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1 Introduction

In this paper we consider the question of optimal entry into a plan of irreversible investment
with a cost function which is non convex with respect to the control variable. The irreversible
investment problem is that of [7], in which the investor commits to delivering a unit of
electricity to a consumer at a future random time � and may purchase and store electricity in
real time at the stochastic (and potentially negative) spot price (Xt )t≥0. In the optimal entry
problem considered here, the consumer is willing to offer a single fixed initial payment P0 in
return for this commitment and the investor must choose a stopping time τ at which to accept
the initial premium and enter the contract. If � ≤ τ then the investor’s opportunity is lost
and in this case no cashflows occur. If τ < � then the inventory must be full at the time �

of demand, any deficit being met by a less efficient charging method whose additional cost
is represented by a convex factor � of the undersupply. The investor seeks to minimise the
total expected costs, net of the initial premium P0, by choosing τ optimally and by optimally
filling the inventory from time τ onwards.

Economic problems of optimal entry and exit under uncertain market prices have attracted
significant interest. In the simplest formulation the timing of entry and/or exit is the only
decision to be made and the planning horizon is infinite: see for example [8,19], in which
the market price is a geometric Brownian motion (GBM), and related models in [9,22]. An
extension of this problem to multiple types of economic activity is considered in [4] and
solved using stochastic calculus. In addition to the choice of entry / exit time, the decision
problemmay also depend on another control variable representing for instance investment or
production capacity. For example in [10] the rate of production is modelled as a progressively
measurable process whereas in [13] the production capacity is a process of bounded variation.
In this case the problem is usually solved by applying the dynamic programming principle
to obtain an associated Hamilton–Jacobi–Bellman (HJB) equation. If the planning horizon
is finite then the optimal stopping and control strategies are time-dependent and given by
suitable curves, see for example [6].

Typically, although not universally, the costs in the aforementioned problems are assumed
to be convex with respect to the control variable. In addition to being reasonable in a wide
range of problems, this assumption usually simplifies the mathematical analysis. In the
present problem the underlying commodity is electricity, for which negative prices have been
observed in several markets (see, e.g., [12,18]). The spot price is modelled by an Ornstein–
Uhlenbeck process which is mean reverting and may take negative values and, as shown
in [7], this makes our control problem neither convex nor concave: to date such problems
have received relatively little attention in the literature. In our setting the control variable
represents the cumulative amount of electricity purchased by the investor in the spot market
for storage. This control is assumed to be monotone, so that the sale of electricity back to the
market is not possible, and also bounded to reflect the fact that the inventory used for storage
has finite capacity. The investment problem falls into the class of singular stochastic control
(SSC) problems (see [1,15,16], among others).

Borrowing ideas from [13], we begin by decoupling the control (investment) problem from
the stopping (entry) problem. The value function of thismixed stopping-then-control problem
is shown to coincide with that of an appropriate optimal stopping problem over an infinite
time-horizon whose gain function is the value function of the optimal investment problem
with fixed entry time equal to zero. Unlike the situation in [13], however, the gain function in
the present paper is a function of two variables without an explicit representation. Indeed [7]
identifies three regimes for the gain function, depending on the problem parameters, only two
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of which are solved rigorously: a reflecting regime, in which the control may be singularly
continuous, and a repelling regime, inwhich the control is purely discontinuous.We therefore
only address these two cases in this paper and leave the remaining open case for future work.

The optimal entry policies obtained below depend on the spot price and the inventory level
and are described by suitable curves. On the one hand, for the reflecting case we prove that the
optimal entry time is of a single threshold type as in [10,13]. On the other hand, the repelling
case is interesting since it gives either a single threshold strategy or, alternatively, a complex
optimal entry policy such that for any fixed value of the inventory level, the continuation
region may be disconnected.

The paper is organised as follows. In Sect. 2 we set up the mixed irreversible investment-
optimal entry problem, whose two-step formulation is then obtained in Sect. 3. Section 4 is
devoted to the analysis of the optimal entry decision problem, with the repelling case studied
separately in Sect. 5. In Sect. 5.2 we provide discussion of the complex optimal entry policy
in this case, giving a possible economic interpretation.

2 Problem formulation

We begin by recalling the optimal investment problem introduced in [7]. Let (�,A,P) be a
complete probability space, onwhich is defined a one-dimensional standardBrownianmotion
(Bt )t≥0. We denote by F := (Ft )t≥0 the filtration generated by (Bt )t≥0 and augmented by
P-null sets. As in [7], the spot price of electricity X follows a standard time-homogeneous
Ornstein–Uhlenbeck processwith positive volatilityσ , positive adjustment rate θ and positive
asymptotic (or equilibrium) value μ; i.e., Xx is the unique strong solution of

dXx
t = θ(μ − Xx

t )dt + σdBt , for t > 0, with Xx
0 = x ∈ R. (2.1)

Note that this model allows negative prices, which is consistent with the requirement to
balance supply and demand in real time in electrical power systems and also consistent with
the observed prices in several electricity spot markets (see, e.g., [12,18]).

We denote by� the random time of a consumer’s demand for electricity. This is modelled
as anA-measurable positive randomvariable independent ofF and distributed according to an
exponential law with parameter λ > 0, so that effectively the time of demand is completely
unpredictable. Note also that since � is independent of F, the Brownian motion (Bt )t≥0

remains a Brownian motion in the enlarged filtrationG := (Gt )t≥0, with Gt := Ft ∨σ({� ≤
s} : s ≤ t), under which � becomes a stopping time (see, e.g., Chapter 5, Section 6 of [14]).

Wewill denote by τ any element of T , the set of all (Ft )-stopping times. At any τ < � the
investor may enter the contract by accepting the initial premium P0 and committing to deliver
a unit of electricity at the time �. At any time during [τ,�) electricity may be purchased in
the spot market and stored, thus increasing the total inventory Cc,ν = (Cc,ν)t≥0, which is
defined as

Cc,ν
t := c + νt , t ≥ 0. (2.2)

Here c ∈ [0, 1]denotes the inventory at time zero andνt is the cumulative amount of electricity
purchased up to time t . We specify the (convex) set of admissible investment strategies by
requiring that ν ∈ Sc

τ , where

Sc
τ := {ν : � × R+ �→ R+, (νt (ω))t≥0 is nondecreasing, left-continuous,

(Ft ) − adapted, with c + νt ≤ 1 ∀t ≥ 0, ντ = 0 P − a.s.}.
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The amount of energy in the inventory is bounded above by 1 to reflect the investor’s limited
ability to store. The left continuity of ν ensures that any electricity purchased at time � is
irrelevant for the optimisation. The requirement that ν be (Ft )-adapted guarantees that all
investment decisions are taken only on the basis of the price information available up to time
t . The optimisation problem is given by

inf
τ≥0, ν∈Sc

τ

E
[( ∫ �

τ

Xx
t dνt + Xx

��(Cc,ν
� ) − P0

)
1{τ<�}

]
. (2.3)

Here the first term represents expenditure in the spot market and the second is a penalty
function: if the inventory is not full at time � then it is filled by a less efficient method,
so that the terminal spot price is weighted by a strictly convex function �. We make the
following standing assumption:

Assumption 2.1 � : R �→ R+ lies in C2(R) and is decreasing and strictly convex in [0, 1]
with �(1) = 0.

For simplicity we assume that costs are discounted at the rate r = 0. This involves no loss of
generality since the independent random time of demand performs an effective discounting,
as follows. Recalling that � is independent of F and distributed according to an exponential
law with parameter λ > 0, Fubini’s theorem gives that (2.3) may be rewritten as

V (x, c) := inf
τ≥0, ν∈Sc

τ

Jx,c(τ, ν) (2.4)

with

Jx,c(τ, ν) := E
[∫ ∞

τ

e−λt X x
t dνt +

∫ ∞

τ

e−λtλXx
t �(Cc,ν

t )dt − e−λτ P0

]
, (2.5)

setting this expectation equal to 0 on the set {τ = +∞}. The discounting of costs may
therefore be accomplished by appropriately increasing the exponential parameter λ.

3 Decoupling the problem and background material

To deal with (2.4) we borrow arguments from [13] to show that the stopping (entry) problem
can be split from the control (investment) problem, leading to a two-step formulation. We
first briefly recall some results from [7], where the control problem has the value function

U (x, c) := inf
ν∈Sc

0

J 0
x,c(ν) (3.1)

with

J 0
x,c(ν) := E

[∫ ∞

0
e−λt X x

t dνt +
∫ ∞

0
e−λtλXx

t �(Cc,ν
t )dt

]
. (3.2)

As was shown in [7, Sec. 2], the function

k(c) := λ + θ + λ�′(c), c ∈ R, (3.3)

appears in an optimal stopping functional which may be associated withU . For convenience
we let ĉ ∈ R denote the unique solution of k(c) = 0 if it exists and write

ζ(c) :=
∫ 1

c
k(y)dy = (λ + θ)(1 − c) − λ�(c), c ∈ [0, 1]. (3.4)
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We formally introduce the variational problem associated with U :

max{−LXU + λU − λx�(c),−Uc − x} = 0, on R × (0, 1), (3.5)

where LX is the second order differential operator associated to the infinitesimal generator
of X :

LX f (x) := 1

2
σ 2 f ′′(x) + θ(μ − x) f ′(x), for f ∈ C2

b (R) and x ∈ R. (3.6)

As is standard in such control problems we define the inaction set for problem (3.1) by

C := {(x, c) ∈ R × [0, 1] : Uc(x, c) > −x}. (3.7)

The non convexity of the expectation (3.2) with respect to the control variable νt , which
arises due to the real-valued factor Xx

t , places it outside the standard existing literature on
SSC problems. We therefore collect here the solutions proved in Sections 2 and 3 of [7].

Proposition 3.1 We have |U (x, c)| ≤ C(1 + |x |) for (x, c) ∈ R × [0, 1] and a suitable
constant C > 0. Moreover the following holds

(i) If ĉ < 0 (i.e. k( · ) > 0 in [0, 1]), then U ∈ C2,1(R× [0, 1]) and it is a classical solution
of (3.5). The inaction set (3.7) is given by

C = {(x, c) ∈ R × [0, 1] : x > β∗(c)} (3.8)

for some function β∗ ∈ C1([0, 1]) which is decreasing and dominated from above by
x0(c) ∧ x̂0(c), c ∈ [0, 1], with

x0(c) := −θμ�′(c)/k(c) and x̂0(c) := θμ/k(c), (3.9)

(cf. [7, Prop. 2.5 and Thm. 2.8]). For c ∈ [0, 1] the optimal control is given by

ν∗
t =

[
g∗

(
inf

0≤s≤t
X x
s

)
− c

]+
, t > 0, ν∗

0 = 0, (3.10)

with g∗(x) := β−1∗ (x), x ∈ (β∗(1), β∗(0)), and g∗ ≡ 0 on [β∗(0),∞), g∗ ≡ 1 on
(−∞, β∗(1)].

(ii) If ĉ > 1 (i.e. k( · ) < 0 in [0, 1]), then U ∈ W 2,1,∞
loc (R × [0, 1]) and it solves (3.5) in the

a.e. sense. The inaction set (3.7) is given by

C = {(x, c) ∈ R × [0, 1] : x < γ∗(c)} (3.11)

with suitable γ∗ ∈ C1([0, 1]), decreasing and bounded from below by x̃(c) ∨ x0(c),
c ∈ [0, 1], with

x0(c) := θμ�(c)/ζ(c) and x̃(c) := θμ(1 − c)/ζ(c), (3.12)

(cf. [7, Thm. 3.1 and Prop. 3.4]). Moreover U (x, c) = x(1−c) for x ≥ γ∗(c), c ∈ [0, 1],
and for any c ∈ [0, 1] the optimal control is given by (cf. [7, Thm. 3.5])

ν∗
t :=

{
0, t ≤ τ∗,
(1 − c), t > τ∗

(3.13)

with τ∗ := inf
{
t ≥ 0 : Xx

t ≥ γ∗(c)
}
.

Wenowperform the decoupling into two sub-problems, one of control and one of stopping.
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Proposition 3.2 If ĉ < 0 or ĉ > 1 then the value function V of (2.4) can be equivalently
rewritten as

V (x, c) = inf
τ≥0

E
[
e−λτ

(
U (Xx

τ , c) − P0
)]

, (3.14)

with the convention e−λτ (U (Xx
τ , c) − P0) := lim inf t↑∞ e−λt (U (Xx

t , c) − P0) = 0 on
{τ = ∞}.
Proof Let us set

w(x, c) := inf
τ≥0

E
[
e−λτ

(
U (Xx

τ , c) − P0
)]

, for (x, c) ∈ R × [0, 1]. (3.15)

Thanks to the results of Proposition 3.1 we can apply Itô’s formula to U , in the classical
sense in case (i) and in its generalised version (cf. [11, Ch. 8, Sec. VIII.4, Thm. 4.1]) in case
(i i). In particular for an arbitrary stopping time τ , an arbitrary admissible control ν ∈ Sc

τ

and with τn := τ ∧ n, n ∈ N we get

E
[
e−λτnU (Xx

τn
,Cc,ν

τn
)
]

= E
[
e−λτU (Xx

τ , c)
]

+ E
[ ∫ τn

τ

e−λt (
LXU − λU

)
(Xx

t ,C
c,ν
t )dt

]

+ E
[ ∫ τn

τ

e−λtUc(X
x
t ,C

c,ν
t )dνcontt

]

+ E
[ ∑

τ≤t<τn

e−λt
(
U (Xx

t ,C
c,ν
t+ ) −U (Xx

t ,C
c,ν
t )

)]
, (3.16)

where we have used standard localisation techniques to remove the martingale term, and
decomposed the control into its continuous and jump parts, i.e. dνt = dνcontt + �νt , with
�νt := νt+ − νt . Since U solves the HJB equation (3.5) it is now easy to prove (cf. for
instance [7, Thm. 2.8]) that, in the limit as n → ∞, one has

E
[
e−λτU (Xx

τ , c)
]

≤ E
[∫ ∞

τ

e−λtλXx
t �(Cc,ν

t )dt +
∫ ∞

τ

e−λt X x
t dνt

]
, (3.17)

and therefore

E
[
e−λτ

(
U (Xx

τ , c) − P0
)] ≤ E

[∫ ∞

τ

e−λtλXx
t �(Cc,ν

t )dt +
∫ ∞

τ

e−λt X x
t dνt − e−λτ P0

]
,

(3.18)

for an arbitrary stopping time τ and an arbitrary control ν ∈ Sc
τ . Hence by taking the

infimum over all possible stopping times and over all ν ∈ Sc
τ , (2.4), (3.15) and (3.18) give

w(x, c) ≤ V (x, c).
To prove that equality holds, let us fix an arbitrary stopping time τ . In case i) of Proposi-

tion 3.1, one can pick a control ντ ∈ Sc
τ of the form

ντ
t = 0 for t ≤ τ and ντ

t = ν∗
t for t > τ (3.19)

with ν∗ as in (3.10), to obtain equality in (3.17) and hence in (3.18). In case i i) instead we
define σ ∗

τ := inf{t ≥ τ : Xx
t ≥ γ∗(c)} and pick ντ ∈ Sc

τ of the form

ντ
t = 0 for t ≤ σ ∗

τ and ντ
t = 1 − c for t > σ ∗

τ (3.20)

to have again equality in (3.17) and hence in (3.18). Now taking the infimum over all τ we
find w(x, c) ≥ V (x, c).
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To complete the proof we need to prove the last claim; that is, lim inf t↑∞ e−λt (U (Xx
t , c)−

P0) = 0 a.s. It suffices to show that lim inf t↑∞ e−λt |U (Xx
t , c) − P0| = 0 a.s. To this end

recall that |U (x, c)| ≤ C(1+ |x |), for (x, c) ∈ R× [0, 1] and a suitable constant C > 0 (cf.
Proposition 3.1), and then apply Lemma 7.1 in “Appendix 1”. ��
Remark 3.3 The optimal stopping problems (3.14) depend only parametrically on the inven-
tory level c (the case c = 1 is trivial as U ( · , 1) = 0 on R and the optimal strategy is to stop
at once for all initial points x ∈ R).

It is worth noting that we were able to perform a very simple proof of the decoupling
knowing the structure of the optimal control for problem (3.1). In wider generality one could
obtain a proof based on an application of the dynamic programming principle although in
that case it is well known that some delicate measurability issues should be addressed as well
(see [13], “Appendix 1”). Although each of the optimal stopping problems (3.14) is for a
one-dimensional diffusion over an infinite time horizon, standard methods find only limited
application since no explicit expression is available for their gain function U (x, c) − P0.

In the next section we show that the cases ĉ < 0 and ĉ > 1, which are the regimes solved
rigorously in [7], have substantially different optimal entry policies. To conclude with the
background we prove a useful concavity result.

Lemma 3.4 The maps x �→ U (x, c) and x �→ V (x, c) are concave for fixed c ∈ [0, 1].

Proof We begin by observing that X px+(1−p)y
t = pXx

t + (1 − p)X y
t for all t ≥ 0 and any

p ∈ (0, 1). Hence (3.2) gives

J 0
px+(1−p)y,c(ν) = pJ 0

x,c(ν) + (1 − p)J 0
y,c(ν) ≥ pU (x, c) + (1 − p)U (y, c), ∀ν ∈ Sc

0

and therefore taking the infimum over all admissible ν we easily findU (px + (1− p)y, c) ≥
pU (x, c) + (1 − p)U (y, c) as claimed.

For V we argue in a similar way and use concavity ofU ( · , c) as follows: let τ ≥ 0 be an
arbitrary stopping time, then

E
[
e−λτ

(
U (X px+(1−p)y

τ , c) − P0
)]

= E
[
e−λτ

(
U (pXx

τ + (1 − p)X y
τ , c) − P0

)]

≥ E
[
e−λτ

(
pU (Xx

τ , c) + (1 − p)U (X y
τ , c) − P0

)]

= pE
[
e−λτ

(
U (Xx

τ , c) − P0
)]

+ (1 − p)E
[
e−λτ

(
U (X y

τ , c) − P0
)]

≥ p V (x, c) + (1 − p)V (y, c).

We conclude the proof by taking the infimum over all stopping times τ ≥ 0. ��

4 Timing the entry decision

We first examine the optimal entry policy via a standard argument based on exit times from
small intervals of R. An application of Dynkin’s formula gives that the instantaneous ‘cost
of continuation’ in our optimal entry problem is given by the function

L(x, c) + λP0 := (LX − λ)(U − P0)(x, c). (4.1)
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Fig. 1 An indicative example of an optimal entry region (shaded) when ĉ > 1, together with the functions γ∗
and x01 , x

0
2 (introduced in Proposition 5.1 below). The functionsm1 andm2 (not drawn to scale) are important

determinants for the presence of the kinked shape (see Remark 5.4 below). This plot was generated using
μ = 1, θ = 1, σ = 3, λ = 1, P0 = 4 and �(c) = 2.2(1 − c) + 8(1 − c)2

In the case ĉ < 0, which is covered in Sect. 4.1, the function (4.1) is monotone decreasing in x
(see the proof of Proposition 4.2 in “Appendix 2”). Since problem (2.3) is one ofminimisation,
it is never optimal to stop at points (x, c) ∈ R × [0, 1] such that L(x, c) + λP0 < 0; an
easy comparison argument then shows there is a unique lower threshold that determines the
optimal stopping rule in this case.

When ĉ > 1 the picture is more complex. The function (4.1) is decreasing and continuous
everywhere except at a single pointwhere it has a positive jump (cf. Proposition 5.1 below) and
so can change sign twice. The comparison argument now becomes more subtle: continuation
should not be optimal when the function (4.1) is positive in a ‘large neighbourhood containing
the initial value x’. Indeed it will turn out in Sect. 5 that there are multiple possible optimal
stopping regimes depending on parameter values. In particular the continuation region of the
optimal stopping problem may be disconnected, which is unusual in the literature on optimal
entry problems. The resulting optimal entry region can have a kinked shape, as illustrated
in Fig. 1. The jump in the function (4.1) arises from the ‘bang-bang’ nature of the optimal
investment plan when ĉ > 1, and so this may be understood as causing this unusual shape
for the optimal entry boundary.

Before proceeding, we introduce two functions φλ and ψλ that feature frequently below.

Definition 4.1 Let φλ : R → R
+ and ψλ : R → R

+ denote respectively the decreasing
and increasing fundamental solutions of the differential equation LX f = λ f on R (see
“Appendix 1” for details).

4.1 The case ĉ < 0

Let us now assume that ĉ < 0, i.e. k(c) > 0 for all c ∈ [0, 1] [cf. (3.3)]. We first recall from
Section 2.2 of [7] that in this case

U (x, c) = x(1 − c) −
∫ 1

c
u(x, y)dy, for (x, c) ∈ R × [0, 1], (4.2)
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where u is the value function of an associated optimal stopping problem with (cf. Sections
2.1 and 2.2 of [7])

(i) u( · , c) ∈ W 2,∞
loc (R) for any c ∈ [0, 1] (4.3)

(i i) u(x, c) > 0 for x > β∗(c) and u(x, c) = 0 for x ≤ β∗(c), c ∈ [0, 1], (4.4)

and with β∗ given as in Proposition 3.1-i). Moreover, defining

G(x, c) := μ(k(c) − θ)

λ
+ k(c)(x − μ)

λ + θ
, (4.5)

and recalling φλ from Definition 4.1, u is expressed analytically as

u(x, c) =
{
G(x, c) − G(β∗(c),c)

φλ(β∗(c)) φλ(x), x > β∗(c)
0, x ≤ β∗(c)

(4.6)

for c ∈ [0, 1], and it solves the variational problem

(
LX − λ

)
u(x, c) = θμ − k(c)x x > β∗(c), c ∈ [0, 1] (4.7)(

LX − λ
)
u(x, c) = 0 x ≤ β∗(c), c ∈ [0, 1] (4.8)

u(β∗(c), c) = ux (β∗(c), c) = 0 c ∈ [0, 1]. (4.9)

By the regularity of u and dominated convergence we have

(LX − λ)U (x, c) = (1 − c)(θμ − (λ + θ)x) −
∫ 1

c
(LX − λ)u(x, y)dy (4.10)

for (x, c) ∈ R × [0, 1].
As is usual, for each c ∈ [0, 1] we define the continuation region CcV and stopping region

Dc
V for the optimal stopping problem (3.14) as

CcV = {x ∈ R : V (x, c) < U (x, c) − P0} , Dc
V = {x ∈ R : V (x, c) = U (x, c) − P0}.

(4.11)

With the aim of characterising the geometry of CcV and Dc
V we start by providing some

preliminary results on U − P0 that will help to formulate an appropriate free-boundary
problem for V .

Proposition 4.2 For any given c ∈ [0, 1], there exists a unique x0(c) ∈ R such that

(
LX − λ

)(
U (x, c) − P0)

⎧⎨
⎩

<0 for x > x0(c)
=0 for x = x0(c)
>0 for x < x0(c)

(4.12)

We refer to “Appendix 2” for the proof of the previous proposition.
As discussed at the beginning of Sect. 4, it is never optimal in problem (3.14) to stop in

(x0(c),∞), c ∈ [0, 1], for x0(c) as in Proposition 4.2, i.e.

(x0(c),∞) ⊆ CcV for c ∈ [0, 1], (4.13)

and consequently

Dc
V ⊂ [−∞, x0(c)] for c ∈ [0, 1]. (4.14)
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Hence we conjecture that the optimal stopping strategy should be of single threshold type.
In what follows we aim at finding �∗(c), c ∈ [0, 1], such that Dc

V = [−∞, �∗(c)] and
τ ∗(x, c) = inf{t ≥ 0 : Xx

t ≤ �∗(c)} (4.15)

is optimal for V (x, c) in (3.14) with (x, c) ∈ R × [0, 1]. The methodology adopted in [7,
Sec. 2.1] does not apply directly to this problem due to the semi-explicit expression of the
gain function U − P0.

4.1.1 Formulation of auxiliary optimal stopping problems

To work out the optimal boundary �∗ we will introduce auxiliary optimal stopping problems
and employ a guess-and-verify approach in two frameworks with differing technical issues.
We first observe that since U is a classical solution of (3.5), an application of Dynkin’s
formula to (3.14) provides a lower bound for V , that is

V (x, c) ≥ U (x, c) − P0 + �(x, c), (x, c) ∈ R × [0, 1], (4.16)

with

�(x, c) := inf
τ≥0

E
[ ∫ τ

0
e−λs(λP0 − λXx

s �(c)
)
ds

]
(x, c) ∈ R × [0, 1]. (4.17)

On the other hand, for (x, c) ∈ R× [0, 1] fixed, set σ ∗
β := inf{t ≥ 0 : Xx

t ≤ β∗(c)} with β∗
as in Proposition 3.1, then for an arbitrary stopping time τ one also obtains

E
[
e−λ(τ∧σ ∗

β )
(
U (Xx

τ∧σ ∗
β
, c) − P0

)]

= U (x, c) − P0 + E
[ ∫ τ∧σ ∗

β

0
e−λs(λP0 − λXx

s �(c)
)
ds

]
(4.18)

by using the fact that U solves (3.5) and Dynkin’s formula. We can now obtain an upper
bound for V by setting

�β(x, c) := inf
τ≥0

E
[ ∫ τ∧σ ∗

β

0
e−λs(λP0 − λXx

s �(c)
)
ds

]
, (x, c) ∈ R × [0, 1], (4.19)

so that taking the infimum over all τ in (4.18) one obtains

V (x, c) ≤ U (x, c) − P0 + �β(x, c) (x, c) ∈ R × [0, 1]. (4.20)

It turns out that (4.16) and (4.20) allow us to find a simple characterisation of the optimal
boundary �∗ and of the function V in some cases. Let us first observe that 0 ≥ �β(x, c) ≥
�(x, c) for all (x, c) ∈ R × [0, 1]. Defining for each fixed c ∈ [0, 1] the stopping regions

Dc
� = {x ∈ R : �(x, c) = 0} and Dc

�β
= {x ∈ R : �β(x, c) = 0}

it is easy to see that Dc
� ⊂ Dc

�β
. Moreover, by the monotonicity of x �→ Xx· it is not hard to

verify that x �→ �(x, c) and x �→ �β(x, c) are decreasing. Hence we again expect optimal
stopping strategies of threshold type, i.e.

Dc
� = {x ∈ R : x ≤ α∗

1(c)} and Dc
�β

= {x ∈ R : x ≤ α∗
2(c)} (4.21)

for c ∈ [0, 1] and for suitable functions α∗
i ( · ), i = 1, 2 to be determined.
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Assume for now that α∗
1 and α∗

2 are indeed optimal, then we must have

α∗
1(c) ≤ �∗(c) ≤ α∗

2(c) for c ∈ [0, 1]. (4.22)

Indeed, for all (x, c) ∈ R × [0, 1] we have Dc
� ⊂ Dc

V since �(x, c) ≤ V (x, c) −U (x, c) +
P0 ≤ 0, and Dc

V ⊂ Dc
�β

since V (x, c) − U (x, c) + P0 ≤ �β(x, c) ≤ 0. Notice also that
since the optimisation problem in (4.19) is the same as the one in (4.17) except that in the
former the observation is stopped when X hits β∗, we must have

α∗
2(c) = β∗(c) ∨ α∗

1(c) for c ∈ [0, 1]. (4.23)

Thus for each c ∈ [0, 1] we can now consider two cases:

1. if α∗
1(c) > β∗(c) we have �(x, c) = �β(x, c) = (

V − U + P0
)
(x, c) for x ∈ R and

�∗(c) = α∗
1(c),

2. if α∗
1(c) ≤ β∗(c) we have α∗

2(c) = β∗(c), implying that �∗(c) ≤ β∗(c).
Both 1. and 2. above need to be studied in order to obtain a complete characterisation

of �∗, however we note that case 1. is particularly interesting as it identifies V and �∗ with
� +U − P0 and α∗

1 , respectively. As we will clarify in what follows, solving problem (4.17)
turns out to be theoretically simpler and computationally less demanding than dealing directly
with problem (3.14).

4.1.2 Solution of the auxiliary optimal stopping problems

To make our claims rigorous we start by analysing problem (4.17). This is accomplished by
largely relying on arguments already employed in [7, Sec. 2.1] and therefore we omit proofs
here whenever a precise reference can be provided. Moreover, the majority of the proofs of
new results are provided in “Appendix 2” to simplify the exposition.

In problem (4.17) we conjecture an optimal stopping time of the form

τα(x, c) := inf{t ≥ 0 : Xx
t ≤ α(c)} (4.24)

for (x, c) ∈ R × [0, 1] and α to be determined. Under this conjecture � should be found in
the class of functions of the form

�α(x, c) =
⎧⎨
⎩
E

[ ∫ τα

0
e−λsλ

(
P0 − Xx

s �(c)
)
ds

]
, x > α(c)

0, x ≤ α(c)
(4.25)

for each c ∈ [0, 1]. Now, repeating the same arguments of proof of [7, Thm. 2.1] we obtain

Lemma 4.3 One has

�α(x, c) =
{(

P0 − Ĝ(x, c)
) − (

P0 − Ĝ(α(c), c)
) φλ(x)

φλ(α(c)) , x > α(c)
0, x ≤ α(c)

(4.26)

for each c ∈ [0, 1], with
Ĝ(x, c) := μ�(c) + (x − μ)

λ�(c)
λ+θ

(x, c) ∈ R × [0, 1]. (4.27)

To single out the candidate optimal boundarywe impose the so-called smooth fit condition,
i.e. d

dx �α(α(c), c) = 0 for every c ∈ [0, 1]. This amounts to finding α∗ such that

− λ�(c)
λ+θ

+ (
Ĝ(α∗(c), c) − P0

)φ′
λ(α∗(c))

φλ(α∗(c)) = 0 for c ∈ [0, 1]. (4.28)
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Proposition 4.4 For c ∈ [0, 1] define
x†0 (c) := μ + (

P0 − μ�(c)
)

(λ+θ)
λ�(c) . (4.29)

For each c ∈ [0, 1] there exists a unique solution α∗(c) ∈ (−∞, x†0 (c)) of (4.28). Moreover
α∗ ∈ C1([0, 1)) and it is strictly increasing with limc→1 α∗(c) = +∞.

For the proof of Proposition 4.4 we refer to “Appendix 2”.
To complete the characterisation of α∗ and �α∗

we now find an alternative upper bound
for α∗ that will guarantee

(
LX�α∗ −λ�α∗)

(x, c) ≥ −λ(P0 − x�(c)) for (x, c) ∈ R×[0, 1].
Again, the proof of the following result may be found in “Appendix 2”.

Proposition 4.5 For all c ∈ [0, 1] we have α∗(c) ≤ P0/�(c) with α∗ as in Proposition 4.4.

With the aim of formulating a variational problem for�α∗
we observe that d2

dx2
�α∗

(x, c) <

0 for x > α∗(c), c ∈ [0, 1] by (4.26), convexity of φλ and the fact that Ĝ(α∗(c), c)− P0 < 0.
Hence �α∗ ≤ 0 onR×[0, 1]. It is not hard to verify by direct calculation from (4.26) and the
above results that for all c ∈ [0, 1] the couple (

�α∗
( · , c), α∗(c)

)
solves the free-boundary

problem(
LX − λ

)
�α∗

(x, c) = −λ(P0 − x�(c)) x > α∗(c), (4.30)(
LX − λ

)
�α∗

(x, c) > −λ(P0 − x�(c)) x < α∗(c), (4.31)

�α∗
(x, c) ≤ 0, �α∗

(α∗(c), c) = �α∗
x (α∗(c), c) = 0 x ∈ R (4.32)

and �α∗
( · , c) ∈ W 2,∞

loc (R). Following now the same arguments as in the proof of [7,
Thm. 2.1], which is based on an application of the Itô–Tanaka formula and (4.30)–(4.32), we
can verify our guess and prove the following theorem (whose details are omitted).

Theorem 4.6 The boundary α∗ of Proposition 4.4 is optimal for (4.17) in the sense that
α∗ = α∗

1 with α∗
1 as in (4.21),

τ ∗
α = inf{t ≥ 0 : Xx

t ≤ α∗(c)} (4.33)

is an optimal stopping time and �α∗ ≡ � [cf. (4.17)].

4.1.3 Solution of the original optimal stopping problem (3.14)

In Theorem 4.6 we have fully characterised α∗
1 and � thus also α∗

2 and �β (cf. (4.19), (4.21)
and (4.23)). Moreover we have found that α∗

1( · ) is strictly increasing on [0, 1). On the other
hand, β∗( · ) is a strictly decreasing function [cf. Proposition 3.1-i)], hence there exists at
most one c∗ ∈ (0, 1) such that

β∗(c) > α∗
1(c) for c ∈ (0, c∗) and β∗(c) ≤ α∗

1(c) for c ∈ [c∗, 1). (4.34)

As already mentioned, it may be possible to provide examples where such a value c∗ does not
exist in (0, 1) and α∗

1(c) > β∗(c) for all c ∈ [0, 1]. In those cases, as discussed in Sect. 4.1.1,
one has �∗ = α∗

1 and V = U − P0 + � and problem (3.14) is fully solved. Therefore to
provide a complete analysis of problem (3.14) we must consider the case when c∗ exists in
(0, 1). From now on we make the following assumption.

Assumption 4.7 There exists a value c∗ ∈ (0, 1) (which is therefore unique) such that (4.34)
holds.
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As a consequence of the analysis in Sect. 4.1.2 we have the next simple corollary.

Corollary 4.8 For all c ∈ [c∗, 1) it holds V (x, c) = (� + U − P0)(x, c), x ∈ R and
�∗(c) = α∗

1(c), with � and α∗
1 as in Theorem 4.6.

It remains to characterise �∗ in the interval [0, c∗) in which we have �∗(c) ≤ β∗(c). This
is done in Theorem 4.13, whose proof requires other technical results which are cited here
and proved in the appendix. Fix c ∈ [0, c∗), let �(c) ∈ R be a candidate boundary and define
the stopping time τ�(x, c) := inf

{
t ≥ 0 : Xx

t ≤ �(c)
}
for x ∈ R. Again to simplify notation

we set τ� = τ�(x, c) when no confusion may arise. It is now natural to associate to �(c) a
candidate value function

V �(x, c) := E
[
e−λτ�

(
U (Xx

τ�
, c) − P0

)]
, (4.35)

whose analytical expression is provided in the next lemma.

Lemma 4.9 For c ∈ [0, c∗) we have

V �(x, c) =
{

(U (�(c), c) − P0)
φλ(x)

φλ(�(c)) , x > �(c)
U (x, c) − P0, x ≤ �(c)

(4.36)

The candidate boundary �∗, whose optimality will be subsequently verified, is found by
imposing the smooth fit condition, i.e.

(U (�∗(c), c) − P0)
φ′

λ(�∗(c))
φλ(�∗(c))

= Ux (�∗(c), c), c ∈ [0, 1]. (4.37)

Proposition 4.10 For any c ∈ [0, c∗) there exists at least one solution �∗(c) ∈ (−∞, x0(c))
of (4.37) with x0(c) as in Proposition 4.2.

Remark 4.11 A couple of remarks before we proceed.
(i) The analytical representation (4.36) in fact holds for all c ∈ [0, 1] and it must coincide

with (4.26) for c ∈ [c∗, 1]. Furthermore, the optimal boundary α∗
1 found in Sect. 4.1.2 by

solving (4.28) must also solve (4.37) for all c ∈ [c∗, 1] since α∗
1 = �∗ on that set. This

equivalence can be verified by comparing numerical solutions to (4.28) and (4.37). Finding a
numerical solution to (4.37) for c ∈ [0, c∗) (if it exists) is computationally more demanding
than solving (4.28), however, because of the absence of an explicit expression for the function
U .

(ii) It is important to observe that the proof of Proposition 4.10 does not use that c ∈ [0, c∗)
and in fact it holds for c ∈ [0, 1]. However, arguing as in Sect. 4.1.2 we managed to obtain
further regularity properties of the optimal boundary in [c∗, 1] and its uniqueness. We shall
see in what follows that uniqueness can be retrieved also for c ∈ [0, c∗) but it requires a
deeper analysis.

Now that the existence of at least one candidate optimal boundary �∗ has been established,
for the purpose of performing a verification argument we would also like to establish that
for arbitrary c ∈ [0, c∗) we have V �∗(x, c) ≤ U (x, c) − P0, x ∈ R. This is verified in the
following proposition (whose proof is collected in the appendix).

Proposition 4.12 For c ∈ [0, c∗) and for any �∗ solving (4.37) it holds V �∗(x, c) ≤
U (x, c) − P0, x ∈ R.

Finally we provide a verification theorem establishing the optimality of our candidate
boundary �∗ and, as a by-product, also implying uniqueness of the solution to (4.37).
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Theorem 4.13 There exists a unique solution of (4.37) in (−∞, x0(c̄)]. This solution is the
optimal boundary of problem (3.14) in the sense that V �∗ = V on R×[0, 1) [cf. (4.36)] and
the stopping time

τ ∗ := τ ∗
� (x, c) = inf{t ≥ 0 : Xx

t ≤ �∗(c)} (4.38)

is optimal in (3.14) for all (x, c) ∈ R × [0, 1).
Proof For c ∈ [c∗, 1) the proof was provided in Sect. 4.1.2 recalling that �∗ = α∗

1 on [c∗, 1)
and V = U − P0 + � on R × [c∗, 1) [cf. (4.17), Remark 4.11]. For c ∈ [0, c∗) we split the
proof into two parts.

1. Optimality Fix c̄ ∈ [0, c∗). Here we prove that if �∗(c̄) is any solution of (4.37) then
V �∗( · , c̄) = V ( · , c̄) on R [cf. (3.14) and (4.36)].

First we note that V �∗( · , c̄) ≥ V ( · , c̄) on R by (3.14) and (4.35). To obtain the reverse
inequality we will rely on Itô–Tanaka’s formula. Observe that V �∗( · , c̄) ∈ C1(R) by (4.36)
and (4.37), and V �∗

xx ( · , c̄) is continuous on R \ {
�∗(c̄)

}
and bounded at the boundary �∗(c̄).

Moreover from (4.36) we get
(
LX − λ

)
V �∗(x, c̄) = 0 for x > �∗(c̄) (4.39)(

LX − λ
)
V �∗(x, c̄) = (

LX − λ
)
(U − P0)(x, c̄) > 0 for x ≤ �∗(c̄) (4.40)

where the inequality in (4.40) holds by (4.12) since �∗(c̄) ≤ x0(c̄) [cf. Proposition 4.10].
An application of Itô–Tanaka’s formula (see [17], Chapter 3, Problem 6.24, p. 215), (4.39),
(4.40) and Proposition 4.12 give

V �∗(x, c̄) = E
[
e−λ(τ∧τR)V �∗(Xx

τ∧τR
, c̄

) −
∫ τ∧τR

0
e−r t(

LX − λ
)
V �∗(Xx

t , c̄)dt

]

≤ E
[
e−λ(τ∧τR)

(
U

(
Xx

τ∧τR
, c̄

) − P0
)]

(4.41)

with τ an arbitrary stopping time and τR := inf
{
t ≥ 0 : |Xx

t | ≥ R
}
, R > 0. We now pass

to the limit as R → ∞ and recall that |U (x, c̄)| ≤ C(1 + |x |) [cf. Proposition 3.1] and that{
e−λτR |Xx

τR
| , R > 0

}
is a uniformly integrable family (cf. Lemma 7.2 in “Appendix 1”).

Then in the limit we use the dominated convergence theorem and the fact that

lim
R→∞ e−λ(τ∧τR)Xx

τ∧τR
= e−λτ Xx

τ , P − a.s.

to obtain V �∗( · , c̄) ≤ V ( · , c̄) on R by the arbitrariness of τ , hence V �∗( · , c̄) = V ( · , c̄) on
R and optimality of �∗(c̄) follows.

2. Uniqueness Here we prove the uniqueness of the solution of (4.37) via probabilistic
arguments similar to those employed for the first time in [20]. Let c̄ ∈ [0, c∗) be fixed and,
arguing by contradiction, let us assume that there exists another solution �′(c̄) �= �∗(c̄) of
(4.37) with �′(c̄) ≤ x0(c̄). Then by (3.14) and (4.35) it follows that

V �′
( · , c̄) ≥ V ( · , c̄) = V �∗( · , c̄) on R, (4.42)

V �′
( · , c̄) ∈ C1(R) and V �′

xx ( · , c̄) ∈ L∞
loc(R) by the same arguments as in 1. above. By

construction V �′
solves (4.39) and (4.40) with �∗ replaced by �′.

Assume for example that �′(c̄) < �∗(c̄), take x < �′(c̄) and set σ ∗
� := inf

{
t ≥ 0 : Xx

t ≥
�∗(c̄)

}
, then an application of Itô–Tanaka’s formula gives (up to a localisation argument as

in 1. above)
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E
[
e−λσ ∗

� V �′(
Xx

σ ∗
�
, c̄

)] = V �′
(x, c̄) + E

[∫ σ ∗
�

0
e−λt (

LX − λ
)
V �′(

Xx
t , c̄

)
dt

]
(4.43)

= V �′
(x, c̄) + E

[∫ σ ∗
�

0
e−λt (

LX − λ
)(
U

(
Xx
t , c̄

) − P0
)
1{Xx

t <�′(c̄)}dt
]

and

E
[
e−λσ ∗

� V
(
Xx

σ ∗
�
, c̄

)] = V (x, c̄) + E

[∫ σ ∗
�

0
e−λt (

LX − λ
)(
U

(
Xx
t , c̄

) − P0
)
dt

]
. (4.44)

Recall that V �′
(Xx

σ ∗
�
, c̄) ≥ V (Xx

σ ∗
�
, c̄) by (4.42) and that for x < �′(c̄) ≤ �∗(c̄) one has

V (x, c̄) = V �′
(x, c̄) = U (x, c̄) − P0, hence subtracting (4.44) from (4.43) we get

−E

[∫ σ ∗
�

0
e−λt (

LX − λ
)(
U

(
Xx
t , c̄

) − P0
)
1{�′(c̄)<Xx

t <�∗(c̄)}dt
]

≥ 0. (4.45)

By the continuity of paths of Xx we must have σ ∗
� > 0, P-a.s. and since the law of X is

absolutely continuous with respect to the Lebesgue measure we also have P
({�′(c̄) < Xx

t <

�∗(c̄)}
)

> 0 for all t > 0. Therefore (4.45) and (4.40) lead to a contradiction andwe conclude
that �′(c̄) ≥ �∗(c̄).

Let us now assume that �′(c̄) > �∗(c̄) and take x ∈ (
�∗(c̄), �′(c̄)

)
. We recall the stopping

time τ ∗ of (4.38) and again we use Itô–Tanaka’s formula to obtain

E
[
e−λτ∗

V
(
Xx

τ∗ , c̄
)] = V (x, c̄) (4.46)

and

E
[
e−λτ∗

V �′(
Xx

τ∗ , c̄
)] = V �′

(x, c̄) + E
[ ∫ τ∗

0
e−λt (

LX − λ
)(
U

(
Xx
t , c̄

) − P0
)
1{Xx

t <�′(c̄)}dt
]

(4.47)

Now, we have V (x, c̄) ≤ V �′
(x, c̄) by (4.42) and V �′(

Xx
τ∗ , c̄

) = V
(
Xx

τ∗ , c̄
) =

U (�∗(c̄), c̄) − P0, P-a.s. by construction, since �′(c̄) > �∗(c̄) and X is positively recur-
rent (cf. “Appendix 1”). Therefore subtracting (4.46) from (4.47) gives

E

[∫ τ∗

0
e−λt (

LX − λ
)(
U

(
Xx
t , c̄

) − P0
)
1{�∗(c̄)<Xx

t <�′(c̄)}dt
]

≤ 0. (4.48)

Arguments analogous to those following (4.45) can be applied to (4.48) to find a contradiction.
Then we have �′(c̄) = �∗(c̄) and by the arbitrariness of c̄ the first claim of the theorem
follows. ��

Remark 4.14 The arguments developed in this section hold for all c ∈ [0, 1]. The reduction
of (3.14) to the auxiliary problem of Sect. 4.1.1 is not necessary to provide an algebraic
equation for the optimal boundary. Nonetheless, it seems convenient to resort to the auxiliary
problem whenever possible due to its analytical and computational tractability. In contrast
to Sect. 4.1.2, here we cannot establish either the monotonicity or continuity of the optimal
boundary �∗.
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5 The case ĉ > 1

In what follows we assume that ĉ > 1, i.e. k(c) < 0 for all c ∈ [0, 1]. As pointed out in
Proposition 3.1-(i i) the solution of the control problem in this setting substantially departs
from the one obtained for ĉ < 0. Both the value function and the optimal control exhibit a
structure that is fundamentally different, and we recall here some results from [7, Sec. 3].

The function U has the following analytical representation:

U (x, c) =
⎧⎨
⎩

ψλ(x)
ψλ(γ∗(c))

[
γ∗(c)(1 − c) − λ �(c)

( γ∗(c)−μ
λ+θ + μ

λ

)] + λ �(c)
[
x−μ
λ+θ + μ

λ

]
, for x < γ∗(c)

x(1 − c), for x ≥ γ∗(c)

(5.1)

with γ∗ as in Proposition 3.1-(i i). In this settingU is less regular than the one for the case of
ĉ < 0, in fact here we only have U ( · , c) ∈ W 2,∞

loc (R) for all c ∈ [0, 1] [cf. Proposition 3.1-
(i i)] and hence we expect x �→ L(x, c) + λP0 := (LX − λ)(U − P0)(x, c) to have a
discontinuity at the optimal boundary γ∗(c). For c ∈ [0, 1] we define

�L(x, c) := L(x+, c) − L(x−, c), x ∈ R, (5.2)

where L(x+, c) denotes the right limit of L( · , c) at x and L(x−, c) its left limit.

Proposition 5.1 For each c ∈ [0, 1) the map x �→ L(x, c) + λP0 is C∞ and strictly
decreasing on (−∞, γ∗(c)) and on (γ∗(c),+∞) whereas

�L(γ∗(c), c) = (1 − c)
[
θμ − (λ + θ)γ∗(c)

] + λγ∗(c)�(c) > 0. (5.3)

Moreover, define

x01 (c) := P0
�(c)

and x02 (c) := θμ(1 − c) + λP0
(λ + θ)(1 − c)

, c ∈ [0, 1); (5.4)

then for each c ∈ [0, 1) there are three possible settings, that is
1. γ∗(c) ≤ x01 (c) hence L(x, c) + λP0 > 0 if and only if x < x02 (c);
2. γ∗(c) ≥ x02 (c) hence L(x, c) + λP0 > 0 if and only if x < x01 (c);
3. x01 (c) < γ∗(c) < x02 (c) hence L(x, c) + λP0 > 0 if and only if x ∈ (−∞, x01 (c)) ∪

(γ∗(c), x02 (c)).

Proof The first claim follows by (5.1) and the sign of �L(γ∗(c), c) may be verified by
recalling that γ∗(c) ≥ x̃(c) [cf. Proposition 3.1-(i i)]. Checking 1, 2 and 3 is matter of simple
algebra. ��
Wemay use Proposition 5.1 to expand the discussion in Sect. 4. In particular, from the first and
second parts we see that if either γ∗(c) ≥ x02 (c) or γ∗(c) ≤ x01 (c) then the optimal stopping
strategy must be of single threshold type. On the other hand, for x01 (c) < γ∗(c) < x02 (c), as
discussed in Sect. 4, there are two possible shapes for the continuation set. This is the setting
for the preliminary discussion which follows.

If the size of the interval (γ∗(c), x02 (c)) is “small” and/or the absolute value ofL(x, c)+λP0
in (γ∗(c), x02 (c)) is “small” compared to its absolute value in (x01 (c), γ∗(c)) ∪ (x02 (c),+∞)

then, although continuation incurs a positive cost when the process is in the interval
(γ∗(c), x02 (c)), the expected reward from subsequently entering the neighbouring intervals
(whereL(x, c)+λP0 < 0) is sufficiently large that continuationmay nevertheless be optimal
in (γ∗(c), x02 (c)) so that there is a single lower optimal stopping boundary, which lies below
x01 (c) (see Figs. 1, 2a).
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(a)

(b)

Fig. 2 The function x �→ L(x, c) + λP0 changes sign in both plots but, with the visual aid of Fig. 1, the
stopping region is connected in a and is disconnected in b. (a) Illustration when c = 0, (b) Illustration when
c = 0.25.

If the size of (γ∗(c), x02 (c)) is “big” and/or the absolute value of L(x, c) + λP0 in
(γ∗(c), x02 (c)) is “big” compared to its absolute value in (x01 (c), γ∗(c)) ∪ (x02 (c),+∞) then
we may find a portion of the stopping set below x01 (c) and another portion inside the inter-
val (γ∗(c), x02 (c)). In this case the loss incurred by continuation inside a certain subset of
(γ∗(c), x02 (c)) may be too great to be mitigated by the expected benefit of subsequent entry
into the profitable neighbouring intervals and it becomes optimal to stop at once. In the third
case of Proposition 5.1, the continuation and stopping regions may therefore be disconnected
sets (see Figs. 1, 2b).

To make this discussion rigorous let us now recall CcV and Dc
V from (4.11). Note that for

any fixed c ∈ [0, 1) and arbitrary stopping time τ the map x �→ E[e−λτ
(
U (Xx

τ , c) − P0
)] is

continuous, hence x �→ V (x, c) is upper semicontinuous (being the infimum of continuous
functions). Recall that X is positively recurrent and therefore it hits any point of R in finite
timewith probability one (see “Appendix 1” for details). Hence according to standard optimal
stopping theory, if Dc

V �= ∅ the first entry time of X in Dc
V is an optimal stopping time

(cf. e.g. [21, Ch. 1, Sec. 2, Corollary 2.9]).

Proposition 5.2 Let c ∈ [0, 1) be fixed. Then
(i) if γ∗(c) ≥ x02 (c), there exists �∗(c) ∈ (−∞, x01 (c)) such that Dc

V = (−∞, �∗(c)] and
τ∗ = inf{t ≥ 0 : Xx

t ≤ �∗(c)} is optimal in (3.14)
(ii) if γ∗(c) ≤ x01 (c), there exists �∗(c) ∈ (−∞, x02 (c)) such that Dc

V = (−∞, �∗(c)] and
τ∗ = inf{t ≥ 0 : Xx

t ≤ �∗(c)} is optimal in (3.14)

(iii) if x01 (c) < γ∗(c) < x02 (c), there exists �
(1)∗ (c) ∈ (−∞, x01 (c)) such that Dc

V ∩
(−∞, γ∗(c)] = (−∞, �

(1)∗ (c)]. Moreover, either (a): Dc
V ∩ [γ∗(c),∞) = ∅ and

τ∗ = inf{t ≥ 0 : Xx
t ≤ �

(1)∗ (c)} is optimal in (3.14), or (b): there exist �
(2)∗ (c) ≤

�
(3)∗ (c) ≤ x02 (c) such that Dc

V ∩ [γ∗(c),∞) = [�(2)∗ (c), �(3)∗ (c)] (with the convention

that if �
(2)∗ (c) = �

(3)∗ (c) =: �∗(c) then Dc
V ∩ [γ∗(c),∞) = {�∗(c)}) and the stopping

time
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τ (I I )∗ := inf{t ≥ 0 : Xx
t ≤ �(1)∗ (c) or Xx

t ∈ [�(2)∗ (c), �(3)∗ (c)]} (5.5)

is optimal in (3.14).

Proof We provide a detailed proof only for (i i i) as the other claims follow by analogous
arguments. Let us fix c ∈ [0, 1) and assume x01 (c) < γ∗(c) < x02 (c).

Step 1We start by proving thatDc
V �= ∅. By localisation and an application of Itô’s formula

in its generalised version (cf. [11, Ch. 8]) to (3.14) and recalling Proposition 5.1 we get

V (x, c) = U (x, c) − P0 + inf
τ

[∫ τ

0
e−λt

(
λP0 + L(Xx

t , c)
)
dt

]
for x ∈ R. (5.6)

Arguing by contradiction we assume thatDc
V = ∅ and hence the optimum in (5.6) is obtained

by formally setting τ = +∞. Moreover by recalling that U solves (3.5) we observe that
L(Xx

t , c) ≥ −Xx
t �(c) P-a.s. for all t ≥ 0 and (5.6) gives

V (x, c) ≥ U (x, c) − P0 + R(x, c) for x ∈ R (5.7)

where

R(x, c) := E
[ ∫ ∞

0
e−λtλ

(
P0 − Xx

t �(c)
)
dt

]
for x ∈ R. (5.8)

It is not hard to see from (5.8) that for sufficiently negative values of x we have R(x, c) > 0
and (5.7) implies that Dc

V cannot be empty.

Step2Hereweprove thatDc
V∩(−∞, γ∗(c)] = (−∞, �

(1)∗ (c)] for suitable �
(1)∗ (c) ≤ x01 (c).

The previous step has already shown that it is optimal to stop at once for sufficiently negative
values of x . It now remains to prove that if x ∈ Dc

V ∩(−∞, γ∗(c)] then x ′ ∈ Dc
V ∩(−∞, γ∗(c)]

for any x ′ < x . For this, fix x̄ ∈ Dc
V ∩ (−∞, γ∗(c)] and let x ′ < x̄ . Note that the process

Xx ′
cannot reach a subset of R where λP0 + L( · , c) < 0 [cf. Proposition 5.1-(3)] without

crossing x̄ and hence enteringDc
V . Therefore, if x

′ ∈ CcV and τ∗(x ′) is the associated optimal

stopping time, i.e. τ∗(x ′) := inf{t ≥ 0 : Xx ′
t ∈ Dc

V }, we must have

V (x ′, c) = U (x ′, c) − P0 + E

[∫ τ∗(x ′)

0
e−λt

(
λP0 + L(Xx ′

t , c)
)
dt

]
≥ U (x ′, c) − P0,

(5.9)

giving a contradiction and implying that x ′ ∈ Dc
V .

Step 3 We now aim to prove that if Dc
V ∩ [γ∗(c),∞) �= ∅ then Dc

V ∩ [γ∗(c),∞) =
[�(2)∗ (c), �(3)∗ (c)] for suitable �

(2)∗ (c) ≤ �
(3)∗ (c) ≤ x02 (c). The case of D

c
V ∩ [γ∗(c),∞) con-

taining a single point is self-explanatory. We then assume that there exist x < x ′ such that
x, x ′ ∈ Dc

V ∩ [γ∗(c),∞) and prove that also [x, x ′] ⊆ Dc
V ∩ [γ∗(c),∞).

Looking for a contradiction, let us assume that there exists y ∈ (x, x ′) such that y ∈ CcV .
The process X y cannot reach a subset of R where λP0 + L( · , c) < 0 without leaving the
interval (x, x ′) [cf. Proposition 5.1-(3)]. Then, by arguing as in (5.9), with the associated
optimal stopping time τ∗(y) := inf{t ≥ 0 : X y

t ∈ Dc
V }, we inevitably reach a contradiction.

Hence the claim follows. ��
Before proceeding further we clarify the dichotomy in part i i i) of Proposition 5.2, as

follows. Lemma 5.3 below characterises the subcases i i i)(a) and i i i)(b) via condition (5.10).
Remark 5.4 then shows that this condition does nothing more than to compare the minima
of two convex functions.
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Lemma 5.3 Fix c ∈ [0, 1) and suppose that x01 (c) < γ∗(c) < x02 (c). Then Dc
V ∩

[γ∗(c),∞) = ∅ if and only if there exists �∗(c) ∈ (−∞, x01 (c)) such that for every x ≥ γ∗(c):

U (x, c) − P0
φλ (x)

>
U (�∗(c), c) − P0

φλ (�∗(c))
. (5.10)

Proof (i)Necessity IfDc
V ∩[γ∗(c),∞) = ∅, then by Proposition 5.2-(i i i) there exists a point

�∗(c) ∈ (−∞, x01 (c)) such that Dc
V = (−∞, �∗(c)]. Let x ≥ γ∗(c) be arbitrary and notice

that V (x, c) < U (x, c) − P0 since the current hypothesis implies x ∈ [γ∗(c),∞) ⊂ CcV .
According to Proposition 5.2-(i i i), the stopping time τ∗ defined by

τ∗ := inf{t ≥ 0 : Xx
t ≤ �∗(c)} (5.11)

is optimal in (3.14). On the other hand, since X has continuous sample paths and Px ({τ∗ <

∞}) = 1 by positive recurrence of X , we can also show that

U (x, c) − P0 > V (x, c) = Ex
[
e−λτ∗ (

U (Xτ∗ , c) − P0
)]

= Ex
[
e−λτ∗ (U (�∗(c), c) − P0)

]
= (U (�∗(c), c) − P0)Ex

[
e−λτ∗]

= (U (�∗(c), c) − P0)
φλ (x)

φλ (�∗(c))
(5.12)

where the last line follows from (6.5). Since x ≥ γ∗(c) was arbitrary we have proved the
necessity of the claim.

(i i) Sufficiency Suppose now that there exists a point �∗(c) ∈ (−∞, x01 (c)) such that
(5.10) holds for every x ≥ γ∗(c). Using the same arguments establishing the right-hand
side of (5.12), noting that τ∗ as defined in (5.11) is no longer necessarily optimal, for every
x ≥ γ∗(c) we have

V (x, c) ≤ Ex
[
e−λτ∗ (

U (Xτ∗ , c) − P0
)]

= (U (�∗(c), c) − P0)
φλ (x)

φλ (�∗(c))
< U (x, c) − P0

which shows Dc
V ∩ [γ∗(c),∞) = ∅. ��

Remark 5.4 Let us fix c ∈ [0, 1) such that x01 (c) < γ∗(c) < x02 (c), or equivalently part (i i i)
of Proposition 5.2 holds. Writing

F(x) := U (x, c) − P0
φλ (x)

, (5.13)

F(x) := ψλ(x)/φλ(x), (5.14)

H(y) := F ◦ F−1(y) for y > 0, (5.15)

wewill appeal to the discussion given at the start of Section 6 of [5]. SinceL(x, c)+λP0 > 0 if
and only if x ∈ (−∞, x01 (c))∪(γ∗(c), x02 (c)) (fromProposition 5.1), it follows from equation
(*) in Section 6 of [5] that the function y �→ H(y) is strictly convex on (0, F(x01 (c))) and
on (F(γ∗(c)), F(x02 (c))) and concave everywhere else on its domain. Define y1m and y2m by

y1m := argmin{H(y) : y ∈ (0, F(x01 (c)))}
y2m := argmin{H(y) : y ∈ (F(γ∗(c)), F(x02 (c)))}.

(5.16)
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ByEq. (5.1) above, and the fact that F ismonotone increasing,wehave that limy→+∞ H(y) =
limx→+∞ F(x) = +∞ (recall that φλ is positive and decreasing). Also

m1 := inf
x≤x01 (c)

F(x) = F(F−1(y1m))

m2 := inf
x≥γ∗(c)

F(x) = F(F−1(y2m)),
(5.17)

where the second equality follows from the definition of y2m and the aforementioned geometric
properties of y �→ H(y). It is therefore clear from Lemma 5.3 that when m1 < m2 then
part (i i i)(a) of Proposition 5.2 holds, while when m1 ≥ m2 part (i i i)(b) of Proposition 5.2
holds.

5.1 The optimal boundaries

Wewill characterise the four cases (i), (i i), (i i i)(a), (i i i)(b) of Proposition 5.2 through direct
probabilistic analysis of the value function and subsequently derive equations for the optimal
boundaries obtained in the previous section.We first address cases i and i i of Proposition 5.2.

Theorem 5.5 Let c ∈ [0, 1) and B be a subset of R. Consider the following problem: Find
x ∈ B such that

(
U (x, c) − P0

)φ′
λ(x)

φλ(x)
= Ux (x, c). (5.18)

(i) If γ∗(c) ≥ x02 (c), let �∗(c) be given as in Proposition 5.2-i), then V (x, c) = V �∗(x, c)
(cf. (4.36)), x ∈ R and �∗(c) is the unique solution to (5.18) in B = (−∞, x01 (c)).

(ii) If γ∗(c) ≤ x01 (c), let �∗(c) be given as in Proposition 5.2-ii), then V (x, c) = V �∗(x, c),
x ∈ R (cf. (4.36)) and �∗(c) is the unique solution to (5.18) in B = (−∞, x02 (c)).

Proof We only provide details for the proof of i) as the second part is completely analogous.
From Proposition 5.2-(i) we know that �∗(c) ∈ (−∞, x02 (c)) and that taking τ∗(x) :=

inf{t ≥ 0 : Xx
t ≤ �∗(c)} is optimal for (3.14), hence the value function V is given by (4.36)

with � = �∗ (the proof is the same as that of Lemma 4.9). If we can prove that smooth fit holds
then �∗ must also be a solution to (5.18). To simplify notation set �∗ = �∗(c) and notice that

V (�∗ + ε, c) − V (�∗, c)
ε

≤ U (�∗ + ε, c) −U (�∗, c)
ε

, ε > 0. (5.19)

On the other hand, consider τε := τ∗(�∗ + ε) = inf{t ≥ 0 : X�∗+ε
t ≤ �∗} and note that

τε → 0, P-a.s. as ε → 0 (which can be proved by standard arguments based on the law
of the iterated logarithm) and therefore X�∗+ε

τε → �∗, P-a.s. as ε → 0 by the continuity of
(t, x) �→ Xx

t (ω) for ω ∈ �. Since τε is optimal in Eq. (3.14) with x = �∗ + ε we obtain

V (�∗ + ε, c) − V (�∗, c)
ε

≥
E

[
e−λτε

(
U (X�∗+ε

τε , c) −U (X�∗
τε , c)

)]
ε

, ε > 0. (5.20)

The mean value theorem, (6.1) in “Appendix 1” and (5.20) give

V (�∗ + ε, c) − V (�∗, c)
ε

≥
E

[
e−λτεUx (ξε, c)

(
X�∗+ε

τε − X�∗
τε

)]
ε

= E
[
e−(λ+θ)τεUx (ξε, c)

]
,

(5.21)
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with ξε ∈ [X�∗
τε , X�∗+ε

τε ], P-a.s. From (5.1) one has that Ux ( · , c) is bounded on R, hence
taking limits as ε → 0 in (5.19) and (5.21) and using the dominated convergence theorem in
the latter we get Vx (�∗, c) = Ux (�∗, c), and since V ( · , c) is concave (see Lemma 3.4) it must
also beC1 across �∗, i.e. smooth fit holds. In particular thismeans that differentiating (4.36) at
�∗ we observe that �∗ solves (5.18). The uniqueness of this solution can be proved by the same
arguments as those in part 2 of the proof of Theorem 4.13 andwe omit them here for brevity.��

Next we address cases (i i i)(a) and (i i i)(b) of Proposition 5.2. Let us define

F1(ξ, ζ ) := ψλ(ξ)φλ(ζ ) − ψλ(ζ )φλ(ξ) and F2(ξ, ζ ) := ψ ′
λ(ξ)φλ(ζ ) − ψλ(ζ )φ′

λ(ξ)

(5.22)

for ξ, ζ ∈ R.

Theorem 5.6 Let c ∈ [0, 1) be such that x01 (c) < γ∗(c) < x02 (c) and consider the following
problem: Find x < y < z in R with x ∈ (−∞, x01 (c)) and γ∗(c) < y < z < x02 (c) such that
the triple (x, y, z) solves the system

(U (z, c) − P0)
φ′

λ(z)

φλ(z)
= Ux (z, c) (5.23)

(U (x, c) − P0)
F2(x, y)

F1(x, y)
− (U (y, c) − P0)

F2(x, x)

F1(x, y)
= Ux (x, c) (5.24)

(U (x, c) − P0)
F2(y, y)

F1(x, y)
− (U (y, c) − P0)

F2(y, x)

F1(x, y)
= Ux (y, c) (5.25)

(i) In case (iii)(b) of Proposition 5.2 the stopping set is of the form Dc
V = (−∞, �

(1)∗ (c)] ∪
[�(2)∗ (c), �(3)∗ (c)], and then {x, y, z} = {�(1)∗ (c), �(2)∗ (c), �(3)∗ (c)} is the unique triple solv-
ing (5.23)–(5.25). The value function is given by

V (x, c) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
U (�

(3)∗ , c) − P0
) φλ(x)

φλ(�
(3)∗ )

for x > �
(3)∗

U (x, c) − P0 for �
(2)∗ ≤ x ≤ �

(3)∗
(U (�

(1)∗ , c) − P0)
F1(x,�

(2)∗ )

F1(�
(1)∗ ,�

(2)∗ )
+ (U (�

(2)∗ , c) − P0)
F1(�

(1)∗ ,x)

F1(�
(1)∗ ,�

(2)∗ )
for �

(1)∗ < x < �
(2)∗

U (x, c) − P0 for x ≤ �
(1)∗

(5.26)

where we have set �(k)∗ = �
(k)∗ (c), k = 1, 2, 3 for simplicity.

(ii) In case (iii)(a) of Proposition 5.2 we have Dc
V = (−∞, �

(1)∗ (c)], moreover V (x, c) =
V �

(1)∗ (x, c), x ∈ R (cf. (4.36)) and �
(1)∗ (c) is the unique solution to (5.18) with B =

(−∞, x01 (c)).

Proof Proof of (i). In the case of Proposition 5.2-(i i i)(b), the stopping time τ
(I I )∗ defined

in (5.5) is optimal for (3.14):

V (x, c) = E
[
e−λτ (I I )(

U (Xx
τ (I I ) , c) − P0

)]

Equation (5.26) is therefore just the analytical representation for the value function in this
case. The fact that �(1)∗ , �(2)∗ and �

(3)∗ solve the system (5.23)–(5.25) follows from the smooth
fit condition at each of the boundaries. A proof of the smooth fit condition can be carried
out using probabilistic techniques as done previously for Theorem 5.5. We therefore omit its
proof and only show uniqueness of the solution to (5.23)–(5.25).
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Uniqueness will be addressed with techniques similar to those employed in Theorem 4.13,
taking into account that the stopping region in the present setting is disconnected. We fix
c ∈ [0, 1), assume that there exists a triple {�′

1, �
′
2, �

′
3} �= {�(1)∗ , �

(2)∗ , �
(3)∗ } solving (5.23)–

(5.25) and define a stopping time

σ (I I ) := inf
{
t ≥ 0 : Xx ≤ �′

1 or Xx
t ∈ [�′

2, �
′
3]

}
x ∈ R. (5.27)

We can associate to the triple a function

V ′(x, c) := E
[
e−λσ (I I )(

U (Xx
σ (I I ) , c) − P0

)]
x ∈ R (5.28)

and note that V ′( · , c) has the same properties as the value function V ( · , c) provided that
we replace �

(k)∗ by �′
k everywhere for k = 1, 2, 3. Moreover, Eq. (3.14) implies

V ′(x, c) ≥ V (x, c), x ∈ R. (5.29)

Step 1 First we show that (�(2)∗ , �
(3)∗ )∩(�′

2, �
′
3) �= ∅. We assume that �′

2 ≥ �
(3)∗ but the same

argumentswould apply if we consider �(2)∗ ≥ �′
3. Note that �

′
1 < �

(3)∗ since �′
1 ∈ (−∞, x01 (c)),

then fix x ∈ (�′
2, �

′
3) and define the stopping time τ3 = inf{t ≥ 0 : Xx

t ≤ �
(3)∗ }. We have

V (x, c) < U (x, c) − P0 and by (5.28) it follows that V ′(x, c) = U (x, c) − P0. Then an
application of the Itô–Tanaka formula gives

0 < V ′(x, c) − V (x, c) = E
[
e−λτ3

(
V ′(Xx

τ3
, c) − V (Xx

τ3
, c)

)]

− E
[ ∫ τ3

0
e−λt (

LX − λ
)(
U (Xx

t , c) − P0
)
1{Xx

t ∈(�′
2,�

′
3)}dt

]

< E
[
e−λτ3

(
V ′(�(3)∗ , c) −U (�(3)∗ , c) + P0

)] ≤ 0 (5.30)

where we have used Proposition 5.1-(3) in the first inequality on the right-hand side and the
fact that V ′(�(3)∗ , c) ≤ U (�

(3)∗ , c) − P0 in the second. We then reach a contradiction with
(5.29) and (�

(2)∗ , �
(3)∗ ) ∩ (�′

2, �
′
3) �= ∅.

Step 2 Notice now that if we assume �′
3 < �

(3)∗ we also reach a contradiction with (5.29)

as for any x ∈ (�′
3, �

(3)∗ ) we would have V ′(x, c) < U (x, c) − P0 = V (x, c). Then we must

have �′
3 ≥ �

(3)∗ .

Assume now that �′
3 > �

(3)∗ , take x ∈ (�
(3)∗ , �′

3) and τ3 as in Step 1. above. Note that

V ′(x, c) = U (x, c) − P0 > V (x, c) whereas V (�
(3)∗ , c) = U (�

(3)∗ , c) − P0 = V ′(�(3)∗ , c) by
Step 1. above and (5.28). Then using the Itô–Tanaka formula again we find

0 < V ′(x, c) − V (x, c) = E
[
e−λτ3

(
V ′(Xx

τ3
, c) − V (Xx

τ3
, c)

)]

− E
[ ∫ τ3

0
e−λt (

LX − λ
)(
U (Xx

t , c) − P0
)
1{Xx

t ∈(�
(3)∗ ,�′

3)}dt
]

< E
[
e−λτ3

(
V ′(�(3)∗ , c) −U (�(3)∗ , c) + P0

)] = 0 (5.31)

hence there is a contradiction with (5.29) and �
(3)∗ = �′

3.

Step 3 If we now assume that �
(2)∗ < �′

2 we find the same contradiction with (5.29) as in

Step 2. as in fact for any x ∈ (�
(2)∗ , �′

2) we would have V
′(x, c) < U (x, c) − P0 = V (x, c).

Similarly if we assume that �′
1 < �

(1)∗ then for any x ∈ (�′
1, �

(1)∗ ) we would have V ′(x, c) <

U (x, c) − P0 = V (x, c). These contradictions imply that �′
2 ≤ �

(2)∗ and �′
1 ≥ �

(1)∗ .
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Let us assume now that �′
2 < �

(2)∗ , then taking x ∈ (�′
2, �

(2)∗ ), applying the Itô–Tanaka

formula until the first exit time from the open set (�
(1)∗ , �

(2)∗ ) and using arguments similar
to those in Steps 1. and 2. we end up with a contradiction. Hence �′

2 = �
(2)∗ ; analogous

arguments can be applied to establish that �′
1 = �

(1)∗ .
Proof of (i i). To prove (i i)we simply argue as in Theorem 5.5, concluding that V (x, c) =

V �
(1)∗ (x, c), x ∈ R and �

(1)∗ solves (5.18) with B = (−∞, x01 (c)). ��
5.2 Discussion and economic considerations

As proved in Sect. 4.1 above, for cost functions � with ĉ < 0 the control problem of
purchasing in the spotmarket has a reflecting boundary and the optimal contract entry problem
has a connected continuation region. These problem structures have been commonly observed
in the literature on irreversible investment and optimal stopping respectively.

In contrast the results in the present Sect. 5 for ĉ > 1 include repelling control boundaries
and disconnected optimal stopping regions, which to date have been observed less frequently
in the literature. Here we provide further discussion on the results of this section, including
simple examples and an economic interpretation of the optimal stopping rule.

If ĉ > 1 then k(c) is negative for all c ∈ (0, 1] [see (3.3)]. It follows that the penalty
function � must satisfy

�(c) >
(
1 + θ

λ

)
(1 − c) ∀c ∈ [0, 1). (5.32)

Since θ/λ is positive, (5.32) establishes that the function c �→ �(c) is bounded below by
a positive, decreasing linear function for c ∈ (0, 1). Given the role of � as a penalisation
function, this superlinearity is a natural property for�. Nonetheless we note that the slope of
this linear lower bound increases as λ ↓ 0. Thus as the arrival rate of the demand decreases,
this penalisation from � must be increasingly strong in order to fall into the case ĉ > 1.

Although λ is the parameter in the exponential distribution of the arrival time of demand,
we noted after (2.5) above that mathematically it is equivalent to a financial discount rate.
Indeed this is analogous to the situation in the reduced-form methodology for credit risk
modelling (see Chapter 7 of [14] for example), where a similar parameter λ can be interpreted
as an adjustment to the discount rate due to the risk of default (in our case the ‘default’ event
would correspond to the arrival of the demand, and hence the loss of the opportunity to enter
the contract).

Now we give three examples of functions � with ĉ > 1, drawn from functional forms
commonly found in the economic literature. From now on let us fix θ and λ and introduce
an additional parameter a, specifying that a > 1 + θ/λ. Our examples involve respectively
polynomial costs

�(c) := 1

2
(1 − c)2 + a(1 − c), (5.33)

exponential costs

�(c) := ea(1−c) − 1, (5.34)

and logarithmic costs

�(c) := −1

a
ln c. (5.35)

(Formally, for the third example we note that the assumption � ∈ C2(R) made above may
be relaxed to � ∈ C2((0, 1]) if we restrict our study of (2.4) to R× (0, 1]. Indeed, since the
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inventory can only be increased, the behaviour of � for c ≤ 0 (and c > 1) would play no
role in our analysis.)

In order to explain the complex shape of the optimal entry boundary shown in Fig. 1
(where ĉ > 1) we first identify two extremal regimes, referred to as cases 1 and 2 below. For
each we provide the mathematical justification and an economic interpretation. Throughout
the rest of this section it is important to recall from the problem setup in Sect. 2 that there are
two costs to consider: the shortfall penalty and the expenditure in the spot market. Moreover,
once the contract has been entered, the investor’s optimal purchasing strategy in the spot
market is to instantaneously fill the inventory at some time. That is, for each value of c there
is a unique critical price γ∗(c) above which it is optimal to instantaneously fill the inventory.
This optimal policy explains the extremal cases 1 and 2 discussed below, and thus informs
the intermediate case 3.

Case 1 To the left of Fig. 1, that is when c is small, it can be observed that x01 (c) < γ∗(c) <

x02 (c) and m2(c) > m1(c). From Remark 5.4 this implies that part iii)(a) of Proposition 5.2
holds. The optimal entry policy is then of threshold type, and the continuation region has
the lower boundary �

(1)∗ (c). Further, once the contract is entered, the optimal purchasing
policy is then to wait until the price X is above the level γ∗(c), at which time the inventory
is instantaneously filled.

When the inventory level c is small let us first consider the shortfall penalty term X��(c)
incurred by the arrival of the demand. Since� is decreasing,�(c) is relatively large for small
c. If the value of the spot price X is high, the investor is then exposed to the risk of significant
costs from the shortfall penalty and it is not attractive to enter the contract. Conversely for
low values of X the penalty X��(c) is relatively low, making the contract more attractive
to enter.

Next we consider the expenditure in the spot market. As recalled above this is equal to
(1− c)γ∗(c), since the inventory is instantaneously filled when the price rises to γ∗(c). If the
contract is entered at a price X < γ∗(c) then this cost is not incurred immediately, but at the
later time when the price rises to γ∗(c). In this case the investor therefore benefits from the
discounting effect of λ described above: the lower the price at entry, the greater is the average
benefit from discounting. However a balance must be struck, since at the random time � the
demand arrives and the opportunity to enter the contract is lost, so there is a disadvantage
to waiting for a very low entry price. This balance implies the existence of a lower optimal
threshold �

(1)∗ (c) < γ∗(c).

Case 2 To the right of the figure, when c is close to 1, we have γ∗(c) ≤ x01 (c) and so
part ii) of Proposition 5.2 holds and the optimal entry policy is again of threshold type. The
continuation region has the lower boundary �∗(c) = �

(3)∗ (c) and once the contract is entered
it is optimal to fill the inventory immediately.

Because of this immediate filling of the inventory there is no possibility of a shortfall
penalty and we need only consider the expenditure in the spot market, which is equal to
X (1− c). Lower spot prices are preferable but, since the opportunity to enter the contract is
lost at the random time �, again there is a disadvantage to waiting for excessively low entry
prices. However for values of c sufficiently close to 1 this expenditure becomes insignificant
and it may be attractive to enter the contract even at relatively high spot prices X with
X > γ∗(c) (even though filling is then immediate, so there is no benefit from discounting as
in case 1).

Case 3 In themiddle part of the figurewe have x01 (c) < γ∗(c) < x02 (c) andm2(c) < m1(c) so
that case iii)(b) of Proposition 5.2 applies. Then the continuation region is disconnected and
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is the union of a bounded interval (�
(1)∗ (c), �(2)∗ (c)), whose endpoints satisfy the inequality

�
(1)∗ (c) < γ∗(c) < �

(2)∗ (c), with the half-line (�
(3)∗ (c),∞). If the contract is entered when the

spot price is �
(1)∗ (c) (or lower) then the optimal purchasing policy is as in case 1, otherwise

the inventory is immediately filled upon entering the contract, as in case 2.
From the economic point of view this case is more difficult to interpret as it is a mix-

ture of the previous two cases. However it may be noted that the bounded component
(�

(1)∗ (c), �(2)∗ (c)) of the continuation region contains the critical level γ∗(c) for the opti-
mal purchasing policy. Thus if the problem begins when the spot price is at this critical level
x = γ∗(c), the investor prefers to wait and learn more about the price movements. Recalling
that the opportunity to enter the contract is lost at the random time �, if the spot price then
falls sufficiently low the investor enters the contract and benefits both from lower risk from
the undersupply penalty, and also from discounting, as described in case 1; alternatively
if the spot price rises sufficiently far above γ∗(c) then the investor enters the contract and
immediately fills the inventory, eliminating the potential undersupply penalty at the cost of
a higher (and undiscounted) expenditure in the spot market.

6 Conclusion

In this paper we have studied the problem of optimal entry into an irreversible investment
plan with a cost function which is non convex with respect to the control variable. This non
convexity is due to the real-valued nature of the spot price of electricity. We show that the
problem can be decoupled and that the investment phase can be studied independently of
the entry decision as an investment problem over an infinite time horizon. The optimal entry
decision depends heavily on the properties of the optimal investment policy.

The complete value function can be rewritten as that of an optimal stopping problemwhere
the cost of immediate stopping involves the value function of the infinite horizon investment
problem. It has been shown in [7] that the latter problem presents a complex structure of
the solution, in which the optimal investment rule can be either singularly continuous or
purely discontinuous, depending on the problem parameters. This feature in turn implies a
non standard optimal entry policy. Indeed, the optimal entry rule can be either the first hitting
time of the spot price at a single threshold, or can be triggered bymultiple boundaries splitting
the state space into non connected stopping and continuation regions. A possible economic
interpretation of this complex structure is provided.
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Appendix 1: Some facts on the Ornstein–Uhlenbeck process

Recall the Ornstein–Uhlenbeck process X of (2.1). It is well known that X is a positively
recurrent Gaussian process (cf., e.g., [3], Appendix 1, Section 24, pp. 136–137) with state
space R and that (2.1) admits the explicit solution

Xx
t = μ + (x − μ)e−θ t +

∫ t

0
σeθ(s−t)dBs . (6.1)

We introduced its infinitesimal generator LX in (3.6); the characteristic equation LXu = λu,
λ > 0, admits the two linearly independent, positive solutions (cf. [14], p. 280)

φλ(x) := e
θ(x−μ)2

2σ2 D− λ
θ

( (x − μ)

σ

√
2θ

)
(6.2)

and

ψλ(x) := e
θ(x−μ)2

2σ2 D− λ
θ

(
− (x − μ)

σ

√
2θ

)
, (6.3)

which are strictly decreasing and strictly increasing, respectively. In both (6.2) and (6.3) Dα

is the cylinder function of order α (see [2], Chapter VIII, among others) and it is also worth
recalling that (see, e.g., [2], Chapter VIII, Section 8.3, eq. (3) at page 119)

Dα(x) := e− x2
4

�(−α)

∫ ∞

0
t−α−1e− t2

2 −xt dt, Re(α) < 0, (6.4)

where �(·) is Euler’s Gamma function.
We denote by Px the probability measure on (�,F) induced by the process (Xx

t )t≥0,
i.e. such that Px ( · ) = P( · |X (0) = x), x ∈ R, and by Ex [ · ] the expectation under this
measure. Then, it is a well known result on one-dimensional regular diffusion processes (see,
e.g., [3], Chapter I, Section 10) that

Ex [e−λτy ] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φλ(x)

φλ(y)
, x ≥ y,

ψλ(x)

ψλ(y)
, x ≤ y,

(6.5)

with φλ and ψλ as in (6.2) and (6.3) and τy := inf{t ≥ 0 : Xx
t = y} the hitting time of Xx at

level y ∈ R. Due to the recurrence property of the Ornstein–Uhlenbeck process X one has
τy < ∞ Px -a.s. for any x, y ∈ R.

It is also useful to recall here some convergence and integrability properties of X .

Lemma 7.1 One has

lim inf
t↑∞ e−λt |Xx

t | = 0, a.s.

Proof Define � := lim inf t↑∞ e−λt |Xx
t | and notice that clearly � ≥ 0 a.s. We now claim

(and prove later) that lim inf t↑∞ e−λtE
[|Xx

t |
] = 0 to obtain by Fatou Lemma

0 ≤ E
[
�

] ≤ lim inf
t↑∞ e−λtE

[|Xx
t |

] = 0; (6.6)

that is, E
[
�

] = 0 and hence � = 0 a.s. by nonnegativity of �.
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To complete the proof we have thus only to show that lim inf t↑∞ e−λtE
[|Xx

t |
] = 0. By

(6.1) and Hölder inequality one has

E
[|Xx

t |
] ≤ μ + e−θ t |x − μ| + e−θ tE

[∣∣∣
∫ t

0
eθsd Bs

∣∣∣2
] 1

2

= μ + e−θ t |x − μ| + e−θ t 1

2θ
(e2θ − 1)

1
2 , (6.7)

where also Itô isometry has been used. It is now easily checked that (6.7) implies the claim.
��

Lemma 7.2 Fix x ∈ R, and set τR := inf{t ≥ 0 : |Xx
t | ≥ R}, R > 0, then the family

{e−λτR |Xx
τR

| : R > 0} is uniformly integrable.

Proof It suffices to show that {e−λτR |Xx
τR

| : R > 0} is uniformly bounded in L2(�,P).
With no loss of generality we take x ∈ (−R, R) so that we can write τR = τ+

R ∧ τ−
R P-

a.s. with τ+
R := inf{t ≥ 0 : Xx

t ≥ R} and τ−
R := inf{t ≥ 0 : Xx

t ≤ −R}. From recurrence
of X we get

E
[
e−2λτR |Xx

τR
|2

]
= R2

(
E

[
e−2λτ+

R 1{τ+
R <τ−

R }
]

+ E
[
e−2λτ−

R 1{τ−
R <τ+

R }
])

≤ R2
[

ψ2λ(x)
ψ2λ(R)

+ φ2λ(x)
φ2λ(−R)

]
. (6.8)

As R → ∞ the functions φ2λ(−R) and ψ2λ(R) diverge to infinity with a super quadratic
trend, hence there exists a constant C(x) > 0 depending only on x ∈ R such that

sup
R>0

E
[
e−2λτR |Xx

τR
|2

]
≤ C(x).

��

Appendix 2: Some proofs from Sect. 4.1

Proof of Proposition 4.2 Fix c̄ ∈ [0, 1] and set L(x, c̄) := (
LX − λ

)
U (x, c̄) for simplicity.

By (4.2), (4.10) and recalling that u(x; c̄) = 0 for all x ∈ R such that c̄ ≤ g∗(x) (or
equivalently x ≤ β∗(c̄)) we get

L(x, c̄) =
{−λ x �(c̄) for x > β∗(c̄)[

θμ − (λ + θ) x
](
g∗(x) − c̄

) − λ x �(g∗(x)) for x ≤ β∗(c̄).
(6.9)

Since g∗ is continuous with g∗(β∗(c̄)) = c̄ one can verify that x �→ L(x, c̄) is contin-
uous, limx→+∞ L(x, c̄) = −∞ and, by recalling also that g∗(x) = 1 for x ≤ β∗(1),
limx→−∞ L(x, c̄) = +∞. Since β∗ ∈ C1([0, 1]) and it is strictly monotone then g∗ is dif-
ferentiable for a.e. x ∈ R with g′∗ ≤ 0. In particular d

d xL(x, c̄) exists everywhere with the
exception of points x = β∗(c̄) and x = β∗(1). It follows that

d
d xL(x, c̄) = −λ�(c̄) < 0 for x > β∗(c̄) (6.10)
d
d xL(x, c̄) = −(λ + θ)

(
1 − c̄

)
< 0 for x < β∗(1) (6.11)

where in the second expression we have used that �(1) = 0 by Assumption 2.1. Now we
recall that β∗(c) ≤ x̂0(c) for c ∈ [0, 1] [cf. Proposition 3.1-i)] and θμ − k(c) β∗(c) > 0 on
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[0, 1]. Hence in particular for c = g∗(x), x ∈ [β∗(1), β∗(0)], we get θμ − k(g∗(x)) x > 0
and

d
d xL(x, c̄) = [

θμ − k(g∗(x)) x
]
g′∗(x)

− (λ + θ)
(
g∗(x) − c̄

) − λ�(g∗(x)) < 0 for x ∈ (
β∗(1), β∗(c̄)

)
. (6.12)

We then obtain that x �→ L(x, c̄) is continuous, strictly decreasing [by (6.10), (6.11) and
(6.12)] and it equals zero at a single point for any given c̄ ∈ [0, 1]. Obviously the result
extends to L(x, c̄) + λP0 = (

LX − λ
)(
U (x, c̄) − P0) and (4.12) follows. ��

Proof of Proposition 4.4 Existence, uniqueness and smoothness of α∗ follow from argu-
ments analogous to those employed to prove [7, Thm. 2.1]. For the limiting behaviour of
α∗(c) as c → 1 we observe that �(c) ↓ 0 and x†0 (c) ↑ ∞ when c ↑ 1. Since α∗ is strictly
increasing it has left-limit so we argue by contradiction and assume that α∗(c) → α0 as
c → 1 for some α0 < +∞. Then in the limit as c → 1 (4.28) gives

0 = (Ĝ(α0, 1) − P0)φ
′
λ(α0)/φλ(α0) = −P0φ

′
λ(α0)/φλ(α0) �= 0

and we reach a contradiction. ��
Proof of Proposition 4.5 Fix c ∈ [0, 1]. It is clear that α∗(c) solves (4.28) if and only if
K (α∗(c), c) = 0 where

K (x, c) := − λ
λ+θ

�(c)φλ(x) + (
Ĝ(x, c) − P0

)
φ′

λ(x) x ∈ R. (6.13)

From direct computation it is not hard to verify that x �→ K (x, c) is strictly decreasing and
convex on (−∞, x†0 (c)), so that it is sufficient to show that K (z0(c), c) < 0 for z0(c) :=
P0/�(c) to conclude the proof. In fact we shall only consider the case z0(c) ∈ (−∞, x†0 (c))
as otherwise the result is trivial.

Set for simplicity z0 = z0(c), then from straightforward algebra we find

K (z0, c) = φλ(z0(c))�(c)
[

− λ
λ+θ

+ (1 − λ
λ+θ

)(μ − z0)
φ′

λ(z0)
φλ(z0)

]
. (6.14)

Now, since φ′′
λ > 0 and LXφλ = λφλ on R one has (μ − z0)

φ′
λ(z0)

φλ(z0)
< λ

θ
hence from (6.14) it

follows K (z0, c) < 0. ��
Proof of Lemma 4.9 We recall that the Ornstein–Uhlenbeck process is positively recurrent
(cf. “Appendix 1”), hence τ�(x, c) < +∞P-a.s. for any x ∈ R and it follows thatU (Xx

τ�
, c) =

U (�(c), c) P-a.s. The latter and (4.35) then imply

V �(x, c) = (
U (�(c), c) − P0

)
E

[
e−λτ�(x,c)

]
= (

U (�(c), c) − P0
) φλ(x)

φλ(�(c))
(6.15)

for x > �(c), where (6.5) has been used. ��
Proof of Proposition 4.10 Fix c ∈ [0, c∗). Since we are looking for a finite-valued boundary
�∗, solving (4.37) is equivalent to finding x such that Ĥ(x, c) = 0 where

Ĥ(x, c) := (U (x, c) − P0)φ
′
λ(x) −Ux (x, c)φλ(x). (6.16)

We recall (4.2), (4.3), (4.4) and that the function g∗ is the inverse of β∗ (cf. Proposition 3.1).
As in (4.10) we can derive U with respect to x and take the derivative inside the integral so
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to obtain

U (x, c) = x(1 − c) −
∫ 1

c∨g∗(x)
u(x, y)dy and Ux (x, c) = (1 − c) −

∫ 1

c∨g∗(x)
ux (x, y)dy

(6.17)

for all x ∈ R and where we have used that u and ux equal zero for x ∈ R such that c ≤ g∗(x).
In order to study the asymptotic behaviour of (6.16) as x → −∞ let us observe that for

x < b∗(1) one has g∗(x) = 1 and hence U (x, c) = x(1 − c) and Ux (x, c) = 1 − c. Also
from the expression of φλ (cf. “Appendix 1”) one gets

lim
x→−∞ φλ(x) = +∞, lim

x→−∞ xφ
′
λ(x) = +∞, lim

x→−∞ φ
′
λ(x) = −∞

and limx→−∞ xφ
′′
λ(x) = −∞. Then, by applying De l’Hopital rule twice we have

0 ≤ lim
x→−∞

φλ(x)

xφ
′
λ(x)

= lim
x→−∞

1

1 + xφ
′′
λ(x)/φ

′
λ(x)

= lim
x→−∞

1

2 + xφ
′′′
λ (x)/φ

′′
λ(x)

≤ 1

2
,

(6.18)

since xφ
′′′
λ (x)/φ

′′
λ(x) > 0 for x < 0. Therefore limx→−∞

[
1 − φλ(x)

xφ
′
λ(x)

] = a ∈ [ 12 , 1] and we

conclude that

lim
x→−∞ Ĥ(x, c) = lim

x→−∞
[
(x(1 − c) − P0) φ′

λ(x) − (1 − c)φλ(x)
]

≥ (1 − c) lim
x→−∞ xφ′

λ(x)

(
1 − φλ(x)

xφ′
λ(x)

)
= +∞.

Next we aim at showing that Ĥ(x0(c), c) < 0 so that by continuity of x �→ Ĥ(x, c) we
obtain existence of a solution of (4.37). We denote �(c) := − ∫ 1

c
G(β∗(y),y)
φλ(β∗(y)) dy > 0 where

positivity holds by observing that G(x, c) < 0 for x < x0(c) and hence for x = β∗(c). Then
by using (4.6) and (4.5) in (6.17), and evaluating the other integrals we obtain

U (x, c) = x
(
g∗(x) ∨ c − c

) + λ
λ+θ

�
(
g∗(x) ∨ c

)(
x + μθ

λ

) − φλ(x)�
(
c ∨ g∗(x)

)
(6.19)

Ux (x, c) = (
g∗(x) ∨ c − c

) + λ
λ+θ

�
(
g∗(x) ∨ c

) − φ′
λ(x)�

(
c ∨ g∗(x)

)
(6.20)

for all x ∈ R. We now substitute (6.19) and (6.20) inside (6.16) to obtain

Ĥ(x, c) =
[
x
(
g∗(x) ∨ c − c

) + λ
λ+θ

�
(
g∗(x) ∨ c

)(
x + μθ

λ

) − P0
]
φ′

λ(x)

−
[
(g∗(x) ∨ c − c) + λ

λ+θ
�

(
g∗(x) ∨ c

)]
φλ(x) (6.21)

In order to evaluate (6.21) at x0(c) we recall (6.9) and that x �→ L(x, c) is continuous. Then
it may be rewritten in a more compact form as

L(x, c) = [θμ − (λ + θ)x]
(
g∗(x) ∨ c − c

) − λ�(g∗(x) ∨ c)x (6.22)

and, by definition, x0(c) is such that

−P0 = 1
λ
L(x0(c), c). (6.23)
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For simplicity set x0 := x0(c), then plugging (6.23) into (6.21) and using (6.22) we find

Ĥ(x0, c) = φλ(x
0)

[
θ(μ − x0)

λ

φ′
λ(x

0)

φλ(x0)
− 1

](
g∗(x0) ∨ c − c + λ�

(
g∗(x0) ∨ c

)
λ + θ

)
.

(6.24)

Since
(
LX −λ

)
φλ = 0 for all x ∈ R andφ′′

λ > 0 onR then it holds θ(μ−x)φ′
λ(x)−λφλ(x) <

0 for all x ∈ R. Hence from (6.24) we obtain Ĥ(x0(c), c) < 0 and there must be at least
one point �∗(c) < x0(c) that fulfils (4.37). By arbitrariness of c ∈ [0, c∗) the proof is
complete. ��
Proof of Proposition 4.12 First fix an arbitrary c ∈ [0, 1] and recall (4.2), (4.3) and (4.4).
Then by standard arguments based on dominated convergence theorem we get

Uxx (x, c) = φ′′
λ(x)

∫ 1

g∗(x)∨c
G(β∗(y), y)
φλ(β∗(y))

dy x ∈ R (6.25)

by the affine nature of x �→ G(x, c) (cf. (4.5)). As expected Uxx ( · , c) is continuous on
R. Now by differentiating separately in the two regions

{
x ∈ R : c > g∗(x)

}
and

{
x ∈

R : c < g∗(x)
}
, with the exception of points x = β∗(1) and x = β∗(0), recalling that

g∗ is C1 elsewhere (cf. Proposition 3.1-i)), g′∗ = 0 on (−∞, β∗(1)) ∪ (β∗(0),+∞) and
β∗(g∗(x)) = x , we find

Uxxx (x, c) = φ′′′
λ (x)

∫ 1

g∗(x)∨c
G(β∗(y), y)
φλ(β∗(y))

dy − φ′′
λ(x)

G(x, g∗(x))
φλ(x)

g′∗(x)1{c<g∗(x)}

(6.26)

for a.e. x ∈ R which shows

∀c ∈ [0, 1] : Uxxx ( · , c) ∈ L∞
loc(R). (6.27)

Now fix c̄ ∈ [0, c∗) and take �∗(c̄) solving (4.37). Since by definition V �∗(�∗(c̄), c̄) =
U (�∗(c̄), c̄) − P0 it suffices to show that V �∗

x ( · , c̄) ≤ Ux ( · , c̄) on R to verify the claim.
The latter trivially holds for x ≤ �∗(c̄) by (4.36) and (4.37), hence it remains to prove it for
x > �∗(c̄).

From (4.36) it follows that LXV �∗(x, c̄) − λV �∗(x, c̄) = 0 for x > �∗(c̄) and it is not
hard to verify by direct derivation of the latter that

LXV
�∗
x (x, c̄) − (λ + θ)V �∗

x (x, c̄) = 0 for x > �∗(c̄) (6.28)

as well. On the other hand, from (6.9) one obtains thatL( · , c̄) is differentiable for a.e. x ∈ R,
in particular with the exception of x = β∗(c̄) and x = β∗(1) (the latter by non differentiability
of g∗ at that point). Then by (6.27), we obtainLx (x, c̄) = (LX − (λ + θ))Ux (x, c̄) a.e. x ∈ R

and with

Lx (x, c̄) :=
⎧⎨
⎩

−λ�(c̄) for x > β∗(c̄)
−λ�(g∗(x)) − (λ + θ)(g∗(x) − c̄)

+[
θμ − k

(
g∗(x)

)
x
]
g′∗(x) for a.e. x ≤ β∗(c̄).

(6.29)

Notice that since β∗ is strictly decreasing, g′∗ is bounded onR andLx ( · , c̄) is locally bounded
on R with

∣∣Lx ( · , c̄)∣∣ ≤ C(1 + |x |) for x ∈ R and a suitable constant C > 0.
Define

τ ∗
� (x, c̄) := inf{t ≥ 0 : Xx

t ≤ �∗(c̄)} x ∈ R, (6.30)
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fix x > �∗(c̄) and denote τ ∗
� = τ ∗

� (x, c̄) for simplicity. Take R > 0 arbitrary and fixed such
that −R < β∗(1) and R > β∗(0), and denote τR := inf{t ≥ 0 : |Xx

t | ≥ R}. Since Uxx (·, c̄)
is continuous andUxxx (·, c̄) locally bounded, then we use an extension of Itô’s formula based
on preliminary mollification of Ux (cf. [11, Ch. 8, Sec. VIII.4, Thm. 4.1]) to obtain

V �∗
x (x, c̄) −Ux (x, c̄) = E

[
e−(λ+θ)(τ∗

� ∧τR)
(
V �∗
x

(
Xx

τ∗
� ∧τR

, c̄
) −Ux

(
Xx

τ∗
� ∧τR

, c̄
))]

+ E

[∫ τ∗
� ∧τR

0
e−(λ+θ)sLx

(
Xx
s , c̄)ds

]

≤ E
[
e−(λ+θ)(τ∗

� ∧τR)
(
V �∗
x

(
Xx

τ∗
� ∧τR

, c̄
) −Ux

(
Xx

τ∗
� ∧τR

, c̄
))]

(6.31)

where the inequality is due to (6.10), (6.11) and (6.12). In order to evaluate the last expression
in the right-hand side of (6.31) notice that on the set {τR < τ ∗

� } one has Xx
τR

= R which,

alongwith (4.36) and (6.20), implies
∣∣V �∗

x
(
R, c̄

)−Ux
(
R, c̄

)∣∣ ≤ D(1+|φ′
λ(R)|) for a suitable

constant D > 0. Hence, noting that V �∗
x

(
Xx

τ∗
�
, c̄

) −Ux
(
Xx

τ∗
�
, c̄

) = 0, P-a.s. by the smooth fit

condition (4.37), we get

V �∗
x (x, c̄) −Ux (x, c̄) ≤ D(1 + |φ′

λ(R)|)E[
e−(λ+θ)τR1{τR<τ∗

� }1{Xx
τR

=R}
]

for x > �∗(c̄)
(6.32)

Since R �→ φλ(R) is strictly convex and decreasing (cf. Appendix 1), the function R �→
φ′

λ(R) is negative and increasing (with φ′
λ(R) → 0 as R → ∞), which means R �→

D(1 + |φ′
λ(R)|) is non-negative and decreasing. By taking limits as R → ∞ in (6.32), and

recalling also the discussion above, we conclude that V �∗
x (x, c̄) − Ux (x, c̄) ≤ 0 for x ∈ R.

The proof is complete since c̄ was arbitrary. ��
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