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Abstract. The growing number of available data graphs in the form of RDF
Linked Data enables the development of semantic explorationcapgtis in
many domains. Often, the users are not domain experts and are therefore
ware of the complex knowledge structures represented in the data grephs th
interact with. This hinders s’ experience and effectivenes3ur research
concerns intelligent support to facilitate the exploration of data gtaphsers
who are not domain experts. We propose a new navigation suggudach
underpinned by the subsumption theory of meaningful learningshwiostu-
lates that new concepts are grasped by starting from familiar concejtd wh
serve as knowledge anchors from where links to new knowledgeaate. Our
earlier work has developed several metrics and the correspondorihait
for identifying knowledge anchors in data graphs. In this paper, vessatize
performance of these algorithms by considering the user perspeutiappli-
cation context. The paper address the challenge of alignsig lezel objects
that represent familiar concepts in human cognitive structures with atitatn

ly derived knowledge anchors in data graphs. We present a systappat@ach
that adapts experimental methods from Cognitive Science to deriveldasic
objects underpinned by a data graph. This is used to evaluate kgeveed
chors in data graphs in two application domains - semantic bro\{igingjc)
and semantic search (Careei®)e evaluation validates the algorithms, which
enabéstheir adoption over different domains and application contexts.

Keywords: Data Graphs, Basic Level Objects, Knowledge Anchors, Usable
Semantic Data Exploration.

1 Introduction

With the recent growth of linked data graphs, a plethora of intedinlomain eritt
tiesis available for user exploratory search tasks, such as learning and topic invest
gation [1] Gradually, data graphs are also being exposed to users in differem-Sema
tic Web applications, taking advantage of the exploration of the rich knowtsdge
coded in the graphs. Among the applications for supporting user exphortotwo
closest to the context of this paper are semantic data browW2e#dd and semantic
search systems [5, .6 broad range of users interact with such applications. Often,
the users are not domain experts and struggle to formulate queries thaenepheir



needs Furthermore, the users are usually exposed to an overwhelminghtaofou
unfamiliar options for exploratioof the data graph, which can lead to confusion, high
cognitive load, frustration anafeeling of being lost. This hinders theers’ explora-

tion experience and effectiveness. A way to overcome these challertgesuggest
‘good’ trajectories through the graph which can bring some utility to the users (e.g.
increase effectiveness, improve motivation, or expand knowledgew@krfocuses

on knowledge utility- expandingne’s domain knowledge while exploring the graph.

Lay users, who are not experts in the corresponding domainnaveare of the
underlying complex knowledge structures encoded in a data graph. lh, other
words, theusers’ cognitive structures about the domain may not match the semantic
structure of the data grapho address this challenge, we propose a novel approach
to support graph exploration that can expand a users’ domain knowledge. Our ap-
proach is underpinned by the subsumption theory for meanilegfiuling [8]. It pos-
tulates that a human cognitive structure is hierarchically organized in termghof
inclusive concepts which can be used as anchors to introduce peweélge [9] A
core algorithmic component for adopting subsumption theory for gemgratod’
trajectories is the automatic identification of knowledge anchors in a data graph
(KApg), i.e. entities that refer to anchoring concepts in human cognitive segsictu

Our earlier research has developed several metrics and correspondingrafgorith
for identifying KApg, which are presented in detail in [10Jo Ttilize the KApe met-
rics in applications for data graph exploration, a systematic evaluation appraach th
examines the performance of the metrics is needed. Such an apprpeedeiged in
this paper. As thd&Apc should align with anchoring concepts in human cognitive
structures, we develop an original way to derive such familiar congeptsiomain
that corresponds to a data graph and considers the domain covettaggrafph. We
adapt Cognitive Science experimental approaches of free-namingtdagkentify
basic level objects (BLO) in human cognitive structures, i.e. domain gttt are
highly familiar and inclusive, so that people are able to recognize themygditk

The evaluation approagbresented in this paper contributes to developing usable
semantic data graph exploration applications by providing:

o formal description of an algorithm for identifying basic level objects Wwhimrre-
spond to human cognitive structures over a data graph;
¢ implementation of the BLO algorithm and utilization to evaluidfec metrics

over two application contexts for data graph exploration - semantiesiomg (n

musical instrument domain) and semantic sedrc#éreer domain); and
e analysis of the performance BApc metrics, including hybridization heuristics,

using the benchmarking sets of BLO identified by humans.

The rest of the paper is structured as follows. Section 2 positions thkenhe
relevant literature and points at the main contribution. Section 3 briefly esitiive
KApe metrics, summarizing [10An algorithm for identifying a benchmarking st
BLO is presented in Section 4. Sections 5 and 6 describe experimental studies where
we apply the algorithm for identifying BLO using data graphsaaf semantic explo-
ration applications- music browser (MusicPinta) and career guidance (L4All). The
BLO are used to evaluate the deriv@llpe. Section 7 discusses the evaluation find-
ings, points at generality and applicability of the algorithms, and conclodgmper.



2 Related Work

Recent research on data exploration over the semantic Web examinestdifferen
proaches to reduce uskignitive load, especially when the users are exposed to
complex domains which they are not familiar with. This has browgjether research
from Semantic Web, personalization, and HCI to shape user-orientedaipplifor
data exploration [1, 3, 6]. Personalized exploration based on user intesdteen
presented in [12]A web-based graph visualization approach was used in [13] to help
domain experts with analysis tasks. A co-clustering approach thatizega®mantic
links and entity classes was presented in [14] to support iterative nanighgatities
over RDF data. The notion of relevance based on the relative cardinalitheand
in/out degree centrality of a graph node has been used to prgdple summaries
[15]. Our work brings a new dimension to this research effgriooking at the
knowledge utility of the exploratign.e. providing ways to expand the user’s aware-
ness of the domain. This is crucial for the usability of semantic eatarapplica-
tions, especially when the users are not domain experts.

Our approach is based on identifying knowledge anchors in data gRglbsant
work on finding key concepts in a data graph was developed by ressacctiology
summarization [16] and formal concept analysis [17]. Ontology sanmation aims
at helping ontology engineers to make sense of an ontology intordeuse and build
new ontologies [18]. The closest ontology summarization approach tpahess
context is [19], which highlighted the value of cognitive natural categtoiddenti-
fying key concepts. The work in [20] has formalized the maipcpological p-
proaches for identifying basic level conceptormal concept analysi$n [10] we
have operationalized these approaches, allowing automatic identificali@wef

According to [18], there are two main approaches for evaluating adtisen a-
tology summary: gold standard evaluation, where the quality of the amyrime-
pressed by its similarity to a manually built ontology by domain expertsprpus
coverage evaluation, in which the quality of the ontology is represbgtiéd appo-
priateness to cover the topic of a corpus. The evaluation approach (&@Hinclud-
ed identifying a gold standard by asking ontology engineers to selagnlben of
concepts they considered the most representative for summarizing aypniadhe
best of our knowledge, there are no approaches that consider keyptsoimceata
graphs which correspond to cognitive structures of lay usersavéhonot domain ex-
perts. We identify such concepts in data graphs including both an aiatoneghod
to deriveKApg and an experimental method to derive BLO that correspond to human
cognitive structures. We evaluak\pg against benchmarking sets of BLO over the
data graphs of two semantic exploration applicatietsowsing(Music) and search
(Careers). By providing a systematic evaluation approach, the papemfesilibe
adoption of theKApe metrics, and the corresponding hybridization methods, to en-
hance the usability of semantic web applications that offer user explocdtidata
graphs.



3 Identifying Knowledge Anchorsin Data Graphs

A Data GraphDG describes entities (vertices) and attributes (edges), represented as
Resource Description Framework (RDF) statements. Each statement e aftthe
form <Subject, Predicate, ObjedP1]. Formally, a data graph &sa labeled directed
graph DG =(V,E,T), depicting a set of RDF triples where:

-V ={v,V,,...,v,} is a finite set of entities;

- E= {el, e2,...,em} is a finite set of edge labels;

- T ={t,,t,,...,t,} is a finite set of triples where eadh is a proposition in the
form of a triple<vs,q ,v0> with v_,v, eV, where v, is the Subject (source entjty

and v, is the Object (target entity); argle E is the Predicate (relationship type)

The set of entitiesV is divided further by using the subsumption relationship
rdfs:subClassOf (denoted as—) and following its transitivity inference. This
includescategory entities (C <V which is the set of all entities that have at least
one subclass, at least one superclass, and at least one instantegf aamdities
(L =V which is the set of entities that have no subclasses).

The set of edge typeE is divided further considering two relationship categories:
hierarchical relationships (H : is a set of subsumption relationships between the
Subject and Object entities in the corresponding triples)dsmnabin-specific rela-
tionships ( D : represent relevant links in the domain, other than hierarchical links
e.g. inaMusic domain, instruments used in the same performance are related).

Our work in [10] has formally adopted the Cognitive science notfdrasic level
objects [11], to describe two groups of metrics and their corrdémpalgorithms for
identifying knowledge anchors in data grapK8dc).

Distinctiveness metrics. These are adapted from the formal definition of cue va-
lidity, to identify the most differentiated categories whose attributes are associated
exclusively with the category members but are not associated to the mefndker
categories. For example, in Figure 1, & value for entity v is the aggregation of
the AV values of entities (g &4, &) linked to members of\{Vv21, V22, Vo3, V24) USINg the
domain-specific relationship D. TH/ value for eequals the number triples between
&3 (Source vertex) and the members p{Varget vertices, v2») via relationship D
(2 triples), divided by the number of triples betweegriSource vertex) and all enti-
ties in the graph (Target vertices,w-1, V22) via relationship D (3 tripls



Distinctiveness metricsiclude:
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Homogeneity Metrics. These metrics aim to identify categories whose members
share many entities among each atheithis work, we have utilized three set-based
similarity metrics [10] Common Neighbors (CN), Jaccard (Jac), and Cosine
(Cos). For example (see Figure 1), consider the entignd the hierarchical relatio
ship rdf: type and the domain-specific relationship. Entity w has three entities
(e3, &4, &) linked to its membergvai, Voo, Vo3, Vo4), With two entities (¢ es) shared
among the four members through the hierarchical relationshiptype and rela-
tionship D, whereas the entity;\has no entities shared by similar relationship types
with its members (M, vi2). This indicates that entity, ¥\s more homogenous than v

4. ldentifying Basic Level Objectsover Data Graphs

The notion of basic level objects was introduced in Cognitive Science reséarch,
lustrating that domains of concrete objects include familiar categories thateaist
highly inclusive level of abstraction in humans’ cognitive structures, more than cate-
gories at the superordinate level (i.e. above the basic level) or the subordinate level
(i.e. below the basic level) [11, 22]. An example from [11] of @®BEGuitar -
most people are likely to recognize objects that belong to the categdryar
(basic level). However, users who are not experts in the music daneaimlikely to
be able to recognize the categarylk Guitar (subordinate level) and name it
with its exact name; instead, users may consider such objects equivaterittar
(closest basic level) rather theinsical Instrument (superordinate lel).

4.1  Cognitive Science Experimental Approachesfor Deriving BLO

While studying the notion of basic level objects, Rosch et al [11] condsetedal
experiments comprising free-naming tasks testing the hypothesis jbet ndmes at
the basic level should be the names by which objects are most generally designated
adults. In a free-naming task, objects in a taxonomy are showrpésticipant as a
series of images in fixed portions of times, and the participant is &skeentify the



names of the objects shown in the images as quickly as po3gibée types of pack-
ets of images were shown to the participants: those in which one pictorefich

superordinate category appeared; one in which one image from &sichdvel cate-
gory appeared; and one in which all images appeared. The participantdeiner

ingly used names at the basic level while naming objects in the imades [1

To identify BLO, accuracy and frequency were considered. Accuracyidays
whether a participant provides an accurate name for the object in thertgxomloile
frequency indicates how many times an object was named correctljfdrgwli par-
ticipants. In the example afuitar, when participants were shown members of
Guitar (e.g.Folk Guitar, Classical Guitar) in a packet, they named
them with their parentuitar at the basic level more frequently than with names at
the superordinate level (e.gusical instrument) or with their exact names
(e.0.Folk Guitar,Classical Guitar) atthe subordinate level.

The selection of object names used in the free-naming tasks]im@slbased on
the population of categories of concrete nouns in common use in Englély. ibun
with a word frequency of 10 or greater from a sample of wriiaglish [23] was
selected as a basic level object. A superordinate category was considered in common
use if at least four of its members met this criterion.

However, the Cognitive Science approach for selecting BLO cannot be agplied
rectly in the context of a data graph. The principal difference is that vietoamn-
strain the human cognitive structures upon the data graph, as opposétgta bag
of words from popular dictionarieShis is becausa data graph presents a lesser
number of concepts from a domain, which belong to the graph smoghé¢here can be
concepts that have been omitted. Moreover, the Cognitive Science studie&dnclu
concrete domains where images of the objects could be shown to patsiciany
semantic web applications utilize data graphs which include more abstracttsoncep
for which images cannot be reliably shown to users (e.g. medicalséagenviron-
mental concepts, professions). Therefore, we adapt the Cognitive scierae exp
mental approach for deriving BLO to take into account the domain covefraggata
graph, which is applicable to any domain presented with a data graph

4.2 Algorithm for Identifying BLO over Data Graphs

Following Cognitive Science experimental studies outlined above, we ptesen
strategies with the corresponding algorithm for identifying BLO dat&a graph.

Strategy 1. Takes into account whether a leaf entitg L that has nsubclasses
is presented to a user and named with its parents (i.e. superclasses).

Strategy 2. Takes into account whether a category entitg C that has one or
more subclasses is presented and named with its exact name, orewinth of a
parent that is a superclass or a category member (i.e. subclass that is nenstigaf

Algorithm 1 describes the two strategies for identifying BLO using accunady a
frequency Accuracy refers to naming an entity correctly. It considers venethuser
names an entity with its exact name, or with a parent (superclasghaa category
member (subclass) of the entity. Frequency indicates how many tirpadieular
caegory was accurately identified by different participants.



The algorithm takes a data graph as input and returns two $t©ofFor any class
entty VvV, we identify the number of users to be asked to name the entityXline 2
For Strategy 1 (lines 3}, we consider accurate naming of a category erdifje(ent)
whena leaf entity v e L that is a member of this category is seen. For Strategy 2
(lines 814), we consider naming a category entitye C with its exact name (lines
10, 11) or a name of its superclasses (parents) or subclasses (Médhmasrd2-13).

In each strategy, we use a representation funsiivow{r, v) to create a represent

tion of an entity v to be shown to the user. The representation of a leaf entity
Vv € L (in Strategy 1) will consider the leaf itself (e.g. show a single label oigéesi
image for the leaf entity), while the representation of a category eutityC (in
Strategy 2) will consider all (or some) of the category leaves (e.g. shawangom
listing of a set of labels of entity leaves or showing a groupnafjes of leaves as

a collage).

Algorithm 1: Identifying Basic Level Objectsin Data Graphs

Input DG =¢(V,E,P)
Output two sets of entitiesSetl and Set2
1. for a set of entities vV do

2. foral(=%i<n;i++) /Ishow the entity/ to N users
3 if ve L then //Strategyl
4 showr, V) and ask a user to name v

5. if answe(a,v) € parengp,Vv) then Ilcheck accurey
6. count+ + /lcount frequeay
7 end if;

8 elseif ve C then //Strategy2
Q. show(r, V) and ask a user to namev

10. if answe(a,v) =labelb,v) then lIcheck accurey
11. coupt+ + /[count frequeay
12. elseif answe(a,v) e{ parentp,v) U membegmn,v)} then //check accurey
13. coupt+ + /lcount frequeay
14. end if;

15.  endif;

16. end for;

17. end for;

18.Setl1 = {answer@ v )ve L Ancount =k} //Kis number of different users
19. Set2={answer@ y )ve C Acount >k} //Kis number of different users

For an entityv, the following SPARQL query is used to get the set of entity leaves:

SELECT ?leaf ?leaf label
WHERE {?leaf rdfs:subClassOf v.

?leaf rdfs:label ?leaf label.
FILTER NOT EXISTS

{?member rdfs:subClassOf ?leaf.}}



Thetwo strategies in Algorithm 1 for obtaining BLO are applied as follows

Strategy 1, when a user is shown a representation of a leaf extitg L (line 4),

the following steps are conducted:

- The functionanswe(a,Vv) assigns a user's answer to the leaf entityv .

- The function paren{p, v) returns a set of labels (i.e. names) of the parerp(sj
the leaf entityv via the following SPARQL query:

SELECT “?parent label ?label
WHERE {v rdfs:subClassOf ?parent.
?parent rdfs:label ?parent label.}
- The algorithm in (line 5) checks if the user named the leaf ewtityith one of its
parents. If an accurate name of a parent was provided, then the fregfi¢he
parent entity will be increased by one (line 6).

Strategy 2, when a user is shown a representation of a category &t (line 9),
the following steps are conducted:

- The functionanswe(a,v) assigns a user's answer to the category entity .

- The function paren(p,v) returns a set of labels of parent(p)of the category

entity v via SPARQL queries similar to Strategy 1 above.
- The functionmembefm V) returns a set of labels (i.e. namesywmber(s)M of

the category entity via the following SPARQL query:

SELECT ?member label
WHERE {?member rdfs:subClassOf v.
?member rdfs:label ?member label.}

- The functionlabelb,Vv) returns the label (i.e. name) of the category entitya
the following SPARQL query:

SELECT ?label
WHERE {v rdfs:label ?label.}

- The algorithm in (lines 10, 12) checks if the user nameddtegory entityv with
its exact name, or a name of its parents or its members. Iftlasraccurate naming
of the category, a parent or a member, the frequency of the categoey(line 11),
the parent name or the member name (line 13) will be increased by one.

43  Application Contexts Used for Experimental Evaluation

Linked Data graphs represented as a set of RDF triples can be ideal structures f
Semantic exploration applications [24Dne class of applications is semantic data
browsers which operate on semantically tagged content and present grogjsicto-
ries using relationships in the underpinning ontologies [1, 2], stipgaincertain or
complex information needs [3]. They enable the users to initiate a dataatigoio
session from a single entry point in the graph and move throutie®by following
RDF links [2]. Another class of widely used semantic Web applicationsarantic
data search engines [25]. Such applications allow the users to enter sesiel qu



though keword-based search interfaces and provide the users with a list of search
results obtained by using semantic queries automatically generated by the[gystem
In this paper, we present experimental studies over two different application d
mains for evaluating{Apc metrics against BLO. The first study is in the context of a
semantic data browser in the Music domain, called MusicPinta [2]. MusicPinta
enables users to navigate through musical instruments extractedBpadia, and
get information about these instruments together with musical perioemand art-
ists using these instruments. MusicPinta presitbntext for studying BLO in a con-
crete domain, as users can see images of musical instruments {4s 26). The
second study is in the context ofsemantic search engine in Career guidance,
called L4All [27]. L4All is a proprietary semantic search application which enables
learners to explore various career options to plan their career progri@sgiddAll
provides context for studying basic level objects in an abstract domaine wieer
users cannot be shown concrete representations of the graph entities.
The data graphs of the two applications are used for the evaluation studies.
MusicPinta. The dataset includes several open sources. DBpfedianusical n-
struments and artists - this dataset is extracted from dbpedia.org/spargl using
CONSTRUCT and made available as open source at the souréef@B&unée for
music-related structured data - this dataset is made available by the DBTune.org
linked data fashion. Among the datasets on DBTune.org we utilize: (i) Jamendo -
large repository of Creative Commons licensed music; (i) Megatunendapeéndent
music label; and (iii) MusicBrainz - a community-maintained open source encycl
paedia of music information. All datasets are available as RDF datasets and the Music
ontologyt is used as schema to interlink them. For the experimental study, we use
the top level class Music Instrument and all its entities (classes and instances).
L4All. The dataset is drawn from the “LifeLong Learning in London for All”
(L4All) project [27], bringing together experts from lifelong leagiand careers
guidance, content providers, and groups of students and.tlitgmovided lifelong
learners with access to information and resources that would supporinttexpla-
ing learning and career opportunities and in planning and refleatitigedr learning.
The L4All dataset uses the ontology developed by the L4All project, sangt data
collected during the project (anonymised for privacy). Among fivesdigerarchies in
the L4All ontology, the Occupation arfibject class hierarchies have the richest
class representation and deptbe(Eable 1).

Table 1. Main characteristics of the MusicPinta and L4All data sets

Dataset Hierarchy Root Class| Depth | No. of Classe§ No. of Instances/leaveg
MusicPinta | Instrument 7 364 256
L4AIl Occypation 5 463 3737

Subject 3 160 2194

1| http://dbpedia.org/Abodit
2 http://sourceforge.net/p/pinta/code/38/tree/

3 htté:/ldbtune.ora/
4 http://musicontology.con)/
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5 MusicPinta: Evaluating KApc against BLO

As a use case in a representative domain for evaluating knowledge anchas over
data graph, we used a typical semantic data browser, MusicPinta, which whs deve
oped in our earlier research [2nowledge anchors would lead to extendingi-M
sicPinta to suggest exploration paths that can improve the user’s domain knowledge.

51 Obtaining BLO

To enable impartial comparison of the outputs of Kie,c algorithms and BLO
we conducted a user study in the Musical Instrument domain followigarigim I.

Participants. 40 participants, university students and professionals, agsb1&-
cruited on a voluntary basis. None of them had expertise in Music.

Method. The participants were asked to freely nhame objects that were shown in
image stimuli, under limited response time (10s). Over&4 taxonomical musical
instruments were extracted from the MusicPinta dataset by running SPARDES
over the MusicPinta triple store to get all musical instrument concepts linkedevia th
rdfs:subClassOf relationship. The entities included: leaf entities (to&8)2nd
category entities (totdl08). Applying the two strategies in Algorithm 1, for each leaf
entity, a representative image was collected from the Musical Instrument Museums
Online (MIMOY)® to ensure that pictures of high quality were shovi@or a category
entity, all leaves from that category entity were shown as a group nyla sinage
(similarly to a packet of images in [11]). Ten online surVeysre run: (i) leaf enti-
ties: eight surveys presented 256 leaf entities, each showed 32 leaves; (iijycatego
entities: two surveys presented 108 category entities, each shdwatk§ories.

Free-naming task. Each image was shown for 10 seconds on the participant's
screen. She was asked to type the name of the given object (fentiigfs) or the
category of objects (for category entities). The image allocation in theysuwas
random. Every survey had four respondents from the study partisigcorresponds
to line 2 in Algorithm 1). Each participant was allocated only to oneegufwither
leaf entities or category entities). Figures 2-4 show example instrumegésnaad
participant answers (Figure 2 from Strategy 1, and Figuré$rdm Strategy 2).

Applying Algorithm 1 over the MusicPinta dataset, two sets oOBAere identi-
fied. Setl (Strategy 1) was derived from presenting leaf entitiesconsider accurate
naming of a category entity (parent) wheeleaf entity that belongs to this category is
seen. For example (see Figure 2), a participant was shown the image©flo
trumpet, a leaf entity in the data graph, and named it with its parent category
Trumpet. This will be counted as an accurate naming and will increase the oount f
Trumpet. The overall count forrumpet will include all cases when participants

5 http://www.mimo-international.com/MIMO/
6 MIMO provided pictures for most musical instruments.he tare occasions when an image did not exist
in MIMO, Wikipedia images were used instead.
7 The study was conducted with Qualtrics (www.qualtrigs)cBxamples from the surveys are available at:
https://drive.google.com/drive/folders/OB5ShywKndSMXaSWpiYVZ3WjA



namedTrumpet while seeing any of its leaf members. Set2 (Strategy 2) was de-
rived from presenting category entiti®e consider naming a category entity with its
exact name or a name of its parent or subclass member. For exaepiégizre 3), a
participant was shown the imageaafegoryTrumpet and named itwith its exact
name. This will increase the count forumpet. In Figure 4, a participant saw the
categoryBrass and named it as its member categdbryimpet.

| == 3
Fig. 2. An image of Fig. 3. Animage of Trumpet Fig. 4. An image of Bras:
Piccolo trumpet (a lea (a Category concept in th (Caegory concept in th
in the data graph) wa data graph with two 44 data graph) shown to
shown to a user, whi classes) was shown to a us user, who named it &
named it as “Trumpet” who named it as “Trumpet”.  “Trumpet”.

In each of the two sets, entities with frequency equal or above twodinged by
at least two different users) were identified as potential Bl union of Setl and
Set2 gives BLOIt includes musical instruments such Bsuzouki, Guitar and
Saxophone. The BLO obtained from MusicPinta are available fere

5.2  Evaluating KApc against BLO

Quantitative Analysis. We used the BLO identified to examine the performance
of the KApg metrics. For each metric, we aggregated (using uniorfAhe; entities
identified using the hierarchical relationships (H). We noticed that the threegeem
neity metrics have the same values; therefore, we choose one metricepbeing
the results, namely Jaccard similatitA cut-off threshold point for the result lists
with potential KAps entities was identified by normalizing the output values from
each metric and taking the mean value for the 60th percentile of the norntislized
The KApe metrics evaluated included the three distinctiveness metrics plus the Jac-
card homogeneity metric; each metric was applied over both familietatibnships
— hierarchical (Bland domain-specific (DAs in ontology summarization approaches
[19], a name simplicity strategy was applied to reduce noise when calculating ke
concepts(usually, basic level objects have relatively simple labels, such as chair or
dog. The name simplicity approach we use is solely based on the data §faph.
identify the weighted median for the length of the labels of all data grapties
v c V and filter out all entities whose name length is higher than the mdebanthe
MusicPinta data graph, the weighted median is 1.2, and hence we onlyetheloi
ties which consist of one word. Table 2 illustrates precision and recall \aogsar-
ing BLO andKApg derived using hierarchical and domain specific relationships.

8 https://drive.google.com/drive/folders/0B5ShywKndSLXa8WpiYVZ3WjA
9 Th similarity metric is widely used, and was usedentifying basic formal concepts in the
context of formal concept analysis [29]
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Table 2. MusicPinta: performance of théApc algorithms compared to BLO.

Relationship Precision Recall
types AV | CAC | CU | Jac AV | CAC | CU | Jac
Hierarchical 0.58| 0.55| 0.59| 0.6 0.64| 0.73]| 0.73| 0.55
Domain-Specific| 0.62| 0.58| 0.59| 0.62 | 0.36 0.5| 0.59| 0.36

Hybridization. Further analysis of the False Positive(FP) and False Negative(FN)
entities indicated that the algorithms had different performance on the diffaren
nomical levels in the data graph. This led to the following heuristidsytaridization.

Heuristic 1: Use Jaccard metric with hierarchical relationships for thée spes
cific categories in the graph (i.e. the categories at the bottom quartile of theraxo
ical level). There were FP entities (esthawm andOboe) returned by distinctiveness
metrics using the domain-specific relationshipsicOntology:Performance
because these entities are highly associated with musical performances éeug.is
linked to 99 performances amoe is linked to 27 performance). Such entities may
not be good knowledge anchors for exploration, as their hierarchicelwse is flat.
The best performing metric at the specific level was Jaccard for hierarchitaltattr
- it excluded entities which had no (or a very small number of) hierarditcslutes.

Heuristic 2: Take the majority voting for all other taxonomical levels.t\bshe
entities at the middle and top taxonomical level will be well represented in the graph
hierarchy and may include domain-specific relationships. Hence, ciomglilre vé
ues of all algorithms is sensible. Each algorithm represents a voter atideprtwo
lists of votes, each list corresponding to hierarchical or domain-spassiociated
attributes (H, D). At least half of the voters should vote for an entity fo be identi-
fied in KApe. Examples from the list dKApg identified by applying the above hy-
bridization heuristics includedccordion, Guitar and Xylophone. The
full KA pe list is available her®. Hybridization improved Precision to 0.65 and Recall
to 0.63.

6 L4All: Evaluating KApc against BLO

The Career domain is a suitable domain for studying basic level otjext® the
richness of its ontological structures and the fact that the identificatibmosfledge
anchors can facilitate users’ exploration of such structures, as discussed in [28]. We
followed Algorithm 1, conducting a study with human participants to identify BLO.

6.1 Obtaining BLO

Participants. 28 participants, university students and professionals, agi2%-
cruited on a voluntary basis. Most of them were experienced mainkyrip@ing.

Method. The experimental study for evaluating knowledge anchors in the L4All
dataset included categories from the Occupation and Subject class hierarchies, for the
reasons discussed above. Categories were represented to participants (cangespond

10 hitps://drive.google.com/drive/folders/0B5ShywKndSMkaSWpiYVZ3WjA



to theshow(r, V) function in Algorithm 1) using names (i.e. labels) of the category's

leaves. Overall, 623 class entities were extracted from the two class hierarchies (463
for Occupation and 160 for Subject) by running SPARQL querigettall class enti-
ties linked via therdfs:subClassOf relationship. The entities included: leaves
(349 for Occupation and 141 for Subject) and categories (11@dcupation and 19
for Subject). Seven online survéysere developed (six surveys presented the 114
cakegory entities of theDcaupation class hierarchy, with each survey showing 19
categories; and one survey presented the 19 categories of the Subjdutcdashy).
The category allocation in each survey was random. Every surveyhiadespod-
ents from the study participants. Each participant was allocated onlg uovey.
Category identification task. A representation of each category was shown on the
participant's screen and he/she was asked to identify the category name r@sm-rep
tation included a list of leavesames of that category (at most four leaf names were
shown on the participant's screen). The participant was provided omithdifferent
categories as candidate answers (including the category which the leaves belong to
and the participant was asked to select one category that he/she thinks the leaf entities
belong to. The three additional candidate categories covered three levels af-abstra
tion, namely: a parent from the superordinate level, a member fromitibedgate
level, and a sibling at the same category level. In cases where no pareptslmra
could be added to the candidate answers, siblings were used.instead
Applying Strategy 2 in Algorithm 1 over the Occupation and Subject biass-
chies in the L4All dataset, we considered naming a category entityita/ibxact
name or a name of its parents or its non-leaf subclass members tshtherpartic
pants. Figures 5 and 6 show examples of the category identificationréaskie
Occupation and Subject class hierarchies respectively. For instance, the paiticipant
Figure 5 saw two leaves (the category has two leaves only) of themgategise-
keeping Occupation and the participant identified the categsrgarentPer—
sonal Service Occupation, which he/she thinks that the leaves belong to.
This will increase the frequency for the categbgyrsonal Service Occupa-
tion. In Figure 6, a participant was shown the leaf names of the categjonyog-
ical Sciences (four random leaves where selected among 9) and selected its
exact name. This will increase the count for the categorlogical Sciences.

Select the Career category that all of the following Job titles belong to? Salact the Carser calagary that all of the fallowing Job litles belong to?

NEXT m
Fig. 5. A representation of Housekee Fig. 6. A representation of Biologica

ing Occupation (a Category concept Sciences (a Category concept in Sub-
the Occupation hierarchy with tw ject hierarchy with four random sut
subclasses) was shown to a user, w classes) was shown to a user, who id
identified it as “Personal Service Occu- tified it as “Biological Sdences”.

pation”.



Category entities in th®ccupation and Subject class hierarchies with frequency
equal or above two (i.e. categories named by at least two different useesideni
fied as potential BLO. Examples of BLO from Occupation wetministra-
tive, IT Service Delivery , Functional Managers and from Subject
were Biological Sciences, Law, Medicine and Dentistry. The
full KApg and BLOlists obtained from the L4All data set are available Yere

6.2 Evaluating KApc against BLO

Quantitative Analysis. The KApe metrics developed in [10] were run over the- O
cupation and Subject class hierarchies and the metrics outpdispefwere tested
against the BLO identified. For ea&f\pc metric, we aggregated (using union) the
entities identified using the hierarchical relationshipsif(s: subClassOf and
rdf:type). One domain-specific relationship was used by the mettie® (or
Occupation ancdhualification for Subject). We normalized the metrics output
values and took the 60th percentile of the normalized lists as a cutedghtid point.
Name simplification was applied using the weighted medians for the lehgtte o
labels of class entities in the Occupation and Subject class hierarchies (for Occupatio
= 3.2 and for Subject = 2.8) to filter out entities whose name legdtigher than the
median. Entities with name length greater than 3 were excluded (ties d the two
class hierarchies - Occupation and Subjeaid conjunctions, e.g. “and”, were not
taken into account in counting the name length of entities).

Precision and Recall values for the metrics were identified (see Talllbe3jhree
homogeneity metrics from [10] had the same values; therefore, weecth@odaccard
similarity metric in reporting the results (similatto the MusicPinta analysis). Using
the hierarchical relationshipgdfs:subClassOf andrdf:type), precision and
recall values were good for Occupation (precision ranging fromt0.0279 and &-
call from 0.44 to 0.88) and very mixed for Subject (precisionirgnfjom 0 to 1 and
recall from 0 to 0.53). For the domain-specific relationships, the precsid recall
were mixed forOcaupation (precision ranging from 0 to 0.75 and recall from O to
0.76) and Subject (precision ranging from 0 to 1 and recall freor00BY).

By inspecting what caused the zero precision and recall values folatbgo@y
Utility (CU) distinctiveness metric and Jaccard (Jac) similarity metric, we natiegd
none of these two metrics picked False Negative (FN) entities (i.e. potentig) KA
using the domain-specific relationships (for Occupation and Subjedtusing the
hierarchical relationships (for Subject). The CU metric did not pick any FNeantiti
since it multiplies the ratio [number of instances of a category dividetiper of
all entities, classes and instances in Occupation] with the total CU alussem-
bers of a category. Hence, the CU value will be decreased especially wreearther
1000s of entities (i.e. classes and instances) in the graph. For instaheeQiccup-
tion class hierarchy, the CU ratio for the FN categtsyes Related Occupa-
tion is: 87 instances divided200(463 classes + 3737 instances in the Occupation
hierarchy), reducing the CU value feales Related Occupation to become

11 hitps://drive.google.com/drive/folders/0B5ShywKndSMkaS WpiYVZ3WjA



less than th&0th percentile cut-off point (0.01). The Jaccard similarity metriandid
pick FN entities since each entity has instances linked with one instanceiarly
domain-specific relationship (e.g. Job). Hence, the categories will havdenseain

tions among their instances, producing zero values in the Jacetrid. m

Table 3. KA metrics performance using the two varieties of attribute types for the
Occupation and Subject hierarchies in the L4All dataset

Class Relationship Precision Recall
Hierarchy type AV | CAC| CU | Jac| AV |CAC CU | Jac
Occupation Hierarchtal 0.72 | 0.76 |0.79 | 0.79]| 0.52 | 0.88 | 0.44 | 0.44

Domain-Specifi¢ 0.73 | 0.75 0 0 0.76 | 0.36 0 0
Subject Hierarphi:al _ 1 1 0 0 053 | 0.53 0 0
Domain-Specifi¢ 1 1 0 0 0.31 | 0.08 0 0

Hybridization. Analysis of the False Positive (FP) and False Negative (FW¥) ent
ties indicated that the algorithms had different performance on the differentax
ical levels in the L4All data graph, whiéhformulated in the two heuristics below.

Heuristic 1: Use the AV and CAC distinctiveness metrics with hierarchicai rel
tionships for the categories at the bottom quartile of the class taxombene were
FN entities (e.gSales Related andScience and Engineering Tech-
nicians) returned by the AV and CAC homogeneity metrics using the domain-
specific relationshigiob, because these entities haew number of instances (e.qg.
Sales Related has 87 instances amtience and Engineering Tech-
nicians has 50 instances; the median of instances per catisgbty).

Heuristic 2: Take the majority voting for all other taxonomical levels.tMbshe
entities at middle and top taxonomical level are well represented in the geaph hi
chy. Each metric represents a voter and provides two lists of votes, daubries
sponding to hierarchical or domain-specific relationships. At least halfeofoters
should vote for an entity for it to be identifiadKApc.

Examples of KAg identified by applying the above hybridization heuristics for
Occupation and Subject class hierarchies are: for Occupatiogifeering
Professionals, Process Operatives, Science and Engineer-
ing Technicians), and forSwbject Business and Administrative
Studies, Education). The full lists ofKApg identified are available héfe

Hybridization increased performance, as follows: for Occupation, Precisiory/
and Recall = 0.9Zor Subject, Precision = 1 and Recall = 0.53.

7 Discussion

This paper presents a systematic evaluation approach to valilate metrics
against basic level objects derived by humans.

Algorithm for identifying BLO. The BLO algorithm presented in Section 4 is ge-
neric and can be applied over different application domains represented as data

12 https://drive.google.com/drive/folders/0B5ShywKndSMkaSWpiYVZ3WjA



grapts. In this paper, the algorithris appliedin two application domains for data
exploration, Music and Careers, using the data graphs from twansie exploration
applications. Applying the BLO algorithm over two domains allowgouslustrate
two ways of instantiating the algorithm for obtaining BLO. MusicPintscdbes
concrete objects - musical instruments - that can have digital representatipns (
image, audio, video)An image stimulls was used to represent musical instruments,
and free-naming tasks included showing image representatiomapdf gntities and
asking the users to quickly name the entities theylsemntrast, L4All comprises of
abstract career categories, such as Occupation and Subject, which have text-represen
tations (i.e. labels of entities) but no clearly distinguishable imagethidrcasea
category verification task was used to obtain Bhyoshowing text representations of
graph entities and asking the user to identify the matching entity givea answers.

An important component for applying the BLO is to identify appegprstimuli to
be used for representing graph entities and showing them tonkumaither a free-
naming task or in a category verification task. One of the main fatitatsaffects
choosing appropriate stimuli is how well the stimuli cover the entities éndtita
graph. In other words, the chosen stimuli should have repetieers for all entities in
the graph hierarchies. For instandee stimuli for MusicPinta were images - taken
from an established source (MIMOThe chosen stimuli have to be close enough to
users cognitive structures, so the users can understand the representatitinesf en

The BLO algorithm over shallow graph hierarchies has some limitations. For in-
stance, most categories (15 categories out of 19) in the Subject classhiiefathe
L4All ontology were identified as BLO. In a category verification task avehallow
hierarchy, finding candidate answers to be presented to users is challespiegal-
ly when the shallow hierarchy does not contain the three levels of abstréwisic,
subordinate and superordinate). Furthermore, the identified BLO in datasgrap
have confusing category labelling which reflect insufficiently articulateghesctor
instance, vague names (e'@uropean Language, Literature and re-
lated subject') or combining two categories in one (e‘glathematical
and Computer Sciences’). Hence, the BLO algorithm is sensitive to the quali-
ty of the ontology This points at another possible application of BL@eculiarities
in the output can indicate deficiencies of the ontology which can mangights for
re-engineering the ontology. An area of future work is to imptbeel 4All ontology
by modifying the class labels and better articulating their scope.

Performance of KApc metrics. The identified BLO were used to examine the per-
formance of te KApg metrics. Our analysis found that hybridization of the metrics
notably improved performance. The hybridization heuristics fougmer level of the
graph hierarchies tend to be the sameombine theKAps metrics using majority
voting. However, the hybridization heuristics for the bottom level ef hferarchy
differed depending on how instances at the bottom of the grepd associated
through domain-specific relationships. The performance is sensitive &pgnepri-
ateness of the domain-specific relationships captured in the data graptiniegahe
FP and FN entities for the hybridization algorithms K&pc led to the following
observations:

Missing basic level entities due to unpopulated areas in the data ¢iepio-



ticed that none of the metrics picked FN entities bgilog to the bottom quartile of

the taxonomies and having a small number of members (suzhlas in MusicPin-

ta andConstruction Operatives inthe Occupation class hierarchy in L4All

- Cello has only one subclass abdnstruction Operatives has 10 instanc-

es— mean number of instances in Occupation is 184). While these entities bzlong
the cognitive structures of humans and were therefore added to theseB$,Cone
could question whether such entities would be useful knowledge rancbcause of

their relatively small number of members. These entities could lead thtoudesd

ends’ within unpopulated areas of the data graph which may be confusing. We there-
fore seesuch FN cases as ‘good misses’ by theKApg metrics.

Selecting entities that are superordinates of entities in Bb®.FP included ent
ties (such a®keeds in MusicPinta andsecretarial and Related Occu-
pation in the Occupation class hierarchy in L4All) which are wefiresented in
the graphKeeds has 36 subclasses linked to 60 DBpedia categ@esretari-
al and Related Occupation has 8 subclasses aB@0 instances). Although
these entities are not close to human cognitive structures, they providdialketb
entities in BLO(Reeds links to Accordion; Secretarial and Related
Occupation links t0 Administrative and Secretarial Occupation).

We therefore sesich FP as ‘good picks’, as they provide bridges to Bleéntities.

8 Conclusion and Future Work

Data graph exploration underpins semantic Web applications, such asnigrows
and searchLay users who are not domain experts can face high cognitive load an
usability challenges when exploring an unfamiliar domain because the usensaar
ware of the knowledge structure of the graphs. This brings fbethchallenge of
building systematic approaesfor supporting users’ exploration taking into account
the knowledge utility of the exploration paths. To address this challesgejopt the
subsumption theory for meaningful learning [9] where new knowdddgubsumed
under familiar and highly inclusive entitie& core algorithmic component for adopt-
ing this theory is the automatic identification of knowledge anchoaidiata graph.

The work in this paper adapts Cognitive Science experimental approactss f
riving the BLO, and presents an algorithm to capture the BLO that comg$p hu-
man cognitive structures over a data graph. Our work contributes tovimgrthe
usability of data graph exploration by presenting a methodology foriredidi O in
human cognitive structures and the corresponding knowledge anchattatim graph.
The obtained sets of BL&nd KApg can have two broad implications: (i) to improve
users exploration of large data graphs; and (ii) to reengineer the onttdobegtter
align with human cognitive structures. We are focusing on the foandrare devis-
ing navigation strategies to expaneémsknowledge while exploring a data graph.
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