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Abstract. The growing number of available data graphs in the form of RDF 
Linked Data enables the development of semantic exploration applications in 
many domains. Often, the users are not domain experts and are therefore una-
ware of the complex knowledge structures represented in the data graphs they 
interact with. This hinders users’ experience and effectiveness. Our research 
concerns intelligent support to facilitate the exploration of data graphs by users 
who are not domain experts. We propose a new navigation support approach 
underpinned by the subsumption theory of meaningful learning, which postu-
lates that new concepts are grasped by starting from familiar concepts which 
serve as knowledge anchors from where links to new knowledge are made. Our 
earlier work has developed several metrics and the corresponding algorithms 
for identifying knowledge anchors in data graphs. In this paper, we assess the 
performance of these algorithms by considering the user perspective and appli-
cation context. The paper address the challenge of aligning basic level objects 
that represent familiar concepts in human cognitive structures with automatical-
ly derived knowledge anchors in data graphs. We present a systematic approach 
that adapts experimental methods from Cognitive Science to derive basic level 
objects underpinned by a data graph. This is used to evaluate knowledge an-
chors in data graphs in two application domains - semantic browsing (Music) 
and semantic search (Careers). The evaluation validates the algorithms, which 
enables their adoption over different domains and application contexts.   

Keywords: Data Graphs, Basic Level Objects, Knowledge Anchors, Usable 
Semantic Data Exploration. 

1 Introduction  

With the recent growth of linked data graphs, a plethora of interlinked domain enti-
ties is available for users’ exploratory search tasks, such as learning and topic investi-
gation [1]. Gradually, data graphs are also being exposed to users in different Seman-
tic Web applications, taking advantage of the exploration of the rich knowledge en-
coded in the graphs. Among the applications for supporting user exploration, the two 
closest to the context of this paper are semantic data browsers [2–4] and semantic 
search systems [5, 6]. A broad range of users interact with such applications. Often, 
the users are not domain experts and struggle to formulate queries that represent their 



needs. Furthermore, the users are usually exposed to an overwhelming amount of 
unfamiliar options for exploration of the data graph, which can lead to confusion, high 
cognitive load, frustration and a feeling of being lost. This hinders the users’ explora-
tion experience and effectiveness. A way to overcome these challenges is to suggest 
‘good’ trajectories through the graph which can bring some utility to the users (e.g. 
increase effectiveness, improve motivation, or expand knowledge). Our work focuses 
on knowledge utility – expanding one’s domain knowledge while exploring the graph. 

Lay users, who are not experts in the corresponding domain, are unaware of the 
underlying complex knowledge structures encoded in a data graph [1, 7]. In other 
words, the users’ cognitive structures about the domain may not match the semantic 
structure of the data graph. To address this challenge, we propose a novel approach 
to support graph exploration that can expand a users’ domain knowledge. Our ap-
proach is underpinned by the subsumption theory for meaningful learning [8]. It pos-
tulates that a human cognitive structure is hierarchically organized in terms of highly 
inclusive concepts which can be used as anchors to introduce new knowledge [9]. A 
core algorithmic component for adopting subsumption theory for generating ‘good’ 
trajectories is the automatic identification of knowledge anchors in a data graph 
(KADG), i.e. entities that refer to anchoring concepts in human cognitive structures.  

Our earlier research has developed several metrics and corresponding algorithms 
for identifying KADG, which are presented in detail in [10]. To utilize the KADG met-
rics in applications for data graph exploration, a systematic evaluation approach that 
examines the performance of the metrics is needed. Such an approach is presented in 
this paper. As the KADG should align with anchoring concepts in human cognitive 
structures, we develop an original way to derive such familiar concepts in a domain 
that corresponds to a data graph and considers the domain coverage of the graph. We 
adapt Cognitive Science experimental approaches of free-naming tasks to identify 
basic level objects (BLO) in human cognitive structures, i.e. domain concepts that are 
highly familiar and inclusive, so that people are able to recognize them quickly [11].  

The evaluation approach presented in this paper contributes to developing usable 
semantic data graph exploration applications by providing:  
• formal description of an algorithm for identifying basic level objects which corre-

spond to human cognitive structures over a data graph; 
• implementation of the BLO algorithm and utilization to evaluate KADG metrics 

over two application contexts for data graph exploration - semantic browsing (in 
musical instrument domain) and semantic search (in Career domain); and 

• analysis of the performance of KADG metrics, including hybridization heuristics, 
using the benchmarking sets of BLO identified by humans. 
The rest of the paper is structured as follows. Section 2 positions the work in the 

relevant literature and points at the main contribution. Section 3 briefly outlines the 
KADG metrics, summarizing [10]. An algorithm for identifying a benchmarking set of 
BLO is presented in Section 4. Sections 5 and 6 describe experimental studies where 
we apply the algorithm for identifying BLO using data graphs of two semantic explo-
ration applications – music browser (MusicPinta) and career guidance (L4All). The 
BLO are used to evaluate the derived KADG. Section 7 discusses the evaluation find-
ings, points at generality and applicability of the algorithms, and concludes the paper.  



2 Related Work 

Recent research on data exploration over the semantic Web examines different ap-
proaches to reduce users’ cognitive load, especially when the users are exposed to 
complex domains which they are not familiar with. This has brought together research 
from Semantic Web, personalization, and HCI to shape user-oriented application for 
data exploration [1, 3, 6]. Personalized exploration based on user interests has been 
presented in [12]. A web-based graph visualization approach was used in [13] to help 
domain experts with analysis tasks. A co-clustering approach that organizes semantic 
links and entity classes was presented in [14] to support iterative navigation of entities 
over RDF data.  The notion of relevance based on the relative cardinality and the 
in/out degree centrality of a graph node has been used to produce graph summaries 
[15]. Our work brings a new dimension to this research effort by looking at the 
knowledge utility of the exploration, i.e. providing ways to expand the user’s aware-
ness of the domain. This is crucial for the usability of semantic exploration applica-
tions, especially when the users are not domain experts.  

Our approach is based on identifying knowledge anchors in data graphs. Relevant 
work on finding key concepts in a data graph was developed by research on ontology 
summarization [16] and formal concept analysis [17]. Ontology summarization aims 
at helping ontology engineers to make sense of an ontology in order to reuse and build 
new ontologies [18]. The closest ontology summarization approach to this paper’s 
context is [19], which highlighted the value of cognitive natural categories for identi-
fying key concepts. The work in [20] has formalized the main psychological ap-
proaches for identifying basic level concepts in formal concept analysis. In [10] we 
have operationalized these approaches, allowing automatic identification of KADG. 

According to [18], there are two main approaches for evaluating a user-driven on-
tology summary: gold standard evaluation, where the quality of the summary is ex-
pressed by its similarity to a manually built ontology by domain experts, or corpus 
coverage evaluation, in which the quality of the ontology is represented by its appro-
priateness to cover the topic of a corpus. The evaluation approach used in [19] includ-
ed identifying a gold standard by asking ontology engineers to select a number of 
concepts they considered the most representative for summarizing an ontology. To the 
best of our knowledge, there are no approaches that consider key concepts in data 
graphs which correspond to cognitive structures of lay users who are not domain ex-
perts. We identify such concepts in data graphs including both an automatic method 
to derive KADG and an experimental method to derive BLO that correspond to human 
cognitive structures. We evaluate KADG against benchmarking sets of BLO over the 
data graphs of two semantic exploration applications – browsing (Music) and search 
(Careers). By providing a systematic evaluation approach, the paper facilitates the 
adoption of the KADG metrics, and the corresponding hybridization methods, to en-
hance the usability of semantic web applications that offer user exploration of data 
graphs.  



3 Identifying Knowledge Anchors in Data Graphs 

A Data Graph DG
 
describes entities (vertices) and attributes (edges), represented as 

Resource Description Framework (RDF) statements. Each statement is a triple of the 
form <Subject, Predicate, Object> [21]. Formally, a data graph is as a labeled directed 
graph  TEVDG ,, , depicting a set of RDF triples where:  

- },...,,{ 21 nvvvV  is a finite set of entities; 

- },...,,{ 21 meeeE  is a finite set of edge labels; 

- },...,,{ 21 ktttT  is a finite set of triples where each it  is a proposition in the 

form of a triple
ois vev ,, with Vvv os , , where sv  is the Subject (source entity) 

and ov is the Object (target entity); and Eei   is the Predicate (relationship type).  

The set of entities V is divided further by using the subsumption relationship  
rdfs:subClassOf(denoted as ) and following its transitivity inference. This 
includes category entities ( VC which is the set of all entities that have at least 
one subclass, at least one superclass, and at least one instance) and leaf entities 
( VL which is the set of entities that have no subclasses). 

The set of edge types E  is divided further considering two relationship categories: 
hierarchical relationships ( H : is a set of subsumption relationships between the 
Subject and Object entities in the corresponding triples) and domain-specific rela-
tionships ( D : represent relevant links in the domain, other than hierarchical links, 
e.g. in a Music domain, instruments used in the same performance are related). 
   Our work in [10] has formally adopted the Cognitive science notion of basic level 
objects [11], to describe two groups of metrics and their corresponding algorithms for 
identifying knowledge anchors in data graphs (KADG). 

Distinctiveness metrics. These are adapted from the formal definition of cue va-
lidity, to identify the most differentiated categories whose attributes are associated 
exclusively with the category members but are not associated to the members of other 
categories. For example, in Figure 1, the AV value for entity v2 is the aggregation of 
the AV values of entities (e3, e4, e5) linked to members of v2 (v21, v22, v23, v24) using the 
domain-specific relationship D. The AV value for e3 equals the number triples between 
e3 (Source vertex) and the members of v2 (Target vertices v21, v22) via relationship D 
(2 triples), divided by the number of triples between e3 (Source vertex) and all enti-
ties in the graph (Target vertices v12, v21, v22) via relationship D (3 triples).  



Distinctiveness metrics include: 
•  Attribute Validity (AV) – repre-

sents the proportion of relationships 
involving the category’s members. 

•  Category Attribute Collocation 
(CAC) – uses frequency of an attrib-
ute within the category’s members; 
gives preference to categories with 
many attributes shared by members. 

• Category Utility (CU) - considers 
whether a category has many attrib-
utes shared by its members, and at 
the same time has attributes not re-
lated to many other categories.  
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Fig. 1. A data graph showing entities and  
relationship types between entities. 

Homogeneity Metrics. These metrics aim to identify categories whose members 
share many entities among each other. In this work, we have utilized three set-based 
similarity metrics [10]: Common Neighbors (CN), Jaccard (Jac), and Cosine 
(Cos). For example (see Figure 1), consider the entity v2 and the hierarchical relation-
ship rdf:type and the domain-specific relationship D. Entity v2 has three entities 
(e3, e4, e5) linked to its members (v21, v22, v23, v24), with two entities (e3, e5) shared 
among the four members through the hierarchical relationship rdf:type and rela-
tionship D, whereas the entity v1 has no entities shared by similar relationship types 
with its members (v11, v12). This indicates that entity v2 is more homogenous than v1.  

4. Identifying Basic Level Objects over Data Graphs 

The notion of basic level objects was introduced in Cognitive Science research, il-
lustrating that domains of concrete objects include familiar categories that exist at a 
highly inclusive level of abstraction in humans’ cognitive structures, more than cate-
gories at the superordinate level (i.e. above the basic level) or the subordinate level 
(i.e. below the basic level) [11, 22]. An example from [11] of  a BLO is Guitar -
most people are likely to recognize objects that belong to the category Guitar 

(basic level). However, users who are not experts in the music domain are unlikely to 
be able to recognize the category Folk Guitar (subordinate level) and name it 
with its exact name; instead, users may consider such objects equivalent to Guitar 
(closest basic level) rather than Musical Instrument (superordinate level).  

4.1  Cognitive Science Experimental Approaches for Deriving BLO   

While studying the notion of basic level objects, Rosch et al [11] conducted several 
experiments comprising free-naming tasks testing the hypothesis that object names at 
the basic level should be the names by which objects are most generally designated by 
adults. In a free-naming task, objects in a taxonomy are shown to a participant as a 
series of images in fixed portions of times, and the participant is asked to identify the 



names of the objects shown in the images as quickly as possible. Three types of pack-
ets of images were shown to the participants: those in which one picture from each 
superordinate category appeared; one in which one image from each basic level cate-
gory appeared; and one in which all images appeared. The participants overwhelm-
ingly used names at the basic level while naming objects in the images [11]. 

To identify BLO, accuracy and frequency were considered. Accuracy considers 
whether a participant provides an accurate name for the object in the taxonomy, while 
frequency indicates how many times an object was named correctly by different par-
ticipants. In the example of Guitar, when participants were shown members of 
Guitar (e.g. Folk Guitar, Classical Guitar) in a packet, they named 
them with their parent Guitar at the basic level more frequently than with names at 
the superordinate level (e.g. Musical instrument) or with their exact names 
(e.g. Folk Guitar, Classical Guitar) at the subordinate level. 

The selection of object names used in the free-naming tasks in [11] was based on 
the population of categories of concrete nouns in common use in English. Every noun 
with a word frequency of 10 or greater from a sample of written English [23] was 
selected as a basic level object. A superordinate category was considered in common 
use if at least four of its members met this criterion.  

However, the Cognitive Science approach for selecting BLO cannot be applied di-
rectly in the context of a data graph. The principal difference is that we need to con-
strain the human cognitive structures upon the data graph, as opposed to using a bag 
of words from popular dictionaries. This is because a data graph presents a lesser 
number of concepts from a domain, which belong to the graph scope, and there can be 
concepts that have been omitted. Moreover, the Cognitive Science studies included 
concrete domains where images of the objects could be shown to participants. Many 
semantic web applications utilize data graphs which include more abstract concepts 
for which images cannot be reliably shown to users (e.g. medical illnesses, environ-
mental concepts, professions). Therefore, we adapt the Cognitive science experi-
mental approach for deriving BLO to take into account the domain coverage of a data 
graph, which is applicable to any domain presented with a data graph.  

 4.2 Algorithm for Identifying BLO over Data Graphs 

Following Cognitive Science experimental studies outlined above, we present two 
strategies with the corresponding algorithm for identifying BLO in a data graph. 

Strategy 1. Takes into account whether a leaf entity Lv  that has no subclasses 
is presented to a user and named with its parents (i.e. superclasses). 

Strategy 2. Takes into account whether a category entity Cv  that has one or 
more subclasses is presented and named with its exact name, or with the name of a 
parent that is a superclass or a category member (i.e. subclass that is not a leaf entity).   

Algorithm 1 describes the two strategies for identifying BLO using accuracy and 
frequency. Accuracy refers to naming an entity correctly. It considers whether a user 
names an entity with its exact name, or with a parent (superclass) or with a category 
member (subclass) of the entity. Frequency indicates how many times a particular 
category was accurately identified by different participants.  



The algorithm takes a data graph as input and returns two sets of BLO. For any class 
entity Vv , we identify the number of users to be asked to name the entity (line 2). 
For Strategy 1 (lines 3-7), we consider accurate naming of a category entity (a parent) 
when a leaf entity Lv that is a member of this category is seen. For Strategy 2 
(lines 8-14), we consider naming a category entity Cv with its exact name (lines 
10, 11) or a name of its superclasses (parents) or subclasses (members) (lines 12-13). 
In each strategy, we use a representation function ),( vrshow to create a representa-

tion of an entity v  to be shown to the user. The representation of a leaf entity 
Lv  (in Strategy 1) will consider the leaf itself (e.g. show a single label or a single 

image for the leaf entity), while the representation of a category entity Cv  (in 
Strategy 2) will consider all (or some) of the category leaves (e.g. showing a random 
listing of a set of labels of entity leaves or showing a group of images of leaves as  
a collage). 

 Algorithm 1: Identifying Basic Level Objects in Data Graphs  

Input  PEVDG ,,  

Output two sets of entities:  Set1  and  Set2 
1.  for a set of entities Vv  do 
2.     for all );;1:(  inii                                      //show the entity v to n users 

3.         if Lv  then                                                                                   //Strategy1                                                    
4.               ),( vrshow and ask a user to name v  

5.                if ),( vaanswer   ),( vpparent  then                                //check accuracy  

6.                      counta 
+ +                                                                      //count frequency 

7.                 end if; 
8.         else if Cv  then                                                                            //Strategy2 

9.               ),( vrshow and ask a user to name v                                                                                            

10.              if ),( vaanswer  = ),( vblabel  then                                      //check accuracy 
11.                    counta  +  +                                                                     //count frequency 
12.              else if ),( vaanswer )},(),({ vmmembervpparent  then //check accuracy            

13.                    counta  +  +                                                                      //count frequency  
14.              end if; 
15.       end if; 
16.    end for; 
17. end for; 
18. Set1 = Lvvaanswer :),({ counta }k  //K is number of different users

 
19. Set2 = Cvvaanswer :),({ counta }k  //K is number of different users

 

For an entity v , the following SPARQL query is used to get the set of entity leaves:  
    SELECT  ?leaf ?leaf_label 
     WHERE  {?leaf rdfs:subClassOf v. 

             ?leaf rdfs:label ?leaf_label.          

     FILTER NOT EXISTS  

            {?member rdfs:subClassOf ?leaf.}} 



The two strategies in Algorithm 1 for obtaining BLO are applied as follows:  

Strategy 1, when a user is shown a representation of a leaf entity Lv (line 4), 
the following steps are conducted: 
-  The function ),( vaanswer  assigns a user's answer  a  to the leaf entity v . 

-  The function ),( vpparent  returns a set of labels (i.e. names) of the parent(s) p of    

    the leaf entity v  via the following SPARQL query: 

     SELECT  ?parent_label ?label 

      WHERE  {v rdfs:subClassOf ?parent. 

              ?parent rdfs:label ?parent_label.} 

-  The algorithm in (line 5) checks if the user named the leaf entity v  with one of its 
parents. If an accurate name of a parent was provided, then the frequency of the 
parent entity will be increased by one (line 6).  

Strategy 2, when a user is shown a representation of a category entity Cv (line 9), 
the following steps are conducted: 
-  The function ),( vaanswer  assigns a user's answer  a   to the category entity v . 

-  The function ),( vpparent  returns a set of labels of parent(s) p of  the category  

entity v  via SPARQL queries similar to Strategy 1 above. 
- The function ),( vmmember  returns a set of labels (i.e. names) of member(s)mof 

   the category entity v  via the following SPARQL query: 

    SELECT  ?member_label 

     WHERE  {?member rdfs:subClassOf v. 

            ?member rdfs:label ?member_label.} 

- The function ),( vblabel  returns the label (i.e. name) of the category entity v via 

the following SPARQL query: 

SELECT ?label 

WHERE  {v rdfs:label ?label.} 

- The algorithm in (lines 10, 12) checks if the user named the category entity v  with 
its exact name, or a name of its parents or its members. If there was accurate naming 
of the category, a parent or a member, the frequency of the category name (line 11), 
the parent name or the member name (line 13) will be increased by one. 

4.3  Application Contexts Used for Experimental Evaluation  

 Linked Data graphs represented as a set of RDF triples can be ideal structures for 
Semantic exploration applications [24]. One class of applications is semantic data 
browsers which operate on semantically tagged content and present browsing trajecto-
ries using relationships in the underpinning ontologies [1, 2], supporting uncertain or 
complex information needs [3]. They enable the users to initiate a data exploration 
session from a single entry point in the graph and move through entities by following 
RDF links [2]. Another class of widely used semantic Web applications are semantic 
data search engines [25]. Such applications allow the users to enter search queries 



though keyword-based search interfaces and provide the users with a list of search 
results obtained by using semantic queries automatically generated by the system [6]. 

In this paper, we present experimental studies over two different application do-
mains for evaluating KADG metrics against BLO. The first study is in the context of a 
semantic data browser in the Music domain, called MusicPinta [2]. MusicPinta 
enables users to navigate through musical instruments extracted from DBpedia, and 
get information about these instruments together with musical performances and art-
ists using these instruments. MusicPinta provides context for studying BLO in a con-
crete domain, as users can see images of musical instruments (as in [11, 26]). The 
second study is in the context of a semantic search engine in Career guidance, 
called L4All [27]. L4All is a proprietary semantic search application which enables 
learners to explore various career options to plan their career progression [27]. L4All 
provides context for studying basic level objects in an abstract domain, where the 
users cannot be shown concrete representations of the graph entities.  

The data graphs of the two applications are used for the evaluation studies. 
 MusicPinta. The dataset includes several open sources. DBpedia1 for musical in-

struments and artists - this dataset is extracted from dbpedia.org/sparql using 
CONSTRUCT and made available as open source at the sourceforge2 . DBTune3  for 
music-related structured data - this dataset is made available by the DBTune.org in 
linked data fashion. Among the datasets on DBTune.org we utilize: (i) Jamendo - a 
large repository of Creative Commons licensed music; (ii) Megatune - an independent 
music label; and (iii) MusicBrainz - a community-maintained open source encyclo-
paedia of music information. All datasets are available as RDF datasets and the Music 
ontology4 is used as a schema to interlink them. For the experimental study, we use 
the top level class Music Instrument and all its entities (classes and instances).  

L4All. The dataset is drawn from the “LifeLong Learning in London for All” 
(L4All) project [27], bringing together experts from lifelong learning and careers 
guidance, content providers, and groups of students and tutors. It provided lifelong 
learners with access to information and resources that would support them in explor-
ing learning and career opportunities and in planning and reflecting on their learning. 
The L4All dataset uses the ontology developed by the L4All project, and users’ data 
collected during the project (anonymised for privacy). Among five class hierarchies in 
the L4All ontology, the Occupation and Subject class hierarchies have the richest 
class representation and depth (see Table 1).  

Table 1. Main characteristics of the MusicPinta and L4All data sets 

Dataset Hierarchy Root Class Depth No. of Classes No. of Instances/leaves 
MusicPinta Instrument 7 364 256 

L4All 
Occupation 5 463 3737 
Subject 3 160 2194 

                                                           
1 http://dbpedia.org/About 
2 http://sourceforge.net/p/pinta/code/38/tree/ 
3 http://dbtune.org/ 
4 http://musicontology.com/ 

http://dbpedia.org/About
http://dbtune.org/
http://musicontology.com/


5 MusicPinta: Evaluating KADG against BLO  

As a use case in a representative domain for evaluating knowledge anchors over a 
data graph, we used a typical semantic data browser, MusicPinta, which was devel-
oped in our earlier research [2]. Knowledge anchors would lead to extending Mu-
sicPinta to suggest exploration paths that can improve the user’s domain knowledge. 

5.1 Obtaining BLO 

To enable impartial comparison of the outputs of the KADG algorithms and BLO, 
we conducted a user study in the Musical Instrument domain following Algorithm I. 

Participants. 40 participants, university students and professionals, age 18–55, re-
cruited on a voluntary basis. None of them had expertise in Music. 

Method. The participants were asked to freely name objects that were shown in 
image stimuli, under limited response time (10s). Overall, 364 taxonomical musical 
instruments were extracted from the MusicPinta dataset by running SPARQL queries 
over the MusicPinta triple store to get all musical instrument concepts linked via the 
rdfs:subClassOf relationship. The entities included: leaf entities (total 256) and 
category entities (total 108). Applying the two strategies in Algorithm 1, for each leaf 
entity, a representative image was collected from the Musical Instrument Museums 
Online (MIMO)5 to ensure that pictures of high quality were shown6. For a category 
entity, all leaves from that category entity were shown as a group in a single image 
(similarly to a packet of images in [11]). Ten online surveys7 were run: (i) leaf enti-
ties: eight surveys presented 256 leaf entities, each showed 32 leaves; (ii) category 
entities: two surveys presented 108 category entities, each showed 54 categories. 

Free-naming task. Each image was shown for 10 seconds on the participant's 
screen. She was asked to type the name of the given object (for leaf entities) or the 
category of objects (for category entities). The image allocation in the surveys was 
random. Every survey had four respondents from the study participants (corresponds 
to line 2 in Algorithm 1). Each participant was allocated only to one survey (either 
leaf entities or category entities). Figures 2-4 show example instrument images and 
participant answers (Figure 2 from Strategy 1, and Figures 3, 4 from Strategy 2).  

Applying Algorithm 1 over the MusicPinta dataset, two sets of BLO were identi-
fied. Set1 (Strategy 1) was derived from presenting leaf entities. We consider accurate 
naming of a category entity (parent) when a leaf entity that belongs to this category is 
seen. For example (see Figure 2), a participant was shown the image of Piccolo 
trumpet, a leaf entity in the data graph, and named it with its parent category 
Trumpet. This will be counted as an accurate naming and will increase the count for 
Trumpet. The overall count for Trumpet will include all cases when participants 

                                                           
5 http://www.mimo-international.com/MIMO/ 
6 MIMO provided pictures for most musical instruments. In the rare occasions when an image did not exist 

in MIMO, Wikipedia images were used instead. 
7 The study was conducted with Qualtrics (www.qualtrics.com).Examples from the surveys are available at: 

https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA 



named Trumpet while seeing any of its leaf members. Set2 (Strategy 2) was de-
rived from presenting category entities. We consider naming a category entity with its 
exact name or a name of its parent or subclass member. For example (see Figure 3), a 
participant was shown the image of category Trumpet and named it with its exact 
name. This will increase the count for Trumpet. In Figure 4, a participant saw the 
category Brass and named it as its member category Trumpet. 

 

Fig. 2. An image of 
Piccolo trumpet (a leaf 
in the data graph) was 
shown to a user, who 
named it as “Trumpet” 

 

Fig. 3. An image of Trumpet 
(a Category concept in the 
data graph with two sub-
classes) was shown to a user, 
who named it as “Trumpet”. 

 

Fig. 4. An image of Brass 
(Category concept in the 
data graph) shown to a 
user, who named it as 
“Trumpet”. 

In each of the two sets, entities with frequency equal or above two (i.e. named by 
at least two different users) were identified as potential BLO. The union of Set1 and 
Set2 gives BLO. It includes musical instruments such as: Bouzouki, Guitar and 
Saxophone. The BLO obtained from MusicPinta are available here8.  

5.2 Evaluating KADG against BLO 

Quantitative Analysis. We used the BLO identified to examine the performance 
of the KADG metrics. For each metric, we aggregated (using union) the KADG entities 
identified using the hierarchical relationships (H). We noticed that the three homoge-
neity metrics have the same values; therefore, we choose one metric when reporting 
the results, namely Jaccard similarity9. A cut-off threshold point for the result lists 
with potential KADG entities was identified by normalizing the output values from 
each metric and taking the mean value for the 60th percentile of the normalized lists. 
The KADG metrics evaluated included the three distinctiveness metrics plus the Jac-
card homogeneity metric; each metric was applied over both families of relationships 
– hierarchical (H) and domain-specific (D). As in ontology summarization approaches 
[19], a name simplicity strategy was applied to reduce noise when calculating key 
concepts (usually, basic level objects have relatively simple labels, such as chair or 
dog). The name simplicity approach we use is solely based on the data graph. We 
identify the weighted median for the length of the labels of all data graph entities 

Vv and filter out all entities whose name length is higher than the median. For the 
MusicPinta data graph, the weighted median is 1.2, and hence we only included enti-
ties which consist of one word. Table 2 illustrates precision and recall values compar-
ing BLO and KADG derived using hierarchical and domain specific relationships. 

                                                           
8 https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA 
9 The Jaccard similarity metric is widely used, and was used in identifying basic formal concepts in the 

context of formal concept analysis [29].   

http://dbtune.org/


Table 2. MusicPinta: performance of the KADG algorithms compared to BLO. 

Relationship  
types 

Precision Recall 
AV CAC CU Jac AV CAC CU Jac 

Hierarchical 0.58 0.55 0.59 0.6 0.64 0.73 0.73 0.55 
Domain-Specific 0.62 0.58 0.59 0.62 0.36 0.5 0.59 0.36 

Hybridization. Further analysis of the False Positive(FP) and False Negative(FN) 
entities indicated that the algorithms had different performance on the different taxo-
nomical levels in the data graph. This led to the following heuristics for hybridization. 

Heuristic 1: Use Jaccard metric with hierarchical relationships for the most spe-
cific categories in the graph (i.e. the categories at the bottom quartile of the taxonom-
ical level). There were FP entities (e.g. Shawm and Oboe) returned by distinctiveness 
metrics using the domain-specific relationship MusicOntology:Performance 

because these entities are highly associated with musical performances (e.g. Shawm is 
linked to 99 performances and Oboe is linked to 27 performance). Such entities may 
not be good knowledge anchors for exploration, as their hierarchical structure is flat. 
The best performing metric at the specific level was Jaccard for hierarchical attributes 
- it excluded entities which had no (or a very small number of) hierarchical attributes.  

Heuristic 2: Take the majority voting for all other taxonomical levels. Most of the 
entities at the middle and top taxonomical level will be well represented in the graph 
hierarchy and may include domain-specific relationships. Hence, combining the val-
ues of all algorithms is sensible. Each algorithm represents a voter and provides two 
lists of votes, each list corresponding to hierarchical or domain-specific associated 
attributes (H, D). At least half of the voters should vote for an entity for it to be identi-
fied in KADG. Examples from the list of KADG identified by applying the above hy-
bridization heuristics included Accordion, Guitar and Xylophone. The 
full KA DG list is available here10. Hybridization improved Precision to 0.65 and Recall 
to 0.63.  

6 L4All: Evaluating KADG against BLO 

The Career domain is a suitable domain for studying basic level objects due to the 
richness of its ontological structures and the fact that the identification of knowledge 
anchors can facilitate users’ exploration of such structures, as discussed in [28]. We 
followed Algorithm 1, conducting a study with human participants to identify BLO. 

6.1 Obtaining BLO 

Participants. 28 participants, university students and professionals, age 25–64, re-
cruited on a voluntary basis. Most of them were experienced mainly in Computing. 

Method. The experimental study for evaluating knowledge anchors in the L4All 
dataset included categories from the Occupation and Subject class hierarchies, for the 
reasons discussed above. Categories were represented to participants (corresponding 
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to the ),( vrshow  function in Algorithm 1) using names (i.e. labels) of the category's 

leaves. Overall, 623 class entities were extracted from the two class hierarchies (463 
for Occupation and 160 for Subject) by running SPARQL queries to get all class enti-
ties linked via the rdfs:subClassOf relationship. The entities included: leaves 
(349 for Occupation and 141 for Subject) and categories (114 for Occupation and 19 
for Subject). Seven online surveys7 were developed (six surveys presented the 114 
category entities of the Occupation class hierarchy, with each survey showing 19 
categories; and one survey presented the 19 categories of the Subject class hierarchy). 
The category allocation in each survey was random. Every survey had four respond-
ents from the study participants. Each participant was allocated only to one survey. 

Category identification task. A representation of each category was shown on the 
participant's screen and he/she was asked to identify the category name. The represen-
tation included a list of leaves’ names of that category (at most four leaf names were 
shown on the participant's screen). The participant was provided with four different 
categories as candidate answers (including the category which the leaves belong to) 
and the participant was asked to select one category that he/she thinks the leaf entities 
belong to. The three additional candidate categories covered three levels of abstrac-
tion, namely:  a parent from the superordinate level, a member from the subordinate 
level, and a sibling at the same category level. In cases where no parents or members 
could be added to the candidate answers, siblings were used instead.  

Applying Strategy 2 in Algorithm 1 over the Occupation and Subject class hierar-
chies in the L4All dataset, we considered naming a category entity with its exact 
name or a name of its parents or its non-leaf subclass members shown to the partici-
pants. Figures 5 and 6 show examples of the category identification task from the 
Occupation and Subject class hierarchies respectively. For instance, the participant in 
Figure 5 saw two leaves (the category has two leaves only) of the category House-
keeping Occupation and the participant identified the category’s parent Per-
sonal Service Occupation, which he/she thinks that the leaves belong to. 
This will increase the frequency for the category Personal Service Occupa-

tion. In Figure 6, a participant was shown the leaf names of the category Biolog-

ical Sciences (four random leaves where selected among 9) and selected its 
exact name. This will increase the count for the category Biological Sciences.  

Fig. 5. A representation of Housekeep-
ing Occupation (a Category concept in 
the Occupation hierarchy with two 
subclasses) was shown to a user, who 
identified it as “Personal Service Occu-
pation”. 

Fig. 6. A representation of Biological 
Sciences (a Category concept in the Sub-
ject hierarchy with four random sub-
classes) was shown to a user, who iden-
tified it as “Biological Sciences”. 



Category entities in the Occupation and Subject class hierarchies with frequency 
equal or above two (i.e. categories named by at least two different users) were identi-
fied as potential BLO. Examples of BLO from Occupation were Administra-

tive, IT Service Delivery , Functional Managers and from Subject   
were Biological Sciences, Law, Medicine and Dentistry. The 
full KADG and BLO  lists obtained from the L4All data set are available here11. 

6.2 Evaluating KADG against BLO 

Quantitative Analysis. The KADG metrics developed in [10] were run over the Oc-
cupation and Subject class hierarchies and the metrics outputs of KADG were tested 
against the BLO identified. For each KADG metric, we aggregated (using union) the 
entities identified using the hierarchical relationships (rdfs:subClassOf and 
rdf:type). One domain-specific relationship was used by the metrics (Job for 
Occupation and Qualification for Subject). We normalized the metrics output 
values and took the 60th percentile of the normalized lists as a cut-off threshold point. 
Name simplification was applied using the weighted medians for the length of the 
labels of class entities in the Occupation and Subject class hierarchies (for Occupation 
= 3.2 and for Subject = 2.8) to filter out entities whose name length is higher than the 
median. Entities with name length greater than 3 were excluded (the names of the two 
class hierarchies - Occupation and Subject - and conjunctions, e.g. “and”, were not 
taken into account in counting the name length of entities). 

Precision and Recall values for the metrics were identified (see Table 3). The three 
homogeneity metrics from [10] had the same values; therefore, we choose the Jaccard 
similarity metric in reporting the results (similarly to the MusicPinta analysis). Using 
the hierarchical relationships (rdfs:subClassOf and rdf:type), precision and 
recall values were good for Occupation (precision ranging from 0.72 to 0.79 and re-
call from 0.44 to 0.88) and very mixed for Subject (precision ranging from 0 to 1 and 
recall from 0 to 0.53). For the domain-specific relationships, the precision and recall 
were mixed for Occupation (precision ranging from 0 to 0.75 and recall from 0 to 
0.76) and Subject (precision ranging from 0 to 1 and recall from 0 to 0.31). 

 By inspecting what caused the zero precision and recall values for the Category 
Utility (CU) distinctiveness metric and Jaccard (Jac) similarity metric, we noticed that 
none of these two metrics picked False Negative (FN) entities (i.e. potential KADG) 
using the domain-specific relationships (for Occupation and Subject) and using the 
hierarchical relationships (for Subject). The CU metric did not pick any FN entities 
since it multiplies the ratio [number of instances of a category divided by number of 
all entities, classes and instances in Occupation] with the total CU values for mem-
bers of a category. Hence, the CU value will be decreased especially when there are 
1000s of entities (i.e. classes and instances) in the graph. For instance, in the Occupa-
tion class hierarchy, the CU ratio for the FN category Sales Related Occupa-

tion is: 87 instances divided 4200 (463 classes + 3737 instances in the Occupation 
hierarchy), reducing the CU value for Sales Related Occupation to become 

                                                           
11 https://drive.google.com/drive/folders/0B5ShywKndSLXaVhrSWpiYVZ3WjA 



less than the 60th percentile cut-off point (0.01). The Jaccard similarity metric did not 
pick FN entities since each entity has instances linked with one instance only via a 
domain-specific relationship (e.g. Job). Hence, the categories will have no intersec-
tions among their instances, producing zero values in the Jaccard metric. 

Table 3. KADG metrics performance using the two varieties of attribute types for the 
Occupation and Subject hierarchies in the L4All dataset   

Class 
Hierarchy 

Relationship  
type 

Precision Recall 
AV CAC CU Jac AV CAC CU Jac 

Occupation 
Hierarchical 0.72 0.76 0.79 0.79 0.52 0.88 0.44 0.44 
Domain-Specific 0.73 0.75 0 0 0.76 0.36 0 0 

Subject 
Hierarchical 1 1 0 0 0.53 0.53 0 0 
Domain-Specific 1 1 0 0 0.31 0.08 0 0 

Hybridization. Analysis of the False Positive (FP) and False Negative (FN) enti-
ties indicated that the algorithms had different performance on the different taxonom-
ical levels in the L4All data graph, which is formulated in the two heuristics below. 

Heuristic 1: Use the AV and CAC distinctiveness metrics with hierarchical rela-
tionships for the categories at the bottom quartile of the class taxonomy. There were 
FN entities (e.g. Sales Related and Science and Engineering Tech-
nicians) returned by the AV and CAC homogeneity metrics using the domain-
specific relationship Job, because these entities have a low number of instances (e.g. 
Sales Related has 87 instances and Science and Engineering Tech-

nicians has 50 instances; the median of instances per category is 144). 
Heuristic 2: Take the majority voting for all other taxonomical levels. Most of the 

entities at middle and top taxonomical level are well represented in the graph hierar-
chy. Each metric represents a voter and provides two lists of votes, each list corre-
sponding to hierarchical or domain-specific relationships. At least half of the voters 
should vote for an entity for it to be identified as KADG.  

Examples of KADG identified by applying the above hybridization heuristics for 
Occupation and Subject class hierarchies are: for Occupation (Engineering 

Professionals, Process Operatives, Science and Engineer-

ing Technicians), and for Subject (Business and Administrative 
Studies, Education). The full lists of KADG identified are available here12. 

 Hybridization increased performance, as follows: for Occupation, Precision = 0.77 
and Recall = 0.92; for Subject, Precision = 1 and Recall = 0.53. 

7 Discussion 

This paper presents a systematic evaluation approach to validate KADG metrics 
against basic level objects derived by humans.  

Algorithm for identifying BLO. The BLO algorithm presented in Section 4 is ge-
neric and can be applied over different application domains represented as data 
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graphs. In this paper, the algorithm is applied in two application domains for data 
exploration, Music and Careers, using the data graphs from two semantic exploration 
applications. Applying the BLO algorithm over two domains allows us to illustrate 
two ways of instantiating the algorithm for obtaining BLO. MusicPinta describes 
concrete objects - musical instruments - that can have digital representations (e.g. 
image, audio, video). An image stimulus was used to represent musical instruments, 
and free-naming tasks included showing image representations of graph entities and 
asking the users to quickly name the entities they see. In contrast, L4All comprises of 
abstract career categories, such as Occupation and Subject, which have text represen-
tations (i.e. labels of entities) but no clearly distinguishable images. In this case, a 
category verification task was used to obtain BLO by showing text representations of 
graph entities and asking the user to identify the matching entity given some answers. 

An important component for applying the BLO is to identify appropriate stimuli to 
be used for representing graph entities and showing them to humans in either a free-
naming task or in a category verification task. One of the main factors that affects 
choosing appropriate stimuli is how well the stimuli cover the entities in the data 
graph. In other words, the chosen stimuli should have representations for all entities in 
the graph hierarchies. For instance, the stimuli for MusicPinta were images - taken 
from an established source (MIMO5). The chosen stimuli have to be close enough to 
users’ cognitive structures, so the users can understand the representation of entities. 

The BLO algorithm over shallow graph hierarchies has some limitations. For in-
stance, most categories (15 categories out of 19) in the Subject class hierarchy of the 
L4All ontology were identified as BLO. In a category verification task over a shallow 
hierarchy, finding candidate answers to be presented to users is challenging, especial-
ly when the shallow hierarchy does not contain the three levels of abstraction (basic, 
subordinate and superordinate). Furthermore, the identified BLO in data graphs can 
have confusing category labelling which reflect insufficiently articulated scope; for 
instance, vague names (e.g. 'European Language, Literature and re-

lated subject') or combining two categories in one (e.g. ‘Mathematical 
and Computer Sciences’). Hence, the BLO algorithm is sensitive to the quali-
ty of the ontology. This points at another possible application of BLO – peculiarities 
in the output can indicate deficiencies of the ontology which can provide insights for 
re-engineering the ontology. An area of future work is to improve the L4All ontology 
by modifying the class labels and better articulating their scope.  

Performance of KADG metrics. The identified BLO were used to examine the per-
formance of the KADG metrics. Our analysis found that hybridization of the metrics 
notably improved performance. The hybridization heuristics for the upper level of the 
graph hierarchies tend to be the same – combine the KADB metrics using majority 
voting. However, the hybridization heuristics for the bottom level of the hierarchy 
differed depending on how instances at the bottom of the graph were associated 
through domain-specific relationships. The performance is sensitive to the appropri-
ateness of the domain-specific relationships captured in the data graph. Examining the 
FP and FN entities for the hybridization algorithms for KADG led to the following 
observations: 

Missing basic level entities due to unpopulated areas in the data graph. We no-



ticed that none of the metrics picked FN entities belonging to the bottom quartile of 
the taxonomies and having a small number of members (such as Cello in MusicPin-
ta and Construction Operatives in the Occupation class hierarchy in L4All 
- Cello has only one subclass and Construction Operatives has 10 instanc-
es – mean number of instances in Occupation is 184). While these entities belong to 
the cognitive structures of humans and were therefore added to the BLO sets, one 
could question whether such entities would be useful knowledge anchors because of 
their relatively small number of members. These entities could lead the user to ‘dead 
ends’ within unpopulated areas of the data graph which may be confusing. We there-
fore see such FN cases as ‘good misses’ by the KADG metrics. 

Selecting entities that are superordinates of entities in BLO. The FP included enti-
ties (such as Reeds in MusicPinta and Secretarial and Related Occu-
pation in the Occupation class hierarchy in L4All) which are well represented in 
the graph (Reeds has 36 subclasses linked to 60 DBpedia categories; Secretari-
al and Related Occupation has 8 subclasses and 800 instances). Although 
these entities are not close to human cognitive structures, they provide direct links to 
entities in BLO (Reeds links to Accordion; Secretarial and Related 
Occupation links to Administrative and Secretarial Occupation). 
We therefore see such FP as ‘good picks’, as they provide bridges to BLO entities. 

8  Conclusion and Future Work 

Data graph exploration underpins semantic Web applications, such as browsing 
and search. Lay users who are not domain experts can face high cognitive load and 
usability challenges when exploring an unfamiliar domain because the users are una-
ware of the knowledge structure of the graphs. This brings forth the challenge of 
building systematic approaches for supporting users’ exploration taking into account 
the knowledge utility of the exploration paths. To address this challenge, we adopt the 
subsumption theory for meaningful learning [9] where new knowledge is subsumed 
under familiar and highly inclusive entities. A core algorithmic component for adopt-
ing this theory is the automatic identification of knowledge anchors in a data graph. 

The work in this paper adapts Cognitive Science experimental approaches for de-
riving the BLO, and presents an algorithm to capture the BLO that correspond to hu-
man cognitive structures over a data graph. Our work contributes to improving the 
usability of data graph exploration by presenting a methodology for aligning BLO in 
human cognitive structures and the corresponding knowledge anchors in a data graph. 
The obtained sets of BLO and KADG can have two broad implications: (i) to improve 
users’ exploration of large data graphs; and (ii) to reengineer the ontology to better 
align with human cognitive structures. We are focusing on the former, and are devis-
ing navigation strategies to expand users’ knowledge while exploring a data graph. 
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