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Abstract: This paper presents a novel approach to artificial situation awareness for an
autonomous vehicle operating in complex dynamic environments populated by other agents.
A key aspect of situation awareness is the use of mental models to predict future states of the
environment, allowing safe and rational routing decisions to be made. We present a technique
for predicting future discrete state transitions (such as the commencement of a turn) by other
agents, based upon an uncertain mental model. Predictions take the form of univariate Gaussian
Probability Density Functions which capture the inherent uncertainty in transition time whilst
still providing great benefit to a decision making system. The prediction distributions are
compared with Monte Carlo simulations and show an excellent correlation over long prediction
horizons.

Keywords: Autonomous systems, Decision making and autonomy, Navigation, Safety, Human
and vehicle interaction

1. INTRODUCTION

Autonomous vehicles operating in complex environments,
particularly those in close proximity to human agents 1 ,
are required to make safe, rational decisions about how
they behave. These decisions should also be made in
a manner which is analogous to those made by human
agents, so they may be easily understood by them (Hutch-
ings et al., 2007; Chen et al., 2015). This leads to a require-
ment for the autonomous agent to possess a high level of
situation awareness, defined by Endsley (1988) as the abil-
ity to predict future states of the environment based upon
a perception of the current state and a comprehension of
its meaning. This prediction step is based on a mental
model of the environment, including other agents, and
enables the autonomous agent to make decisions, which are
not only safe at the current time, but will likely continue
to be safe in the future (Endsley, 1995; Adams, 2007).

McAree (2013) introduced this concept of artificial situa-
tion awareness by considering an autonomous Unmanned
Aircraft System (UAS) landing at a busy airfield at which
manned vehicles were also landing. The mental model
of the traffic behaviour consist of both continuous and
discrete elements

(1) Continuous - Velocity, rate of turn and heading un-
certainty

(2) Discrete - Changes in the route of the vehicle due to
local air traffic procedures

Parameters of the models may be uncertain, and are
represented as univariate Gaussian distributions which can

⋆ Research in part supported by the EPSRC, grant numbers
EP/L024942/1 and EP/J011843/1
1 Either people, or manually controlled vehicles

be easily constructed from observed data, such as radar
traces (Bar-Shalom and Li, 1993).

McAree and Chen (2013) predicted future positions of traf-
fic as two dimensional spatial Probability Density Func-
tions (PDFs), before computing a separation distribution
as a univariate PDF. The possibility of discrete transitions
invalidates the often used constant velocity assumption
(Livadas et al., 2000; Pellegrini et al., 2009; Winfield et al.,
2014), therefore the intermediate spatial PDF becomes
highly non-Gaussian and requires the use of dense non-
parametric models to correctly capture the uncertainty
(McAree, 2013). Despite this non-Gaussianity, the final
separation PDF can be closely approximated to a Gaus-
sian, albeit requiring significant computational power.

In this paper, we propose an abstraction which transforms
the prediction problem from the two dimensional spatial
domain to the one dimensional temporal domain. Rather
than attempting to predict future positions of other agents
directly, we seek to predict the time at which future
discrete transitions will occur, as a univariate PDF. This
approach significantly reduces the computational burden
of future state prediction, without significant loss in util-
ity. For example, if an autonomous car observes another
vehicle approaching a roundabout it need not be concerned
with the future latitude and longitude of the traffic, only
if it is likely to be on the roundabout at the same time
as itself. The next section presents the principle behind
discrete transition prediction for simple scenarios where
spacial uncertainty is bounded, including the aforemen-
tioned roundabout scenario as a numerical example.

Neglecting to perform any prediction of spatial uncertainty
may be computationally desirable, but it leads to signif-
icant errors in temporal prediction for complex environ-
ments with unbounded uncertainty, such as in the UAS



example mentioned previously. Section 3 builds on the
simple case by considering spatial uncertainty only so far
as it pertains to temporal uncertainty, and uses the same
UAS example to explain the necessary calculation steps.

Section 4 introduces situations where the list of future
discrete transitions may not be known precisely, and how
these probabilities can be inferred from observation along
with the online learning of mental models.

Finally, Section 5 concludes this work and discusses links
to future work on agent decision making, learning and
verification.

2. SIMPLE TEMPORAL SITUATION AWARENESS

In domains where spatial uncertainty is limited by the
environment, and the required prediction horizons are
relatively short, it is possible to determine transition PDFs
directly from transit and manoeuvre time distributions. In
two dimensions we define transit time as the time taken to
travel a particular, although possible uncertain, distance.
Manoeuvre time is defined as the time taken to turn
through a particular, although possibly uncertain, angle.
In simple scenarios these two concepts are mathematically
very similar, however they are dealt with separately to
facilitate the extension to complex scenarios in the next
section.

2.1 Transit time distribution

Transit time is defined as the time taken to travel a
particular distance at a particular speed. If these were
both known with certainty the calculation would be trivial,
however if v ∼ N (v̄, ṽ2) and d ∼ N (d̄, d̃2) then tt = d/v is
a ratio distribution which in general is undefined (Hayya
et al., 1975). Under certain restrictions, however, it is
possible to approximate the distribution tt to a Gaussian.

Lemma 1. Given the uncorrelated Gaussian distributions
x ∼ N (x̄, x̃2) and y ∼ N (ȳ, ỹ2), the distribution z = y/x
can be approximated to z ∼ N (z̄, z̃2), where z̄ = ȳ/x̄ and
z̃2 = (x̃ȳ/x̄2)2+(ỹ/x̄)2. Provided x̄ > 0, ȳ > 0 and x̃≪ x̄.

Proof. As x and y are uncorrelated we consider their con-
tributions to z as having mean z̄ = ȳ/x̄ and variance found
from the convolution of the two independent distributions
zx = ȳ/x and zy = y/x̄ as

z̃2 = z̃2x + z̃2y (1)

zy is simply an affine transform of y, therefore z̃y = ỹ/x̄

zx is generally undefined (Seshadri, 1993), but can be
approximated by taking the exponent of the Gaussian
PDF for x, substituting x = ȳ/zx, and rearranging to the
standard form, leading to

z̄x =
ȳ

x̄
(2)

z̃x =
x̃zx
x̄

(3)

Equation (2) is the expected mean, however, (3) does not
represent a valid variance, as it is a function of the random
variable zx. By writing zx = z̄x + z̃xσ, where σ ∼ N (0, 1)

Fig. 1. Example: traffic vehicle (left) intending to cross
path of autonomous vehicle (right)

and assuming z̃x ≪ z̄x (therefore the z̃xσ term may be
neglected as small), we can find that

z̃x =
x̃ȳ

x̄2
(4)

The condition to satisfy z̃ ≪ z̄ can be found from (2) and
(4) as x̃≪ x̄ 2

Corollary 2. Given a Gaussian velocity distribution v ∼
N (v̄, ṽ), the time taken to travel a distance d ∼ N (d̄, d̃)
can be approximated to the distribution tt ∼ N (t̄t, t̃

2

t ),

where t̄t = d̄/v̄ and t̃2t = (ṽd̄/v̄2)2 + (d̃/v̄)2. Provided
ṽ ≪ v̄.

Proof. Travel time is defined as tt = d/v, where v̄ > 0
and d̄ > 0. d and v can be considered independent as the
uncertainty in the speed and distance to be travelled do
not effect one another. The result follows Lemma 1. 2

2.2 Manoeuvre time distribution

A manoeuvre is defined as rotation through a particular
angle ψ at a particular angular rate ψ̇, both of which can
be uncertain. In the simple case where spatial uncertainty
is limited and prediction horizons are small the manoeuvre
time distribution is found in an identical way to the transit
time above. Generally

tm ∼ N (t̄m, t̃
2

m) (5)

where t̄m = ψ̄/
¯̇
ψ and t̃2m = (

˜̇
ψψ̄/

¯̇
ψ2)2 + (ψ̃/

¯̇
ψ)2

2.3 Automotive example

To illustrate the use of the transit and manoeuvre time
distributions for predicting discrete state transitions, con-
sider an autonomous car detecting an oncoming vehicle
which is signalling to cross its path at a roundabout, Fig.
1. This example contains four discrete states of interest

(1) Transit from currently observed position to round-
about, where both the distance and velocity are un-
certain. d1 ∼ N (50m, (0.25m)2) and
v1 ∼ N (15ms−1, (1ms−1)2)

(2) Left turn to enter the roundabout, where turn rate is

uncertain. ψ̇2 ∼ N (45os−1, (2os−1)2)
(3) Right turn on roundabout, where turn rate is uncer-

tain. ψ̇3 ∼ N (45os−1, (2os−1)2)
(4) Left turn to exit roundabout, where turn rate is

uncertain. ψ̇4 ∼ N (45os−1, (2os−1)2)

Fig. 2 illustrates 10,000 potential trajectories for the traffic
vehicle which is initially located at (0, 0)m. Applying
Corollary 2 to the first state and (5) to the rest yields



Fig. 2. Monte-carlo experiment of 10,000 executions
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Fig. 3. Experimental and analytical transitions probabili-
ties

t0,1 ∼ N (3.33s, (0.223s)2) (6)

t1,2 ∼ N (1.67s, (0.074s)2) (7)

t2,3 ∼ N (5.18s, (0.230s)2) (8)

t3,4 ∼ N (1.51s, (0.070s)2) (9)

Calculation of the transitions times is simply the cumula-
tive convolution of these individual distributions

t1 = t0,1 ∼ N (3.33s, (0.223s)2) (10)

t2 = t1 ∗ t1,2 ∼ N (5.00s, (0.235s)2) (11)

t3 = t2 ∗ t2,3 ∼ N (10.18s, (0.329s)2) (12)

t4 = t3 ∗ t3,4 ∼ N (11.69s, (0.336s)2) (13)

Fig. 3 shows histograms of the experimental transitions
times from Fig. 2 compared with the analytical distribu-
tions from (10)-(13). It is clear that the analytical dis-
tributions are a good approximation to the experimental
solutions. An autonomous car employing such a prediction
scheme could safely continue if it intends to arrive at the
roundabout at any time when the vehicle is not likely to
be in state 3. This time interval can be found from (11)
and (12), for example with 99% probability

F−1

t2
(0.01) < tunsafe < F−1

t3
(0.99) (14)

4.5s < tunsafe < 10.9s (15)

where F−1

ti
(P ) is the Gaussian quantile function evaluated

for the ith transition time distribution with probability P .

3. COMPLEX TEMPORAL SITUATION AWARENESS

The previous section introduced the concepts of transit
and manoeuvre times for simple domains where the envi-
ronment poses limits to the spatial uncertainty and pre-
diction times are small. In less structured environments,
such as those encountered by autonomous UAS, spatial
uncertainty can be much larger and longer prediction hori-
zons are often needed. Whilst the transit and manoeuvre

1

2
3

4

5

Uncertainty from state 2,

only apparenty in state 5

x
y

Fig. 4. Illustration of the effect of cumulative spatial
uncertainty on transition time uncertainty

time distributions are still applicable for predicting the
length of a particular discrete state, transitions times can
no longer be found directly as the convolution of these
distributions as this approach ignores the accumulation
of spacial uncertainty. The following sections discuss the
sources of cumulative spatial uncertainty and deals with
them by including additional terms in the transition time
distributions.

3.1 Sources of spatial uncertainty

Consider an aircraft conducting a series of manoeuvres,
such as those undertaken in preparation for landing (McA-
ree and Chen, 2013), illustrated in Fig. 4. As in the simple
case, it is likely that manoeuvres will not be conducted
perfectly, for example a pilot intending to turn through
90o may actually stop their turn after only 85o, as seen in
state 2 of Fig. 4. This turn angle uncertainty has minimal
effect on the manoeuvre time of phase 2, less than 1s at
a typical turn rate of 6os−1. Likewise the length of state
3 and 4 see little effect. State 5, however, now experiences
a much greater distance uncertainty due to the trajectory
deviation experiences in state 3. For example, if state 3 is
2km long a 5o error adds an additional 174m to state 5
which could take as long as 5s to cover.

McAree and Chen (2013) dealt with this accumulation of
uncertainty by performing prediction with spatial distri-
butions directly, with which it is then possible to calculate
temporal distributions. This approach is challenging, how-
ever, as the spatial distributions are highly non-Gaussian,
requiring the use of dense non-parametric distributions
with high computational complexity and poor scalabil-
ity. To avoid this complexity, we now consider only the
accumulation in spatial uncertainty as it pertains to the
calculation of temporal uncertainty.

3.2 Dealing with spatial uncertainty

Firstly, we consider the uncertainty which accumulates
during a manoeuvre and then that which builds up during
a subsequent transit. Finally, we must consider how to
correctly apply this spatial uncertainty to our temporal
distribution.

Lemma 3. Given a manoeuvre of ψ̄ from the x axis subject
to uncertainty in speed and turn rate, v ∼ N (v̄, ṽ2)

and ψ̇ ∼ N (
¯̇
ψ,

˜̇
ψ2) respectively, the subsequent spatial

uncertainty in both x and y directions is



[

x̃2

ỹ2

]

=















(

ṽ
¯̇
ψ
sin ψ̄

)2

+

(

v̄
˜̇
ψ
¯̇
ψ2

sin ψ̄

)2

(

ṽ
¯̇
ψ
(1− cos ψ̄)

)2

+

(

v̄
˜̇
ψ
¯̇
ψ2

(1− cos ψ̄)

)2















(16)

Proof. The nominal radius of turn is r̄ = v̄/
¯̇
ψ, leading

to a distance travelled in each spatial dimension (from the
initiation of the manoeuvre)

[

x̄
ȳ

]

=









v̄
¯̇
ψ
sin ψ̄

v̄
¯̇
ψ
(1− cos ψ̄)









(17)

The uncertainty in radius of turn can be found from
Lemma 1, assuming v and ψ̇ are uncorrelated, as

r̃2 = (ṽ/
¯̇
ψ)2 + (v̄

˜̇
ψ/

¯̇
ψ2)2 (18)

To correctly map the radius uncertainty to the geometry
in (17), maintaining independence, each term must be
transformed individually leading to (16). 2

Lemma 4. Given a transit of d̄i following an uncertain
manoeuvre of ψi−1 ∼ N (ψ̄i−1, ψ̃

2

i−1
), the subsequent

spatial uncertainty in both x and y directions is
[

x̃2

ỹ2

]

= (d̄iψ̃i−1)
2

[

cos2(ψ̄i−1)
sin2(ψ̄i−1)

]

(19)

assuming ψ̃i−1 is small.

Proof. The cross track error ect associated with the un-
certain manoeuvre depends on the length of the subse-
quent transit (Polhemus and Livingston, 1981), therefore

ect = d̄i sin(ψ̃i−1) (20)

or, assuming ψ̃i−1 is small

ect = d̄iψ̃i−1 (21)

This error is perpendicular to the path, therefore
[

ex
ey

]

= d̄iψ̃i−1

[

cos(ψ̄i−1)
sin(ψ̄i−1)

]

(22)

To maintain positivity of the variance terms these errors
are squared, leading to (19). 2

The accumulation of spatial uncertainty in the x and y
directions from Lemmas 3 and 4 is simply the convolution
of the contribution from each state. Transforming spatial
uncertainty to the temporal transition distributions is
handled by convolving a distance distribution with the
appropriate spatial contribution, meaning that it is only
accounted during transits.

Lemma 5. Given a transit of di ∼ N (d̄i, d̃
2

i ) on a head-
ing of ψ̄i from the x axis and a spatial uncertainty of
(x̃i−1 ỹi−1), the distance uncertainty is updated as

d̃∗2i = d̃2i + (x̃i−1 cos(ψ̄i))
2 + (ỹi−1 sin(ψ̄i))

2 (23)

and the spatial uncertainty is reduced to
[

x̃2i
ỹ2i

]

=

[

x̃2i−1
(1− cos2(ψ̄i))

ỹ2i−1
(1− sin2(ψ̄i))

]

(24)

Proof. Wemust first determine the projections of (x̃i−1 ỹi−1)
parallel to the transit, these are

Update 
distance

distribution
(Lemma 5)

di

Calculate
transit time
distribution
(Corollary 2)
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i

vi

ψi-1

(x,y)i-1
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(x,y)*
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Reduce 
spatial

uncertainty
(Lemma 5)

ti-1,i

ti-1

ti

ψi

Calculate
transition

distribution
ti = ti-1 * ti-1,i

(x,y)i-1

Fig. 5. Procedure for calculating transition distribution
and spatial uncertainty for transits

[

d̃x
d̃y

]

=

[

x̃i−1 cos(ψ̄i)
ỹi−1 sin(ψ̄i)

]

(25)

The final distance distribution is the convolution of the
original with these two additional variances, yielding (23).
We must also reduce the spatial uncertainty by the same
amount so as to avoid double accounting in future calcu-
lations, this is the deconvolution of (x̃i−1 ỹi−1) with (25),
yielding (24). 2

Lemmas 3-5 provide the necessary tools to calculate com-
plex temporal transition distributions, accounting for the
accumulation of spatial uncertainty. To better understand
the calculation we consider the example of an autonomous
UAS approaching a busy airfield, a continuation from
McAree and Chen (2013). Figs. 5 and 6 illustrate the
procedure for calculating transition distributions and spa-
tial uncertainties for transit and manoeuvre states respec-
tively.

3.3 Autonomous unmanned aircraft example

Consider an autonomous UAS approaching a busy airfield
with the intention of landing. Numerous other aircraft
may be present with the same intention, and separation
between aircraft is often the responsibility of the pilots.
To aid safe operation in this scenario there is a predefined
path which all aircraft follow, known as the traffic circuit,
consisting of up to 12 discrete states (Civil Aviation
Authority, 2009)

(1) Inbound
(2) Deadside
(3) Crosswind
(4) Turning downwind
(5) Early downwind
(6) Mid downwind
(7) Late downwind
(8) Turning base
(9) Base
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Fig. 6. Procedure for calculating transition distribution
and spatial uncertainty for manoeuvres
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(10) Turning final
(11) Final
(12) On runway

An approaching aircraft is free to join the traffic circuit
at any point, provided it leaves sufficient separation to
other vehicles. It is necessary, therefore, for an inbound
UAS to predict the likelihood with which other aircraft
will be in each state at any given future time. For this
example we consider a single traffic vehicle initially located
2km from the airfield, intending to join via the Deadside
state and land on the runway at the origin. Some possible
two dimenionsla trajectories for the traffic vehicle are
illustrated in Fig. 7.

Fig. 8 shows the calculated transition distributions for
each state, in comparison with histograms from 10,000
Monte Carlo simulations. It can be seen that the analytic
distributions are an excellent fit for the simulation results
and can be calculated in a fraction of the time. In this
example, executing on a single core of an Intel i7 4600U
CPU, all analytical distributions were produced in 0.015s.
Given a prediction horizon of F−1

t12
(0.99) ∼ 400s this

equates to approximately 3.75 × 10−5s per second of pre-
diction horizon. This represents a significant performance

improvement over previously used spatial distributions
which took approximately 0.21s per second of prediction
horizon to calculate (McAree, 2013).

An autonomous UAS performing these predictive calcu-
lations in real time for all observed traffic vehicles would
quickly build up excellent situation awareness, analogous
to that of a human pilot. This artificial situation awareness
can then form the basis of safe and rational route planning
and decision making.

4. BAYESIAN DISCRETE TRANSITION MODELS

The previous sections have detailed the calculation of
transition time distributions for future discrete states of
other agents assuming their intentions are known. In many
circumstances this may be the case, for example an aircraft
approaching an airfield will usually broadcast its intentions
to Air Traffic Control (ATC). In some cases, however,
we have limited prior knowledge of the agents goals. For
example, consider a similar example to that depicted in
Fig. 1 but this time the observed vehicle is not signalling
to turn right. It is now likely that the vehicle will continue
straight on, however there is a possibility that the driver
intends to turn right but has forgotten to signal.

A typical set of state transitions is shown in Fig. 9, leading
to the dwell time in state 3 becoming bi-modal. Whilst
we may have some prior knowledge about the transition
probabilities P4 and P5, in general these should be learnt
from observed behaviours of agents.

In addition to learning transition probabilities it is neces-
sary for an autonomous agent to be capable of learning the
parameters of its continuous mental models, such as speed
and rate of turn. This requires the grouping of similar
types of agents together in to classes (for example, light
aircraft or commercial jets), and as not all class types may
be known a-priori the agent must be capable of learning
new classes from observed data.

5. CONCLUSIONS AND FUTURE WORK

This paper has presented a novel technique for the predic-
tion of the future discrete state transitions of other agents
in the environment. This prediction forms a critical part of
an autonomous vehicles situation awareness, enabling it to
safely plan its route through complex dynamic situations.
We have presented lemmas for the prediction of how long
each discrete state will last, given a mental model for the
agent, and therefore at what time each state is likely to
end. These predictions account for uncertainty in the men-
tal model by treating each term as a Gaussian distribution,
leading to transition times which are also Gaussian.

This paper has improved upon previous work which con-
ducted prediction in the spatial domain by removing the
need for computationally expensive non-parametric distri-
butions. Information about how spatial uncertainty effects
transition times has been retained by including additional
prediction terms, without any significant increase in com-
putational complexity. This reduction in complexity makes
the prediction suitable for real time implementation and
scalable to a large number of agents.
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It has been shown how the prediction calculations can
be applied to decision making tasks faced by both au-
tonomous cars and UAS. Future work includes the appli-
cation of this artificial situation awareness system within a
decision making system, both in simulation and real world
vehicles. Additionally, the learning of the requisite mental
models will be investigated, both offline (from recorded
data) and online (from observed behaviours). When con-
sidering online learning, verification of the produced mod-
els will be investigated to ensure future predictions remain
accurate.
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