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Abstract 

A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) 
and magnesium hydroxide (MH) biocomposites under different temperatures (160–180 °C) and weight loadings (2.16, 
5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow proper-
ties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in 
FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the 
possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow proper-
ties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence 
lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/
MH biocomposites was found in this study. The high probability of KF–KF and KF–MH collisions was expected and 
there were more collisions for higher fibre and filler loading causing lower melt flow properties.
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Background
In recent years, natural fibre reinforcement with thermo-
set or thermoplastic polymer biocomposites have been 
studied intensively (Maleque et  al. 2007; Sapuan and 
Harimi 2003; Sastra et al. 2006; Nur Aimi et al. 2014). Flo-
reon (FLO) was developed by The University of Sheffield 
and CPD PLC in November 2013 (The Floreon Devel-
opment Blog 2015). It is a biodegradable polymer which 
is constructed using standard polylactic acid (PLA). 
It was created for the greener, safer and better perfor-
mance of the biopolymer. A lower manufacturing energy 
is required to produce FLO since it can be processed at 
about 160 °C, while most of the matrices require a tem-
perature higher than 180  °C (Shukor et  al. 2014; Ersoy 
and Taşdemir 2012; Liang et al. 2011; Libolon 2015; Lee 
et al. 2014). Besides this, it ensures a lower chance of fibre 
thermal degradation, especially for a low thermal stability 

natural fibre. FLO is a recyclable and fully biodegradable 
polymer. Mechanical recycling, as in the case of poly-
ethylene terephthalate (PET), is applicable to FLO. This 
method requires less energy to reproduce recycled plas-
tic (52.6 % less energy for recycling PET) as well as solv-
ing the landfill pollution problem (European Bioplastics 
2015). On the other hand, feedstock recovery is an alter-
native option for FLO. This technique is currently applied 
to PLA and converting its product into the original mate-
rial (lactic acid). A 99 % and above recovery rate has been 
claimed for PLA (Floreon 2015). Besides this, in-house 
testing has shown that FLO has better durability, strength 
and toughness. In addition, it has four times the impact 
resistance of PLA cast sheet specimens and almost twice 
the toughness of PET (Duc et al. 2011).

Melt flow properties have provided a significant insight 
for polymer manufacturing. MVR and MFR are indica-
tors of the flow properties of the material in melt. Inves-
tigations have been performed with respect to the MVR 
of PLA composites with different temperatures and load-
ings (Nur Aimi et  al. 2014). A higher MVR value was 
found with increased temperature due to the increase of 
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the melt free volume. A higher applied load also resulted 
in a higher MVR due to the shear thinning effect. On the 
other hand, lower MFR properties of PLA compared to 
polypropylene (PP) have been found, e.g. poorer wetting 
on KF, leading to weak fibre-polymer interaction and 
causing lower strength properties (Han et al. 2012). Also, 
it has been reported that the viscosity increases with the 
loading of KF in composites; this is because changes in 
molecular weight are caused by KF and the interaction 
between the fibres and the matrix (Mohammad and 
Arsad 2013). Another study has been conducted which 
concerns the effect of MH particle size on the PP matrix 
(Yang et al. 2009). Decreasing melt flow properties were 
shown for the composites for particle sizes up to 5 µm, 
yet an increase in melt flow properties was found for 
MH particle sizes larger than 5  µm. This is because the 
small particles enhanced the macromolecular chain flow 
resistance, while the larger particle sizes reduced the flow 
resistance as a decreased distance was found between the 
flame retardant particles (Yang et al. 2009).

From the above reviews, it is evident that no previ-
ous work has been conducted on the MFR of the KF 
reinforced FLO biocomposite with MH used as a flame 
retardant filler. Therefore, the aim of the present work 
is to study MH inclusion and the MVR and MFR of KF 
reinforced FLO biocomposites.

Experimental section
Materials
The FLO biopolymer Grade 100 was contributed by 
The University of Sheffield and was used as the matrix. 
As shown in Fig.  1, the differential scanning calorim-
etry (DSC) curves of previous work indicate the melt-
ing peak temperature for the first and second heating 
cycle. The first heating cycle was intended to remove the 
thermal history of the polymer. The melting tempera-
ture is 150.5 °C. KF with average length of 8–15 mm was 
obtained from Tazdiq Engineering, Serdang, Malaysia, in 
order to reinforce the composites. MH was supplied by 
Fisher Scientific UK Ltd with 95 % purity and was used 
as a non-toxic flame retardant to enhance the material’s 
fire barrier properties. The sodium hydroxide used in the 
alkaline treatment was supplied by APC Pure, UK.

Processing methods
Nine samples with different ratios of FLO biocomposite 
were prepared using a 21  mm lab twin screw extruder 
(Table 1). KF was initially dried at 50 °C for 24 h before 
undergoing 6  % NaOH treatment for 4  h. Then the KF 
was washed with water and dried at 100  °C for 6  h. All 
combinations of the composite were simply blended by 
hand. The extrusion (L/D  =  30) was performed at 50 
RPM and 180 °C at the die head and increasing to 186 °C 

Fig. 1  DSC curve of the FLO polymer
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at the feed section. The extruded strands were then air-
dried and pelletised. The pellets were then tested for their 
melt flow properties.

Characterisation
Melt flow index testing
The main experimental instrument used in this work was 
the Mflow extrusion plastometer, which was supplied by 
Zwick Testing Machines Ltd. The machine was located in 
a laboratory of The University of Sheffield, UK. The melt 
flow properties of the composites were measured in the 
temperature range 160–180 °C and for weight loadings of 
2.16, 5 and 10 kg. The weight of the die rod was 0.325 kg 
and the die diameter was 8.26 mm. 300 s of pre-heating 
was conducted after a measured amount of sample was 
put into the machine’s chamber.

Results section
Figure  2a, b shows the MVR and the MFR of the FLO 
biocomposites under different loadings at 170  °C. Both 
the indices (MVR and MFR) increased with the loading 
applied. Under a high loading, a high shear rate is exerted 

at the wall along the channel. A common phenomenon 
known as “shear thinning” exists and this effect is found to 
be more obvious at higher weight loading. Shear thinning is 
an effect whereby there is a higher flow rate for increasing 
shear rate under constant temperature (Liang et al. 2011).

Alkaline treated KF has largely decreased the amount 
of impurities and hence given a smoother surface to the 
fibres in the composites. A ball-bearing effect has been 
performed by the KF and this has resulted in a higher 
MFR (Liang et  al. 1999). When the KF with a random 
arrangement is applied to the shear, the fibres are forced 
to align in the flow direction (shear direction). The degree 
of alignment depends on the shear rates, and a high shear 
rate causes almost complete alignment and thus higher 
flow rates (Lafranche et  al. 2015). Besides this, a large 
portion of the flow velocity was contributed by the wall 
slip especially for low weight loading. The change in the 
wall slip velocity is greatly influenced by the fibre con-
tent in the composites, rather than merely by the polymer 
behaviour at the die surface. A previous study showed a 
100 % wall slip contribution at a low shear level for 60 % 
maple HDPE composites and 40  % pine composites (Li 
and Wolcott 2004). More work needs to be done to deter-
mine how much flow velocity was contributed by the wall 
slip theory.

Ersoy and Taşdemir (2012) indicated a more than 
52.22  % decline of MFR from 0 to 20  wt% of MH filled 
composites. By increasing the MH content from 5 to 
10  wt% (sample 4–5), the MH particles formed new 
network junctions in the composites, resulting in bet-
ter interaction forces and friction forces (Crowson et al. 
1980; Khalina et  al. 2011). Therefore lower MVR and 
MFR values for the composites were found with increas-
ing MH contents (Liang et al. 2000).

Figure 3a, b show the MVR and the MFR of the FLO 
biocomposites under a constant load of 2.16 kg across 

Table 1  Composition of the FLO biocomposites

Sample Floreon 
(wt%)

Kenaf, fibre 
(wt%)

Magnesium hydroxide 
(wt%)

1 100 – –

2 95 5 –

3 90 10 –

4 95 – 5

5 90 – 10

6 90 5 5

7 85 5 10

8 85 10 5

9 80 10 10

Fig. 2  a MVR, b MFR of the FLO biocomposites under different loading at 170 °C
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the temperature range of 160–180  °C. It can be seen 
from Fig. 3a, b that both the MVR and the MFR were 
found to increase with temperature. The polymer mol-
ecules absorbed the heat energy and weakened at high 
temperature. The weakened polymer has a higher free 
volume in specific weight and hence this resulted in a 
higher MVR. On the other hand, the higher tempera-
ture led to the deterioration of the entanglement den-
sity. This caused the sample to flow faster and higher 
in the MFR since the molecular layers became more 
slippery (Liang et al. 1999; Lafranche et al. 2015). There 
was also an increment in the activation energy for the 
polymer molecules at higher temperature. Hence, an 
increase in the MFR was found, which agreed with 
previous work (Gilbert et al. 1982). On the other hand, 
sample 9 was unable to undergo the test after the pre-
heating stage at 180  °C. The sample expanded signifi-
cantly in the chamber while pre-heating, restricting it 
from flowing.

FLO has the lowest flow index values compared to its 
composites. It is believed that the insertion of the KF 
and MH disturbed the molecular chain of the FLO. The 
hydrophilic nature of KF and MH induced the hydro-
lytic degradation of the PLA in FLO (Li 1999; Tsuji 
and Ikarashi 2004; Baimark and Srihanam 2015). This 
reduced the polymer’s molecular length, and flow is 
easier with a shorter length (Gorrasi and Pantani 2013; 
Liang and Peng 2009). At the same time, a poor inter-
action between KF and FLO was found in sample 3 
using a scanning electron micrograph (Fig. 4); they were 
expected to have a higher flow capability. On the other 
hand, the insertion of MH (5 wt%) caused a significant 
increase in the melt flow properties. However, further 
MH insertion (10  wt%) created new bonding in the 

composites (Ersoy and Taşdemir 2012). Therefore the 
drop in the values for the melt flow properties indicated 
that strong bonding has resisted the flow. The compli-
cated melt flow behaviour of KF reinforced FLO/MH 
biocomposites has been found in this study. The addi-
tion of KF to the biocomposites (samples 6–7) has been 
found to increase the MFR at 160  °C but decreased the 
MFR for temperatures of 170 and 180  °C. KF is disori-
ented in composites and the MH disturbs the converging 
flow in the die entrance due to the natural fibre rein-
forced polymer composites. Therefore a high probability 
of KF–KF/KF–MH collisions is expected and there are 
more collisions with higher fibre loading, which lowers 
the MFR (Liang et al. 2010). On the other hand, increas-
ing the MH loading in the MH biocomposites has con-
stantly decreased the MFR and MVR values, showing a 
stronger bonding in the biocomposites.

Conclusions
The melt flow properties of the KF reinforced FLO/MH 
bicomposites have been studied for varying temperatures 
and weight loads. In general, the melt flow capability has 
been increased for higher temperatures and weight loads. 
This is because the macromolecular chain has absorbed 
more heat at higher temperature, causing a weaker bond-
ing. On the other hand, the shear thinning effect has been 
found for higher weight loadings, resulting in higher melt 
flow properties. FLO has the lowest melt flow indices; 
it is believed that the hydroxyl groups from the KF and 
the MH induced hydrolytic degradation on the PLA in 
FLO. A high content of MH induced new network junc-
tions with better interaction forces and friction forces, 
causing lower MFR and MVR values. On the other hand, 
the smooth surface of KF has been forced to align in the 

Fig. 3  a MVR, b MFR of the FLO biocomposites under a constant load of 2.16 kg across the temperature range from 160 to 180 °C
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flow direction when a load is applied, resulting in higher 
melt flow properties. Besides this, a large portion of the 
flow velocity was contributed by the wall slip theory, 
especially for low weight loading. However, complicated 
melt flow behaviour for KF reinforced FLO/MH biocom-
posites has been found in this study. A high probability 
of KF–KF/KF–MH collisions is expected and there are 
more collisions with higher fibre loading. On the other 
hand, increasing the MH loading in the MH biocompos-
ites has constantly decreased the MFR and MVR values, 
showing that the stronger bonding in the biocomposites 
has resisted the macromolecular chain flow.
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