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Abstract 22 

Movement influences a myriad of ecological processes operating at multiple spatial and temporal 23 

scales. Yet our understanding of animal movement is limited by the resolution of data that can be 24 

obtained from individuals. Traditional approaches implicitly assume that movement decisions 25 

are made at the spatial and temporal scales of observation, although this scale is typically an 26 

artifact of data-gathering technology rather than biological realism. To address this limitation, we 27 

used telemetry-based movement data for caribou (Rangifer tarandus) in Newfoundland, Canada, 28 

and compared movement decisions estimated at the temporal resolution of GPS relocations (2 29 

hours) to a novel model describing directional movement to areas reachable over an extended 30 

period. We showed that this newer model is a better predictor of movement decisions by caribou, 31 

with decisions made at the scale of ~2 km, including the strong avoidance of dense coniferous 32 

forest, an outcome not detectable at the scale of GPS relocations. These results illustrate the 33 

complexity of factors affecting animal movement decisions and the analytical challenges 34 

associated with their interpretation. Our novel modelling framework will help support increased 35 

accuracy in predictive models of animal space-use, and thereby aid in determining biologically 36 

meaningful scales for collecting movement and habitat data.  37 

 38 

Key-words: global positioning system, movement modelling, Newfoundland caribou, random 39 

walk, resource selection analysis, step-selection function. 40 
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Introduction 41 

Understanding organism movement is a fundamental challenge in ecology (Sutherland et al. 42 

2013). The movements of animals influence ecological processes operating at multiple spatial 43 

and temporal scales (Nathan et al. 2008), with repercussions for individual fitness as well as 44 

population, community, and ecosystem function (Turchin 1998, Holyoak et al. 2008, Fortin et al. 45 

2015). Nathan et al. (2008) proposed a unifying paradigm of an organism’s movement derived 46 

from interactions with the environment, its internal state, and mechanical and navigational 47 

properties of the organism. Moreover, realistic modelling of animal movement often needs to be 48 

applied at biologically-relevant scales, sometimes multiple scales. This can represent a daunting 49 

task for ecologists, owing to the highly dynamic interactions of organisms with their 50 

environment and internal state. Mechanical-navigational properties alone may offer limited 51 

insight into the determinants of animal movement. 52 

 Lagrangian models are useful for generating multi-segment trajectories of animal 53 

movement, akin to information typically acquired from satellite telemetry (Smouse et al. 2010). 54 

Simpler expressions of these models, such as random walks, assume little navigation capacities, 55 

but focus extensively on the motion capacity of animals by fitting a specific step-length 56 

distribution (Turchin 1998). More complex expressions, such as correlated random walk or 57 

biased random walk models, integrate navigational capacities by adding persistence in movement 58 

or attraction to specific area, respectively (Farnsworth and Beecham 1999, Bergman et al. 2000). 59 

When combined with information about the landscape and resource distribution, random walk 60 

models can improve our understanding of resource selection and thereby generate more realistic 61 

patterns of space-use (Moorcroft and Lewis 2006, Smouse et al. 2010, Fortin et al. 2013, Potts et 62 

al. 2014, Bastille-Rousseau et al. 2015). Indeed, it seems that most movement behavior can be 63 
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reproduced by a mixture of random walk models operating at different scales (Benhamou 2014). 64 

Therefore, by building on these developments, ecologists can focus more on understanding the 65 

factors driving navigational process, including elements related to orientation, memory, and the 66 

formulation of a cognitive map by an animal (Van Moorter et al. 2009, Avgar et al. 2013, Fagan 67 

et al. 2013, Merkle et al. 2014, Schlägel and Lewis 2014, Potts and Lewis 2016).  68 

Despite these conceptual improvements, our understanding of animal movement is still 69 

often limited by the resolution of field data. Although rarely discussed, many approaches 70 

inherently assume that navigational processes and associated decisions are made at the spatial 71 

and temporal scale of the data (Fleming et al. 2014, Schlägel and Lewis 2016a, b). For example, 72 

the increasingly popular step selection function (SSF; Fortin et al. 2005, Forester et al. 2009, 73 

Avgar et al. 2016) integrates elements of resource selection by combining a correlated random 74 

walk with the local attraction to specific resources. Its estimation involves conditional 75 

comparison of an actual step (between two locations) with a series of random steps initiated from 76 

the same location that assess available habitat based on the motion-related capacity of the 77 

organism. In such a framework, inferences regarding movement decisions for a given resource 78 

are contingent upon behavioral processes operating at the movement step scale. Similar issues 79 

also prevail in the state-space modelling literature (Morales et al. 2005, Langrock et al. 2012) 80 

Furthermore, navigational abilities may be driven by behavioral processes operating at 81 

different spatio-temporal scales (Fleming et al. 2014, Benhamou 2014). For instance, a migrating 82 

animal might orient its fine-scale movements toward habitat that provides foraging opportunities 83 

or low mortality risk, while ignoring habitat that has higher costs. Whereas these two processes – 84 

migration and interpatch movement – operate at distinct scales and can be represented 85 

independently (Benhamou 2014), an animal’s motivations related to migratory and interpatch 86 
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movements likely compete in generating the observed distributions of step length, turning angle 87 

and habitat use, as captured by telemetry. Observations at the arbitrary scale of telemetry data 88 

could fail to capture decisions happening at either scale. The role of memory and cognition have 89 

been at the forefront of recent movement modelling (Van Moorter et al. 2009, Avgar et al. 2013, 90 

2015, Fagan et al. 2013, Potts and Lewis 2016), but it remains unclear how differing spatio-91 

temporal scales lead to variability in animal interactions with resources.  92 

Here, we investigated the importance of decisions relative to environmental resources in 93 

animal movement and how its estimation can be influenced by the scale at which it is assessed. 94 

We focused on the motion and navigational capacities of Newfoundland caribou (Rangifer 95 

tarandus L.) during the calving period and tested how movement can be explained by a mixture 96 

of local or long-distance responses to specific resources. There are fourteen major caribou herds 97 

inhabiting the island of Newfoundland, with most female caribou exhibiting spring migration to 98 

traditional calving grounds. We compared an approach inspired by the specific SSF framework 99 

of Potts et al. (2014), that considers decisions at the scale of the GPS relocations, to a new model 100 

of long-distance decisions that capture  movement in the direction of areas that an animal could 101 

reach over many hours or days. To examine the effect of movement on seasonal scale behavior, 102 

we compared resource use and selection of caribou to predicted patterns of use and selection 103 

based on the motion capacity of caribou. We hypothesized that selection toward certain resources 104 

and avoidance of others would be necessary in order to explain movement of caribou because the 105 

habitat selection of female caribou during post-calving represents a tradeoff for minimizing 106 

predation risk (at the broad scale) and foraging (at the fine scale). Accordingly, we predicted that 107 

caribou movement would be best represented by assessing resource selection at a longer distance 108 

than the one provided by GPS relocations (Bastille-Rousseau et al. 2015). We believe that the 109 
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modelling framework proposed here will set the foundation for building predictive models of 110 

animal movement that are more reflective of realistic biological determinants, and thereby 111 

represent an improvement to traditional telemetry-based animal movement modeling.  112 

 113 

Methods 114 

Study area 115 

Newfoundland is a 108,860-km² island at the eastern extremity of Canada (47º44N, 59º28W - 116 

51º44N, 52º38W), with humid-continental climate and substantial year-round precipitation 117 

(Environment Canada 2013). Natural habitat consists mainly of coniferous and mixed forests of 118 

balsam fir (Abies balsamea), black spruce (Picea mariana), and white birch (Betula papyrifera) 119 

and, in some locations, substantial areas composed of bogs and heath or barren habitats. Our 120 

analyses were based on Landsat TM satellite imagery, with a resolution of 25 m, classified into 5 121 

different habitat types: wetland habitats (Wetland), barren and other open habitats (Barren), 122 

mixed and coniferous open stand (CO), mixed and coniferous dense stand (CD), open water and 123 

other rarer habitats such as broadleaf stands, herbs and bryoids (Other) (Wulder et al. 2008). 124 

Anthropogenic disturbances were not extensive on these caribou ranges and consisted of logging, 125 

hydroelectric developments, and roads. We restricted our analysis to five important migratory 126 

herds located south of the main east-west highway that crossed the island.  127 

 128 

Animal capture and monitoring 129 

During 2006-2010, more than 200 caribou were captured, principally during winter, and fitted 130 

with global positioning system (GPS) collars that obtained locations every 2 hours. We focused 131 

on 140 adult females (361 caribou-years and 371,744 locations), 2006-2012, that resided in 6 132 
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herds. We limited our movement analysis to the crucial, post-migratory period of calving and 133 

post-calving (1 May - 1 August) when most caribou neonate mortalities occur (Bastille-Rousseau 134 

et al. 2016). All animal capture and handling procedures were consistent with the American 135 

Society of Mammologists guidelines (Sikes and Gannon 2011). 136 

 137 

Statistical analyses 138 

In Potts et al. (2014), a method was developed for inferring the probability of finding a caribou 139 

in a habitat �(�), given that it was at position � in the previous step (2 hours previously) and 140 

arrived there on a trajectory ��. The model takes the form: 141 

�	(�(�)|�, ��,�	) = �	(�, ��)
����	(�(�)|�, ��)�	��(�), �(�)��                 (1) 142 

where � is the current position of the animal, �(�) is the habitat type at �, and �	��, �� is the 143 

weight associated to moving from habitat � to habitat �. Here, �	and	�	 ∈ ℋ, the set of all possible 144 

habitat types. In equation (1), �	(�|�, ��) represents the probability that an animal ends its step 145 

in habitat-type j, given that it starts at y and arrives there on trajectory ��, discounting the 146 

weighting due to habitat selection. This can be thought of as the ‘availability’ of habitat-type j, 147 

given y and ��. As in Potts et al. (2014), we found an approximate value for �	(�|�, ��) by 148 

sampling 100 times from the distribution Φ(�| , ��). Then �	(�|�, ��) is defined to be the 149 

proportion of samples that land in habitat-type j. The function �	(�, ��) ensures that 150 

! �	(�(�)|�, ��,�	)"�Ω
= 1, where Ω is the study area.  151 

 A drawback of this approach is that it assumes caribou make movement decisions on a 2-152 

hour framework. In reality, since they have home ranges that are dozens of kilometers across, 153 

they are likely to make longer-scale decisions when moving. To test this hypothesis, we 154 

constructed a model describing probability of an animal moving towards a region of a given area 155 
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(defined based on the proportion of each landcover within a circle of diameter %), at a distance & 156 

away from the animal, containing habitat of type � (see Figure 1). This model is: 157 

�'(�|�, &, %,�') = �'(�, &, %)
���'(�|�, &, %)�'��, �(�)�,                     (2) 158 

where �' and �' are the long-distance analogues of �	 and �	 respectively. More precisely, 159 

�'��, �� is the weighting associated with moving from habitat-type � in the direction of the region 160 

of diameter %, at a distance & away from the animal, containing habitat of type �. �'(�|�, &, %) 161 

denotes the proportion of habitat i in the circle, (),� of radius R, centered at y, after averaging 162 

each point over the smaller circle *+,�,),,, centred at a position of distance % away from � in 163 

direction �. The function �'(�, &, %) ensures that ∑ �'(�|�, &, %,�').∈ℋ = 1. This situation is 164 

illustrated in Figure 1. Note that the circle *+,�,),, may not be used by the animal, but might still 165 

provide information regarding movement decisions made by animals. Our goal is to evaluate, 166 

relative to all potential combinations of resources that are available to the animal over a specific 167 

distance, if the animal is more likely to direct its movement more (or less) frequently towards 168 

specific combination of resources.  169 

 Usually, the circle *+,�,),, will contain more than one habitat, so it is necessary to 170 

generalize equation (2) by constructing the probability of moving from � towards a circle 171 

containing habitat types in the same proportions as those inside	*+,�,),,. With this in mind, we let 172 

�'(�) = �/(�|�, �, &, %)�.∈ℋ denote the set of proportions of habitat types � ∈ ℋ found in the 173 

circle *0,),,. Here, /(�|�, �, &, %) is the proportion of habitat � found in the circle *+,�,),,. Then 174 

we define: 175 

�'(�'(�)|�, &, %,�') = �'(�, &, %)
��∑ �'(�|�, &, %)/(�|�, �, &, %)�'��, �(�)�.∈ℋ .     (3) 176 

We call Equation (3) the long-distance model, while Equation (1) is called the local model.   177 
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 Given a set of consecutive locations ��, ��, … , �3, we parameterize the models in 178 

equations (1) and (3) by maximizing the following likelihood functions, respectively: 179 

4	(��, ��, … , �3|�	, ) = ∏ �	(�(�6)|�6��, �6��,�	)
3
67� ,                                         (4) 180 

4'(��, ��, … , �3|�', ) = ∏ �'(�'(�6)|�6��, &, %,�')
3
67� ,                                        (5) 181 

where �6 is the bearing on which the animal arrives at location �6. We used different values of & 182 

corresponding roughly to the median distance traveled by caribou over the course of a day to 183 

over a week (&= 1500 m, 2000 m, 3000 m, 4000 m and 5000 m). We changed the grain of the 184 

habitat layer to consider overall availability of a habitat by taking its density in the circle of 185 

diameter %. We tested different values of smoothing using a range of diameters %, from 25 m 186 

(no smoothing) to 6000 m. We tested all combinations of & and % where & −
,

9
≥ 1000	< to 187 

assure independence in the estimation of local and long distance decisions. (Indeed, 95% of step 188 

lengths between consecutive 2-hour locations were <1000 m.)  189 

This formulation allows us to compare different scenarios of complexity in movement 190 

decisions: (a) responses to local resources by using Equation (4); and (b) long-distance 191 

assessment of resources by using Equation (5). We used the Bayesian information criterion 192 

(BIC) to select the most parsimonious model given that we were interested in comparing models 193 

of finite-dimensionality (Yang 2005). To bolster our analysis, we examined resource use and 194 

selection on a seasonal scale (see Supplementary Appendix A). We calculated the maximum 195 

likelihood using the Nelder-Mead algorithm. All analyses were run with Python 2.7.5 and R 196 

3.2.1.  197 

 198 

Results 199 
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Model selection based on BIC revealed that all top models explicitly considered long-distance 200 

decisions (∆BIC = 58,419, Table 1), implying that consideration of a general area over a 201 

relatively long distance is a better predictor of movement decisions than simply accounting for 202 

the resource type at the next recorded step – i.e. selection at the scale of the relocation data. The 203 

top model indicated that decisions based on a radius (R) of 2000 m and a smoothing diameter (D) 204 

of 2000 m outperformed other combinations of radius and smoothing (BIC = 536,299, Table 1) 205 

and was followed by other formulations involving relatively similar combinations of radius 206 

distance and smoothing grain size (Table 1). Nevertheless, combining the long-distance model 207 

based on R = 2000 and D = 2000  with the local model would lead to a model outperforming any 208 

assessment made at a single scale (∆BIC = 35,046, Table 1).  This indicates that movement in 209 

caribou is likely to result from decisions happening at multiple scales: i.e. that caribou balance 210 

both the proximate need to eat and the longer-scale requirement to move towards broad areas 211 

that are likely to provide sufficient forage for the days to come. A full list of candidate models is 212 

provided in Supporting Information. 213 

Results for the local model (Table 2) are very similar to those reported in Potts et al. 214 

(2014); the negligible differences can be ascribed to removal of a few observations – i.e., missing 215 

data that arose when calculating the effect of resources at a longer distance. Results from the 216 

long-distance model (Table 2) indicated avoidance of dense coniferous habitat; this habitat was 217 

never attractive when caribou were in other habitat types and caribou were also strongly attracted 218 

to other habitats when in this habitat type (Table 2). This avoidance was much stronger at the 219 

long-distance scale than at the local scale, suggesting that avoidance of poor-quality habitat tends 220 

to be a long-term and broad-scale decision that may be harder to observe merely by examining 221 

successive 2-hourly telemetry locations (as is typical for step selection analysis). 222 
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Caribou also displayed preferences for open coniferous habitat in comparison to other 223 

habitats when modelled as making decisions over a long distance. This selection for coniferous 224 

open habitat was not apparent at the local scale. Caribou displayed a tendency to remain in 225 

barren or wetland habitats rather than switching between the two. This pattern is potentially 226 

indicative of two different movement modes associated with each habitat.  227 

Our analysis of seasonal-scale resource selection - a longer scale than the either the short- 228 

or long-distance movement models - indicates that motion capabilities also affect caribou 229 

resource selection on a much larger spatio-temporal scale than the movement decisions of 230 

individuals (see Supplementary Appendix A). For “Other” and coniferous dense landcover, these 231 

seasonal-scale decisions play a strong role in the avoidance of these habitats (Table S1, 232 

Supplementary Appendix A), which bolsters observations made from analysis of the long-233 

distance movement model.  234 

 235 

Discussion 236 

Using an extensive dataset of GPS telemetry locations from migratory caribou, we showed how 237 

animal movement can be described by assessing specific resources at both local and long-238 

distances. Our novel movement model allows direct comparison between the long-distance 239 

model and the local model (described in Potts et al. 2014). This new model is particularly useful 240 

in uncovering avoidance of specific resources, such as coniferous dense forest.  Such forest areas 241 

are known to be used by predators, such as coyotes and black bears (Bastille-Rousseau et al. 242 

2015), so it is advantageous for caribou to stay a significant distance from this habitat type.  243 

We observed that both models can be used to explain caribou movement, implying that 244 

movement-related decisions are taking place across multiple spatial and temporal scales but, 245 
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more importantly, that the long-distance model performed better than the local model (Table 1). 246 

Comparing decisions made by caribou at the local and long-distance scales also showed opposite 247 

responses at each scale, a potential indication of the scale-specific trade-offs that caribou face. 248 

Overall, these results illustrate that the assumptions behind many movement models, related to 249 

scale in movement decisions, are unlikely to be upheld. We suggest that these findings may 250 

extend to a wide variety of animal species. Our work highlights the need to consider scale in 251 

resource decisions and overlapping behavioral processes in both movement modelling and data 252 

gathering (Schlägel and Lewis 2016a, b).  253 

The field of movement ecology is teeming with new approaches to analyze our 254 

increasingly extensive fine-scale datasets of animal movement. Many of these approaches are 255 

based on random walk models of different complexities and include variable types of directional 256 

persistence or bias in animal movements (Benhamou 2014, Auger-Méthé et al. 2015). Many 257 

more models including mechanistic models of movement as well as the popular step-selection 258 

functions (Fortin et al. 2005) share a common methodological assumption – that the scale of 259 

decisions towards a specific resource is estimated at the scale of the GPS relocation. Recent 260 

studies are seeking to overcome this obstacle (Gautestad et al. 2013, Fleming et al. 2014, 261 

Blackwell et al. 2015). Our study represents part of the decades-long shift in ecology away from 262 

single, arbitrary scales in favor of multiple, animal-centered scales. 263 

Frequency of GPS location acquisition is regularly specified as a trade-off to maximize 264 

transmitter battery life and onboard memory storage (Hebblewhite and Haydon 2010). Yet, the 265 

presence of long-term and shorter-term motivation potentially creates several levels of decisions 266 

that operate simultaneously to dictate animal movement and extend beyond most GPS telemetry 267 

studies (e.g. 2 days; Benhamou 2014). Consequently, assessing the effects of resources on 268 
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movement solely at the scale of GPS-locations can be problematic, since observed movements 269 

are likely to be influenced by longer-distance considerations.  270 

Another key consideration is the grain (Wheatley and Johnson 2009) at which animals 271 

may perceive and react to the environment. The importance of careful grain selection has 272 

received considerable attention in the field of habitat selection (Laforge et al. 2015a, 2015b), but 273 

its importance in animal movement models is much less frequently discussed. While we did not 274 

explicitly modify the grain of our landcover data, our models potentially indicate a similar 275 

importance of grain in movement modelling while also revealing biological insights for caribou.  276 

We found that caribou selected open areas, including open coniferous and wetland 277 

habitats (Table 2), which is consistent with predator avoidance in this species (Valeix et al. 278 

2009). Additional benefits from using open habitat include reducing biting insect harassment 279 

(Bergerud et al. 2008). In our study area, open habitats also offered the highest amount of forage 280 

to caribou (Bastille-Rousseau et al. 2015). Interestingly, caribou did not select coniferous open at 281 

a long-distance, despite being the most heavily used habitat. Simulated movement based on 282 

caribou step length and turning angle distribution and actual locations showed similar use and 283 

selection for this resource. While caribou are more likely to move to barren and wetland habitat 284 

at the local scale, at the larger scale they tend to be attracted toward areas containing coniferous 285 

open habitat types. This indicates that, while caribou actively select these stands, they likely 286 

select them for a very specific reason, such as foraging (Bastille-Rousseau et al. 2015). Such 287 

discrepancies between local and long-distance considerations also indicate how selection can be 288 

scale-sensitive.  289 

We surmise that the long-distance model plays a stronger role for the conditions that 290 

caribou avoid, such as coniferous dense, than habitats that caribou select for. Indeed, it is likely 291 
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that our long-distance model is more appropriate to detect avoidance than selection given that 292 

there are uncertainties as to whether circle C is used by caribou. Simulations based on the 293 

correlated random walk model also predicted selection for these habitats (Appendix A), further 294 

indicating that avoidance rather emerges because these habitats are rarely attractive at the local 295 

and long distance scale, in comparison to other habitats. While selection for barren habitat could 296 

be explained almost uniquely by the motion capacity of caribou, long-distance selection seems to 297 

play a role in the selection of barren habitat. Interestingly, caribou in barren or wetland habitat 298 

are likely to remain in the same habitat. This could potentially lead to negative edge effects 299 

between neighboring patches of these habitats (Potts et al. 2015).  300 

Many species, including caribou, are known for their philopatry toward calving or 301 

reproductive areas (Gibson and Mann 2008, Schaefer and Mahoney 2013). Our work provides 302 

insight into how animals respond to their surroundings at a finer scale. We found that caribou are 303 

able to direct their movements to areas containing specific resources and that decisions are 304 

conditional upon where caribou are currently located. Within the extent of distances we sampled 305 

to represent long-distance decisions, 2000 m best represented caribou movement. This indicates 306 

that our study animals directed their movement towards areas that could be accessed roughly 307 

within 2-days travel distance. Such decisions are likely to extend beyond what caribou currently 308 

perceive of their environment, implying that caribou use a cognitive map of their surroundings to 309 

inform their foraging decisions (Fagan et al. 2013).  310 

Our work adds to the increasing evidence of high-level cognitive processes (e.g., memory 311 

and orientation) in ungulates (Wolf et al. 2009, Gautestad et al. 2013, Merkle et al. 2014, Avgar 312 

et al. 2015). More importantly, our work shows that the scales at which resources affect 313 

movement and the grain of spatial data should be carefully selected. For female caribou, the 314 
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long-distance model alone appears to be more salient than the local-distance model. In contrast, 315 

the arbitrary scale provided by GPS locations is likely to be unsuitable to reliably estimate 316 

meaningful responses to specific resources, meaning that approaches applied across scales (or 317 

combining decisions over multiple scales) are more likely to yield representative models of 318 

animal movement. As in many other facets of ecology, explicit consideration of scale in 319 

movement analysis is an inescapable priority for robust inference.  320 
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Tables 427 

Table 1.  Top candidate models estimating a local or long distance responses to resources. 428 

Models differed in the radius R and grain size D (Figure 1) regarding how the long-distance 429 

model was estimated. Models were ranked based on BIC and ω BIC. Note that the model 430 

including both local and long distance responses was estimated by combining model ranked 1 431 

and 30.  432 

Rank Attraction R D BIC ω BIC 

1 Long 2000 2000 563299 1 

2 Long 2000 1500 566523 0 

3 Long 1500 500 572169 0 

4 Long 2000 1000 572841 0 

5 Long 3000 3000 574044 0 

6 Long 4000 6000 576693 0 

7 Long 2000 750 578703 0 

8 Long 3000 2000 579260 0 

9 Long 5000 6000 580154 0 

10 Long 1500 350 581407 0 

30 Local - - 621718 0 

- Both 2000  2000  528253 - 

 433 

  434 
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Table 2. Local and long-distance responses to resources for 140 female caribou in 435 

Newfoundland. Coefficients are derived from the top model (Table 1) based on a long-distance 436 

model of 2000 m and a smoothing diameter of 2000 m. Coefficients >1 represent attraction 437 

toward a specific habitat based on the presently occupied habitat; coefficient <1 represents 438 

avoidance.  439 

  Local scale   Long-distance scale 

To Barren Wetland Other CD1 CO2   Barren Wetland Other CD1 CO2 

From 

Barren 1.000 1.058 0.403 0.635 0.884 

 

1.000 0.635 <0.001 <0.001 1.280 

Wetland 0.968 1.000 0.376 0.646 0.940 

 

0.254 1.000 0.020 <0.001 1.397 

Other 1.640 1.621 1.000 0.900 1.346 

 

2.277 4.006 1.000 <0.001 11.453 

CD1 1.159 1.091 0.351 1.000 1.062 

 

>1000 >1000 >1000 1.000 >1000 

CO2 1.075 1.071 0.283 0.822 1.000   0.047 0.030 0.041 <0.001 1.000 

1 Coniferous dense 440 
2 Coniferous open 441 
  442 
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Figure captions 443 

Figure 1. Schematic sampling design for the estimation of local and long-distance responses to 444 

resources. Sequential animal locations are represented by red dots, the present location by the 445 

yellow point, y. When moving from y to x, an animal can select or avoid local resources at x or 446 

resources centered at C (blue dots) at a distance R. Local decisions are estimated by comparing 447 

attributes at x with attributes at locations that could have been reached over the same period 448 

(green dots). Long-distance decisions is estimated by comparing attributes in C with attributes 449 

found within the bigger circle of radius R.  450 
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Figure 1. 451 

 452 


