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Abstract: The extent to whichre-Columbian socites alteredAmazonian landscapes is hotly
debated. We performed a basin-wide analysis of pre-Columbiadsmgm Amazonian forests
by oweraying known achaeologicd sites in Amazonia with the distributions and aburcéarof
85 woodyspedes domestaed by pre-Columbian peoples. Domeatd sgdesare fivetimes
more likely to be hyprdominant than non-domestted species. &ross the basin the relative
abundance and richnessdomesttaed species increases in forests on and around
archaeologid sites. In southwestern and eastern Amazonia distance to aiogaeal sites
strongly influences the relative abundance and richoedemesticated species. Our anatyse
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indicatethat modem tree communities in Amazongge structured to an important extent by a
long history of plant domestition by Amazonian peopte

Main Text: Increaing evidence suggests that the modemsttic composition and straare of
Amazonian forests have beenlugnced by past human activity (1peé8ond forests andiver
marginsare thought to havedm modified more intensivelthan weter and lesaaessible

forests (2, 3). At the basircde, the magnitude which pe-Columbian peoplesansformed
forests is still unata (4, 5). Humansransformed foests in many ways, through plant
cultivation (peceded by cutting and burningged dispershand propagation, and in situ tending

of usefulresources, such as domested plants§, 7).

Domestication of plant populations is a result of the human capacity to overcome selective
pressures of the environment by creating landscapes to manage and cultivate useful species,
generating fundamental changes in ecosystems at local and global scales (7). During the
domestication of tree populationsitially the ‘best’ individuals were/are managed in situ (6),
and only later, if at all, selected and propagated in home gardens and other anthropogenic
landscapes. These initial actions of favoring individual trees are referred to as “incidental
domestiation” (8). The continuation of these activities tends to expand the target populations,
both in area and in abundance. Current tending, cultivation and dispersal of species that occur in
high frequency and abundance in anthropogenic landscapes strongly suggest that selective
practices have been used in the past (9). Initially humans cultivateettevariety, selecting
individuals with more desirable morphological traits (e.g., larger fruit size) for future cultivation
(10). Selection may lead to dispersal of plant populations from their original wild habitats to
new anthropogenic landscafé4). This dispersal may give rise to a founder event, which
occurs when new populations are based on a small sample of the original population, and
consequently have with less genetic and morphological variability (6). In tree populations,
genetic and morphological changes are subtle, especially when managed within forests, and

changes may not continue beyond the initial category of incipiently domesticated populations



(6). Humans havedmn domestaing plants since aebst 10,000 BP (Before Present) (12). In
Amazonia, plant domesttion started ealierthan 8,000 BP, maly in the periphery of the

basin(Fig. 1 and Fig. S1), where wild populations of doneettd plants have been identified

by gendéic and morphologidaanalyses (13)-ive centuriesafter the demogphic collapse of
Amerindian populations (14), domesdied plants prsist in Amazonian fiests (6), frequently
associated withefitile anthropogenic soils (15) andggColumbian mounds (16yhere human
populations were on@ abundant (1). Here we used the abundance, richness and distribution of
domesticated plants in forests to assess changes in Amazonian forest composition due to past

human activities.

The distribution and abundance of plante@gps are fundamentallyinfluenced ly
ervironmental and evolutionary prosees. The synergistic effects of #Heeproceses have
resulted in distinct plantssemblage aciross Amazonian regions (17-19). Evolutionaryqesses
operate at all spieal scdes and theyare essential in detmining the regional smes pool.
Environmentéafiltering (e.g., geagy, soil, climate) and biotic interactior{se.g., animal se
dispersd and pedation) drive diferences among species asemblags across emwlogicd
gradients. Foexample, effectiveesd dispersal of large-seded treespedes decreases irehvily
hunted forests draise of the depletion of largeetebrate (20). Composition and dominance
patems of plant amblages in Amazonianrests differ from one phytogeogphicd region to
another (17, 19), varylang spatial and tempaal gradients of ranfall (19, 21, 22), érain water
sauration (23) and soil fdility (19), and maybe the result of disgrsal limitation (20). V¢
evaluated whether the plant domestication process acted together with evolutionary and
environmental processes to determine the ecological patterns documented in Amazonian forests.

Using 1,170 foest plots of theAmazon Tee Diversity Network (ATDN), ter Stege and co-
authos (17) identified 4,962 spdes, estimated thhabout 16,000 woody gaes occur in
Amazonia, and showed that only 227 hyperdominaatiep dominge Amaznian faests.We

used 1,091 ATDN plots tmted in non-flooded lowland Amazonian forests to provide a list of



domesticated speciémsed on evidence of at least incipient domestication processes in
Amazonia and elsewhere in the Americas. idéntified 85 woody species with populations
incipiently, semi or fully domesticated bygpColumbian peopke(hereafter domesticatedespes

listed in Database S1). We found that 20 of these 85 domesticated species are hyperdominants:

five times highethan the number of hyperdominant specieseetqul by chance.

We then tetedif forests closer tor@haeologicd sites and Ivers have higher abundance and
richnessof domesttated species. Fest composition was elWaated in aciation with nunerous
types of archaenlogical site, including pre-Columbian habitation sites (with and without
anthropogenic soils), earthworks (mounds, causeways, raised fields, terraces), rock art (paintings
and petroglyphs) andidentified eco-archaeological regions (1, 24) (see Fig. S2). We iactuded
archaeological regions in the analysis because they indicate environmental settings with large and
abundant pre-Columbian earthworks (25). We also used margins of navigaldes proxisfor
pre-Columbian settlementsegbaise theyare good predirs of anthropogenic soils in Amazonia
(26). Our analysealso @counted for theeffeds of different geologicaregions of Amazonia and
for four locd environmenthconditions: soicaion exchangegpaaty (CEC), soil pH rainfall
seasondity, and height above the mest dainage HAND, a proxy for wagr-table depth). These
variables were selected because they influence forest composition in Amazonia (19, 21-23) and

are available for basin-wide analysis.

We found asignificantly higher abundance and richness (in absoluteelative terms) of
domesttaed sgedes in south-wstem Amazonian foests, followed by ndh-westem, soutlem
andeastern forests, and the lowestlwes in the Guiana Shie(ffig. 2, Fig. S3). The total number
of individuals of domesticated species per hectare (abundangedfrom 0-292 and the total
number of domesticated species (richness) from 0-19. The relative abundance ranged from 0-61
% and theaelative richness from 0-19 %. Forests with aaibe amblage of domesided

spedes tended to have a high abundance febpedes (Fig. S4). The abundance df a



domestcated sgdes was, howest, mostly due to 20 hyperdominantsies. Domesticated
hyperdominant sgies weremore widespreadcioss Amazonian fests than non-domestied
hyperdominant specied/e found that 70 % of the 20 domesticated hyperdominant species
studied here occur in all Amazonian regions (Database S1) versus only 47 % of the 207 non-
domesticated hyperdominant species (17). Most of domesticated species that are hyperdominant
have incipiently domesticated populations, rather than fully domesticated ones. This finding
suggests that humans were probably managing hyperdominant species in forests instead of
investing their efforts to fully domesticate populations. Humans may have fully domesticated
populations of plant species that were rare in nature and easily adapted to anthropogenic
landscapes.

We found thaforests closer to archaeolagi sites had greater abundance and richness (in
relative and absolute terms) of domeatd sgdes at theAmazonia-wide levie(Fig. 3, Fig.
S5H. In four of the six Amazonian regions, the relative and absolute richness of domesticated
species decreased with distance from archaeological sites or rivers, and in three of these four
regions the relative and absolute abundance of domesticated species also decreased with
distance from archaeological sites or rivers. These results reveal that forests closer to
archaeological sites or rivers within these regions harbor a richer and larger assemblage of
domesticated species than forests elsewhere. The relative abundance of domesticated
hyperdominant species also decreased with distance from archaeological sités Iffrig. 4
contrast, we tested if non-domesticated hyperdominant species in three control groups were
negatively affected by the distance from archaeological sites, and we did not find a significant
negative relation for any control group (Fig. 4). Additionally, non-domesticated hyperdominant
species dispersed primarily by primates were more abundant farther from archaeological sites
within forests in southern Amazonia and the Guiana Shield (Fig. 4), potentially as a result from
heavy hunting around villages (1&lthough the absolute and relative abundance of

domesticated species in forest plots decreased with distance from navigable rivers in the Guiana



Shield, tle opposite was observed for the distance from archaeological sites within this region.
One possible explanation is insufficient information about the distribution of archaeological
sites along tributary rivers, so moving away from a known archaeological site may increase the
proximity to other sites that have not been mapped yet. Archaeological surveys into interfluves
of major rivers in Central Amazonia documented numerous anthropogenic soils along tributary
rivers, showing that these areas were also densely occupied (27).

The map showing the density of archaeological sites in 1°-grid cells (areas of approximately
110 knf) indicated large areas of Amazonia without any archaeological site (Fig. S6) and
revealed that some plots with high values of the relative abundance of domesticated species are
located in grid cells without any archaeological site, most likely reflecting lack of surveys.

While simple regressions showed a pronounced decrease of human impact in forests up to 25
km from archaeological sites and 10 km from rivers (Figs. S7-S11), the strongest human impact
was detected in forests located on archaeological sites or within eco-archaeological regions in
south-western and eastern AmazoBiaminance of domesticated species may, therefore, help
predict the occurrence of archaeological sites in Amazonian forests. Guiana Shield plots, for
example, with an average of 30 % of individuals of domesticated species located close to river
margins, but more than 120 km away from an archaeological site can be used to test this
hypothesis and indicate thetvidespread survey of archaeological sites along tributaries in
interfluvial areas is critical.

Environmentaconditions also controlled the abundance and risdwledomestiaed sgades
(Fig. 3, Fig. S6), and may have influenaglaere and how humarsbaped foests through time.

We found thaenvironmenthconditions explained most (up to 30 %) of tla@ation in the

relative abundance and richness of donoettd s@ades in Amazonian region$ig. 5), while the
proxies for past human impacts explained up to 28@proximately 70 % of the variation

remains unexplained by either human or environmental factors in most of the regions. The data

available for this broad-scale analysis is based on forest plots and archaeological sites unequally



distributed across the study area, andnterpolations of environmental conditions. Hence, the
data used may not capture the real variation of past human and environmental factors across the
basin. Even so, #relative abundance and richness of donvetd sgdes were higher in the
soutkem periphery of the basifFig. 2) and increased witlainfall seasondity at the Amazonia-
wide leve (Fig. 3). Sasond and open feests in tansitiond zones were importantemsystems for
early humans, who sited the domestication of some plants (28), and the longe&gumbian
occupation sequeares have leen found @her in the southernguphery of the basin or near the
estuary of the Amazon River (29). In seasonal forests of seeshern Amazonia, where two
major crops most likely originated (manioc, Manihotudenta, and peach palm, Bactris
gasipaes) (13), plant populations that also respondddongtlection and propagation were
widely dispersed13). For instance, sweet manioc was domesticated in seeshern Amazonia
before the initial development of small-scale farmingieties in the nd-Holocene and
expanded widelyZ8, 30). It was also from the south-western periphery thatrivajor
languages expanded and where the oldest anthropagelsi©iave been found, dated from
around 4,800 BP (&1). The Arawak language family probably originated onth-western
Amazonia and expanded across Amazonia associatedhgitnarly development of farming
villages (32). The upper Madeira River is the homeldnti® Tupi language family, which also
spread widely33). In south-western Amazonia, the combinatiomanifall seasonkty (Table 1),
forestsavannarensition (34), high culttal diversity (35) and dong history of foest
transformation encompassing ladse engireing by pe-Columbian socieges (25)resulted in
forests containing derse and abundansgemblages of domesticatedesies.

Soil and terrain conditions also determined forest composition (36) and influenced the
abundance and richness of domesticated species in forest plots (Fig. 3). We found in some regions
higher relative abundance and richness of domesticated species on soils with lower pH. Plots with

shallow water table also concentrated domesticated species. This pattern is driven by dense stands



of some species (e.dvauritia flexuosa, Euterpe oleracea, E. precatoria and Oenocarpus

bataua) on poorly-drained soils of Amazonia)(37

Although potential confounding effects of some correlations between human and
environmental factors may exist (e.g., human settlements located in seasonal forests on poorly-
drained soils of south-western Amazonia), we found that human influence is uniquely
responsible for about half of the explained variation of the abundance, relative abundance,
richness and relative richness of domesticated species in the south-western and eastern regions
(Fig. 5, Fig. S12). The association between domesticated species and archaeological sites raise a
chicken-and-egg question: did humans enrich forests in south-western and eastern Amazonia
with domesticated species or did humans choose to live close to forests naturally rich in these
species? Our approach cannot demonstrate causality, but the first alternative is most probable
given the sum of other evidence that also support the influence of past societies in increasing
domesticated species abundance and richness in forests. Firstly, numerous archaeological sites
were found in all geological regions (Fig. S2), which shows that pre-Columbian human societies
were distributed across all of Amazonia (1) and created new landscapes for domesticated plants
under different environmental conditions (Table 1). Dramatic changes in phytolith assemblages
have been found in ancient anthropogenic soils before, during and after human occupation,
indicating that humans transform forest composition once they oerigrga (38). Secondly,
assemblages of up to 19 domesticated species with different geographical distributions and
distinct ecological preferences tend to occur in forests close to archaeological sites (Fig. 3 and
Fig. S5). As an example, we found a set of domesticated species at one forest plot (Attalea
maripa, Astrocaryum murumuru, Bertholletia excelsa, Garcinia macrophylla, Hevea
brasiliensis, Oenocarpus bacaba and Theobroma spp.) that would be unlikely to occur by
chance at the same location because of their distinct ecological niches. Thirdly, species
domesticated in one particular environmental setting had wide geographical distributions and

tended to be more abundant in locations not associated with their known or hypothetical origins



of domesticationX3) (Fig. 1 and Fig. S1). For instance, cocoa (Theobroma raeesdirst
domesticated in wet forests on nutrient-rich soils of north-western Amazonia, and is currently

more abundant in south-western and southern forests (39).

While it is possible that the origin of domestication of some species is not well identified,
this is unlikely for species for which extensive morphological and genetic studies have been
done (more details in supplementary online text sectiong.Dbinesticated species for which
information about their origins of domestication exists originated in the periphery of Amazonia
(13). Species can have wild populations in one part of Amazonia (where the domestication
process started) and incipiently, semi or fully domesticated populations in other parts of the
basin. Fully domesticated populations show substantial morphological and genetic changes and
depend on human management for their long-term survival, whereas incipiently domesticated
plants can survive and reproduce without humans, as is the case of most hyperdominant
domesticated species. Many domesticated species were dispersed from their origin of
domestication to other locations where large pre-Columbian populations lived and these species
eventually accumulated greater intra-specific diversity (13). Our results suggest that plant
species that responded well to selection and propagation were widely cultivated and dispersed
within and outside their natural range (6, 7) by different societies and at different moments in
time. The influence of modern indigenous and non-indigenous societies in the last 300 years on
the distribution of some domesticated species may be stronger than the effect of earlier societies.
For instance, in the late 17th century, Portugal and Spain stimulated plantations of cocoa trees in
Amazonia (40), which - associated with pre-Columbian cultivation - may have increased the

abundance of cocoa trees in south-western Amazonian forests even more.

Our results suggest that past human interventions had an important and lasting role in the
distribution of domesticated species found in modern forests, despite the fact that the location of

many archaeological sites is unknowimost one fourth of all domesticated species are



hyperdominant, and besides their seeamnomic importance they can also help unravel the

human history of Amazonian forests, largely overlooked by ecological studies. Detecting the
widespread effect of ancient societies in modern forests not only strengthens efforts to conserve
domesticated and useful wild-plant populations, of critical importance for modern food security
(41), but also strongly refutes ideas of Amazonian forests being untouched by man.

Domestication shapes Amazonian forests.
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Fig. 1. Distribution maps of 5 domesticated hyperdominant species in Amazonian forests
and their probable origins of domestication (13, 42). Distribution maps wre estimated for
five domesttaed spedes thatare hyperdominants: Bertholletia excelsa (A); Inga ynga (B);
Pouroumacecaopiifolia (C); Pouteria caimito (D); Theobroma cacao (E). The imorigf
domestication is shown by the symbol+(+) for known orign and by the aybol (++) for
hypothetical origin. Sizes of &k dots indcae therelative abundance of the domesticated
spedes in plots where the spdes has ben recrded. Red dots indite plots wtere each
domesticatedpecies has notdmn recorded. Shading shows theeipblated distribution oéadh
spedes using loss spatial interpolation (17). Thaange of relative abundance in plots (RelAb)
and the loss spetial interpolationin individual gid cdls (fit) are reportedin percentage above
eadh map. Maps wercreated with custom Rcspts. Amazonia was divided in six geolagi
regions (NWA, nath-westtm Amazonia; SWA, south-watem Amazonia; 38, soutlem

Amazonia; @, central Amazonia; GS, Guiana Shield; EAgsstem Amazona). Base map

souce (country.shp, ivers.shp): ESR (http://www.est.com/datédasemaps, © Esri, Derme

Publishing Compan

Fig. 2. Spatial variation of 85 domesticated species across Amazonia. Maps showing the
spetial varation of the total number of individuals of domesticated species (abundance) per
hectare (ha) (A), the relative abundance of domesticgpedies (B), the total number of
domesticated species (richness) per plot (C), anddhgve richnes of domesttaed speaes

(D) in lowland plotsin six geological regione®f Amazonia (NWA, north-westem Amazonia

SWA, southwestem Amazoniga SA, soutem Amazonia CA, central Amazonia; GS, Guiza
Shield; EA,easstem Amazonia). Blak circles show the olesved vdues of absolute abundance

(A) andrelative abundance (B), rangirfigpm 0-292 individuals of domesticated species per 1 ha
and 0-61 % of the total number of individualaddhe obgrved vdues of absolute richness (C)

andrelative richnes (D), rangingfrom 0-19 domesticated species per plot and 0-19 % of the


http://www.esri.com/data/basemaps

total number of speciesThe white-green background shows the interpolation of thenaub

values (n %) in eah plot mod#ed asafunction of latitude antbngitude on a %grid cdl scale

using loess spetial interpolation (17). Maps ere creded with custom R @ipts. Base map

souce (country.shp,ivers.shp): ESRI| (http://www.eiscom/datdasemaps, © Esri, DeLae

Publishing Company

Fig. 3. Therelative abundance and richness of domesticated species as a function of human
and environmental variables. Standrdized regression coefficients for theslative abundance
(A) and the relative richrss of 85 domestiaed species (B) as a function of humfactors
(distance to archaeolag sites andecoarchaeological regions,stance to navigablawers) and
environmentakonditions (soil Cation Exchange Gajty, soil pH, number of dry months and
Height Above the Maest Drainage). Circle size represents therelative contribution of the
predidors, shown by staraidized coefficients at thAmazonia-wide levie(All) and region-level
regession models (NWA, ndin-western Amazonia SWA, souh-westem Amazonia SA,
souttem Amazonia CA, centrd Amazonia; GS, Guiana Shield; EAstem Amazona). Red
circles indicae negative effects and bluerdes positive effects. Standardized coefficieais
presented only forsignificant relations analyzed in the models £p0.05). Adjusted % and
significant codes (p values: < 0.001°****; < 0.01°***; < 0.05*; > 0.05°ns’) are pesented for

the effect of regions at the Amazonia-wide level (All) and all regression models.

Fig. 4. The relative abundance of hyperdominant species as a function of human and
environmental variables. Standardized regression coefficients for the relative abundance of 20
domesticated species that are hyperdominants (A), the relative abundance of 20 non-
domesticated species that are hyperdominants and primarily dispersed by primates (B), the

relative abundance of 20 non-domesticated species that are hyperdominants and not dispersed by


http://www.esri.com/data/basemaps

primates (C), and the relative abundance of 20dmmnesticated species that are hyperdominants
selected at random (D), as a function of human variables (distance to archaeological sites and
eccoarchaeological regions, distance to navigable rivers) and environmental variables (soil Cation
Exchange Capacity, soil pH, number of dry months and Height Above the Nearest Drainage).
Circle size represents therelative contribution of the prediors, shown by starmidized
coefficients at théAmazonia-wide levie(All) and region-level regssion models (NWA, nain-

western Amazonia SWA, souh-westtm Amazonia SA, soutem Amazonia CA, central
Amazonia; GS, Guiana Shield; EAzstem Amazona). Red cicles indicate negative effects and

blue crcles positive effects. Standardized coefficieats presented only fosignificant relations
analyzed in the models (p < 0.05). Adjusted%and significant codes (p values: < 0.001 “**%*°; <

0.01 “**’; < 0.05 “*’; > 0.05 ‘ns’) are presented for the effect of regions at the Amazonia-wide

level (All) and all regression models.

Fig. 5. Relative contributions of human and environmental variables for explaining
variation in relative abundance and richness of domesticated speciesin Amazonian forests.
The figure shows thegttitioning of \aration in relative abundance (A)ral relative richnes(B)
of domestiaed species uniquely explaed by evironmental (érk gray) or humandaors (light
gray), and the aration jointly explaned by both (gray). ®iance partitioning was conducted
over theresults of multiple regession analyses presentedFig. 3.Amazonia was divideth six
geologicd regions (NWA, nah-westem Amazonia SWA, south-westem Amazonia SA,

souttem AmazoniaCA, centra Amazonia; GS, Guiana Shield; EAsgstem Amazonia).



Table 1. Mean, median, minimum and maximum values of all human and environmental
variables used in the multiple regression models. Values wee calculated at the Amazonia-
wide level @AIll) and region-level (NWA, north-western Mazonia, SWA, south-western

Amazonia; SA, southern Amazonia; Clentral Amazonia; GS, Guiana Shield; E&gstern

Amazonia).
Region Values Distanceto Distance Cation pH N dry HAND
(Number ar chaeological to main Exchange months
of plots) sites (km) rivers Capacity
(km) (cmol / kg)
All Mean 45.65 14.25 12.07 4.49 2.01 37.02
(1091) Median 25.94 10.52 11.00 4.50 1.00 22.81
Minimum 0.00 0.00 6.00 3.90 1.00 0.00
Maximum 349.42 70.58 35.00 5.70 6.00 539.11
NWA Mean 51.41 9.31 14.36 4.44 1.02 16.67
(197 Median 32.46 5.40 14.00 4.40 1.00 11.13
Minimum 0.63 0.00 8.00 4.10 1.00 0.00
Maximum 196.81 49.73 31.00 5.10 2.00 163.93
SWA Mean 80.07 14.16 12.57 491 2.68 30.77
(158 Median 59.07 9.23 11.00 4.90 3.00 17.16
Minimum 0.00 0.07 7.00 4.00 1.00 0.00
Maximum 219.94 62.94 25.00 5.60 6.00 375.98
SA Mean 67.35 11.72 9.19 4.54 3.86 39.59
(86) Median 43.77 5.78 9.00 4.55 4.00 25.55
Minimum 2.03 0.04 6.00 4.00 2.00 1.06
Maximum 349.42 46.93 13.00 5.30 6.00 293.89
CA Mean 20.54 14.79 10.07 4.16 1.99 45.45
(250 Median 11.64 13.24 10.00 4.10 1.00 47.78
Minimum 0.62 0.00 7.00 3.90 1.00 0.04
Maximum 220.35 48.55 18.00 5.10 6.00 119.93
GS Mean 41.86 19.73 12.78 4.59 1.83 48.57
(317 Median 32.65 14.39 12.00 4.60 2.00 24.38
Minimum 0.93 0.09 6.00 4.00 1.00 0.00
Maximum 127.36 70.58 35.00 5.70 6.00 539.11
EA Mean 34.18 6.11 11.96 4.51 1.89 24.84
(83 Median 20.23 2.72 11.00 4.50 1.00 23.38
Minimum 0.00 0.00 9.00 4.10 1.00 0.62

Maximum 254.99 52.79 18.00 5.10 6.00 78.72
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