plasma den-

sity. The relative roles of turbulent driven shear flow and ion 

diamagn etic mean shear flows were left unchanged from pre-

vious work. The results showed that, provided the relative 

fraction of heating to the ions, Hi/i+i(n) was an increasing 

function on density, then a pronounced minimum in the 

power threshold verses density, Pth(n) could be obtained, as 

shown in figure 9(a), in qualitative agreement with the exper-

imental results in figure 9(b).

Discussion

At first glance, these results seem promising and suggest that 

an understanding of the origins of the L-H transition might be 

nearly in hand. However, there are a number of observations 

and questions that remain that must be faced and addressed 

before any such conclusion can be reached. For example, 

work in the MAST did not show evidence for an evolution 

of Er or its shear prior to the L-H transition in that device 

[39]. Similarly, recent work in the ASDEX UG shows no  

evidence for a transient departure of the E  ×  B shearing from 

the expected neoclassical value or, in the parlance of the ter-

minology used in this paper, from the ion diamagnetic drift 

[40]. These ASDEX UG results also show that the back-

ground gradient evolution may also evolve on the sort of fast 

timescales associated with the turbulence evolution. Indeed, 

an examination of figure 5 shows that the pressure gradient 

build-up begins nearly as soon as the turbulence amplitude 

collapses. Perhaps the scale separation assumed in the models 

discussed here would break down, and gradient evolution 

could contribute to turbulent stress evolution. Whether or not 

this can resolve these apparent discrepancies across different 

experiments is unknown at present and must be confronted.  

It might be useful to use the turbulent data analysis approaches 

described here to study the possible role of turbulent-driven 

shear flows in these other devices. Conversely, it would be 

useful to obtain high spatio-temporal resolution data in, e.g. 

ALCATOR C-Mod, DIII-D, and other devices to determine if 

there is a fast, transient departure of Er determined from the 

ion pressure gradient alone.

Second, the role of GAMs in the L-H transition is not fully 

understood. The effects of compressibility in toroidal geom-

etry have been shown theoretically to strongly damp zonal 

flows by coupling them to GAMs, which are, in turn, strongly 

damped [41, 42]. As a result, toroidal effects are expected 

to increase the effective inertia of the plasma poloidal rota-

tion in a torus, thereby reducing the effectiveness of the 

Reynolds stress in driving poloidal rotation and the associ-

ated sheared E  ×  B flow [43]. In the face of these theoretical 

Figure 9. Left: (a) Variation of Pth(n) with density for the given heating mix evolution Hi/i+e(n). Figure adapted from [38]. Right: (b) 
variation of Pth(n) in AUG, showing non-monotonic evolution with plasma density. Panel (b) adapted from [37].
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expectations, experiments either show that as the L-H trans-

ition is approached, the GAM signature dies away while the 

low-frequency sheared zonal flow becomes quite pronounced 

[28], or shows no evidence for the role of GAMs during the 

approach to the L-H transition [23, 44]. Furthermore, quanti-

tative estimates of the Reynolds flow drive including these 

GAM effects, or using an empirically derived flow damping 

rate have been shown to be consistent with the observed 

plasma flows [23, 44].

Making the situation even more complex, recent obser-

vations of ALCATOR C-Mod L-mode to I-mode trans-

itions clearly show that the GAM is nonlinearly generated 

at the moment of the L–I transition, and in fact no low fre-

quency zonal flow occurs in this case [30]. There is no exper-

imental understanding of how the plasma chooses between a 

ZF-mediated L-H transition, and a GAM-mediated L–I trans-

ition. These necessarily brief considerations clearly show that 

additional work is needed to resolve the role of GAMs and 

GAM flow damping effects in the L-H transition; this might 

also lead to an improved understanding of access to other 

improved confinement regimes (e.g. I-mode) that are poten-

tially more attractive than the H-mode.

There are also other macroscopic scaling behaviors 

that need to be explained if this physics picture is correct. 

Perhaps the most obvious is the origin of the favorable ion 

grad-B  ×  B drift direction of the L-H transition, in which the 

power threshold is observed to be lower when the ion grad-

B  ×  B drift direction is pointed towards the X-point. It has 

been proposed [45] that magnetic shear provides a second 

means to locally tilt and stretch turbulent eddies, resulting 

in the formation of a turbulent stress. In the presence of an 

up–down asymmetry in the fluctuation amplitude induced, 

e.g. by the presence of an X-point, then the resulting flux-

surface averaged poloidal momentum balance then contains 

two components to the surface averaged stress; one associ-

ated with the magnetic shear, and one associated with the 

E  ×  B shear. It was then shown that in the case of favorable 

drift, these two terms added, while in the case of unfavorable 

shear they competed with each other. Subsequent work pro-

vided some initial evidence in support of this picture [46] 

but additional work is needed to determine if this picture is 

indeed correct.

We also note that experiments show that the power 

threshold depends sensitively upon other experimental 

parameters, e.g. divertor X-point height [47], main plasma 

isotope, and wall conditioning [37]. Further work is needed to 

determine if and how these observations could be explained 

within the context of the physics model discussed here. 

Finally, the extended power threshold model of Malkov and 

Diamond [38] is based on collisional heat exchange between 

the electron and ion species. This naturally raises the ques-

tion: How does the system then behave in nearly collision-

less plasmas that will be found in the ITER? Will anomalous 

energy exchange occur, in which turbulent fluctuations play 

the role of collisions to affect a significant exchange of energy 

in these conditions? Further work is clearly needed to address 

these important questions.

Conclusions

Results from recent experiment and numerical simulation 

point towards a picture of the L-H transition, in which edge 

shear flows interacting with edge turbulence create the condi-

tions needed to produce a non-zero turbulent Reynolds stress 

at and just inside the LCFS during L-mode discharges. This 

stress acts to reinforce the shear flow at this location and 

the flow drive gets stronger as heating is increased. The L-H 

transition ensues when the rate of work done by this stress is 

strong enough to drive the shear flow to large values, which 

then grows at the expense of the turbulence intensity. The drop 

in turbulent intensity momentarily reduces the heat flux across 

the magnetic flux surface, which then allows the edge plasma 

pressure gradient to build. A sufficiently strong ion pres-

sure gradient then locks in the H-mode state. These results 

are in general agreement with previous reduced 0D and 1D 

predator prey models. A number of open questions and unex-

plained observations are identified, and must be addressed 

and resolved in order to build a physics-based model that can 

yield predictions of the macroscopic conditions needed for 

accessing H-mode.
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