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Joint Contour Net analysis of lattice QCD data 

Dean P. Thomas, Rita Borgo, Hamish Carr and Simon Hands 

Abstract Lattice Quantum Chromodynamics (QCD) is an approach used by theo-
retical physicists to model the strong nuclear force. This works at the sub-nuclear 
scale to bind quarks together into hadrons including the proton and neutron. One of 
the long term goals in lattice QCD is to produce a phase diagram of QCD matter as 
thermodynamic control parameters temperature and baryon chemical potential are 
varied. The ability to predict critical points in the phase diagram, known as phase 
transitions, is one of the on-going challenges faced by domain scientists. In this 
work we consider how multivariate topological visualisation techniques can be ap-
plied to simulation data to help domain scientists predict the location of phase tran-
sitions. In the process it is intended that applying these techniques to lattice QCD 
will strengthen the interpretation of output from multivariate topological 
algorithms, including the joint contour net. Lattice QCD presents an interesting 
opportunity for using these techniques as it offers a rich array of interacting scalar 
fields for analysis; however, it also presents unique challenges due to its reliance on 
quantum mechanics to interpret the data. 
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1 Introduction 

Multivariate topology, in contrast to univariate topology, is a relatively recent addi-
tion to the set of visualisation and analysis tools available to scientists. Many fields 
of science present scalar data obtained either from simulation or observation upon 
common sampling points. Whilst univariate topology can evaluate topological fea-
tures in each field as unique entities, multivariate topology can further 
understanding of correlations between scalar fields. 

Several different approaches exist for computing features in multi-fields includ-
ing Jacobi Sets, Reeb graph comparison, Reeb spaces, and range tessellation. We 
concentrate on the Joint Contour Net [1], which builds upon existing theoretical 
and practical aspects of the Reeb graph to represent the Reeb space in a discrete 
graph based format. The Reeb space [2] addresses the relation between multiple 
sampled fields by contracting multivariate contours to singular points. 

In this work we make the following contributions: 

 Extend the use of the multivariate topological techniques to a new scientific do-
main, lattice Quantum Chromodynamics (QCD) 

 Show how analysis of the Joint Contour Net using non-visual techniques can 
allow it to be used on large, complex data sets that are beyond the scope of 
visual inspection 

 Investigate the use of multivariate persistence for predicting properties of lattice 
QCD data 

2 Lattice Quantum Chromodynamics 

Quantum Chromodynamics is the theory used to describe interactions between sub-
nuclear particles that bind the hadron group of particles together. In its most basic 
form it describes quark particles and how they interact with one another via the 
exchange of massless gluon particles (Fig. 1). Hadrons exist in two states; those 
consisting of three quarks are known as baryons, and quark-antiquark configurations 
make up the meson group. Protons and neutrons are part of a subset of the baryon 
group called nucleons that combine with the electron particle to create the atoms that 
form the periodic table of elements. 

The way in which quarks and gluons behave across a range of temperatures and 
chemical potentials can be modelled using a phase diagram (Fig. 2). The design is 
similar to that of water, and can be used to understand how states of matter change 
as chemical potential and temperature vary. A proposed model given in [3] shows 
that situations at neutron star cores are most similar to a system with a non-zero 
chemical potential. In addition, the diagram shows output from real-world experi-
ments, allowing a sense of how work in this area fits in with experiments in nuclear 
and particle physics. 
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Fig. 1 Colour neutrality in a 3-quarksystem 
(Baryon). Fig. 2 A proposed phase diagram for QCD [3]. 

Quarks and gluons appear impossible to observe in an unbound state. A single 
quark has never been observed and they are always found in colour neutral bound 
states [4], held together by the exchange of gluons. This phenomenon is known as 
colour confinement and unlike its electromagnetic force equivalent the energy 
needed to separate two or more bound particles increases indefinitely with distance. 
Hence, in order to test theories of the quark model computer simulations are 
employed to model quark-gluon interactions. The process of computing Quantum 
Chromodynamics as discrete models is known as lattice QCD. 

2.1 Lattice structure 

Kenneth Wilson was the first physicist to suggest that QCD could be approximated 
on a discrete lattice to model properties of quark and gluon fields [5]. The structure of 
the lattice is a hyper-torus in Euclidean space-time, meaning that the three spatial 
dimensions and the time dimension are treated as equal and translationally-invariant 
boundary conditions f(x) = f(x − Lx) are used so that all sites in the lattice are 
equivalent. As the lattice exists in four dimensions it can be convenient to think of the 
lattice of being made up of hyper-cubic cells, as shown in Figure 3. 

Quarks are placed onto the lattice at positions with integer indices, referred to as 
sites. In the remainder of this work we will label sites on the lattice using the 
notation U(X) where X א Z4. In Lattice QCD data is not placed on these sites, 
instead they represent the starting point for computations with a given origin. From 
each lattice site four link variables are used to model the gluon potential in the x,y,z 
and t directions between neighbouring sites. Link variables are represented as 
U,(X), i.e. the variable defined on the link emerging from the site X in the direction 
,. When traversing the lattice, the relation U,(X) Ł U,(X − ˆ,)† allows us to define 
movements in the reverse direction using the adjoint (2) form of link variables. 

Each link variable is a member of the special unitary group of matrices (1), iden-
tified using the notation SU(n). The value of n represents the number of charge 
colours used in the gauge theory, with true QCD defined with n = 3. However, in 
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Fig. 3 Arrangement of lattice sites for one 4D 
cell (dashed line represents t dimension). 

Fig. 4 Placement of data is on the four lattice 
links from each site (U(X)). 

this work we use a simplified two colour model of the theory using SU(2) matri-
ces. Colour is used in this context to parametrise the concept of colour neutrality, 
required to explain confinement (see Figure 1), rather than a parameter of appear-
ance. One of the primary reasons for using a simplified model is that it allows us 
the freedom to vary the chemical potential of the system. 

{[a —b ] } 
SU(2) = : a,b E C,|a|2 + |b|2 = 1,det = 1 (1) 

b a  

where x represents the complex conjugate. 
a — ib e — i f ~ a + ib c + id ~ 

 U† = with U = (2) 
c — id g — ih e + i f g + ih 

3 Topological Analysis 

Topological analysis, in particular for univariate data, is an established technique of 
forming models of data for indirect volume rendering. For visualisation purposes it 
allows scalar fields to be presented in the context of connected regions, which can 
also be used to optimise the rendering process. Information regarding internal 
structure can also be relayed back to the user allowing further insights to be made 
about the data. It is this use of topology that is of most interest in the context of 
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forming insights into large data sets. This section introduces the most relevant topo- 



logical structures to this work; first in the setting of univariate data, then extended 
to multivariate inputs. 

3.1 Univariate Topology 

The Reeb graph and closely associated contour tree are methods for reducing the 
topology of a scalar field to a graph structure. Topological events are mapped to 
vertices of a directed graph, with edges representing a continual deformation of a 
manifold between two critical vertices. Following the path of the graph allows 
tracking of splits and joins in the topology as the function value, or isovalue, is 
varied. In [6] the contour tree is used as the underlying data structure to store and 
generate object meshes using path seeds. 

Whilst being quicker to compute than the Reeb graph, a limitation of the contour 
tree algorithm [7] is that it can only be applied to data without periodic boundaries. 
This limitation can be avoided by making symbolic cuts in the topology for the 
purposes of computing the contour tree. These cuts can then be stitched together to 
form the Reeb graph of a periodic domain using a technique used in [8] to 
accelerate Reeb graph computations. 

Persistence 

Univariate persistence is typically used in two scenarios; the first is an aid to simplify 
the Reeb graph (and contour tree) using geometric measures to determine noise from 
features [9]. The second is to provide additional information about distinct 
topological objects in a scalar volume. In this work we focus on the second approach 
as domain scientists have their own noise removal methods (cooling). 

The contour spectrum [10] was introduced as a method of relaying quantitative 
information about individual contours in scalar data. Attributes that could be com-
puted included surface area and volume of contours. In [11] isosurface statistics were 
directly compared against raw histograms of scalar data for a number of data sets. 
Measurements evaluated included the cell intersection count, triangle count and 
isosurface area. It was found that using these measures a truer distribution of the 
scalar field could be computed. An improvement was given in [12] using concepts 
from geometric measure theory that minimised the effect of noise on the observed 
distributions. The key to this improvement was introducing a normalisation of the 
individual contour statistics to the domain average. 

3.2 Multivariate Topology 

The Reeb space is a generalisation of the Reeb graph for multivariate or temporal 
data. The first discussion of using the Reeb space to compute topological structure 
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of multiple functions appears in [2]. Here it is suggested that the Reeb space can be 
modelled mathematically in the form f : M 7ĺ Rk, where M represents the 
domain and f the output of k scalar functions. For the simple case, where k = 1, this 
is directly comparable to the Reeb graph. The Reeb space extends this formulation 
to situations where k ≥ 2. 

Joint Contour Net 

Carr et al. [1] presented the first discrete representation of the Reeb space using the 
Joint Contour Net (JCN). The algorithm computes the Reeb Space as a number of 
multi-variate contours, named slabs, representing connected regions of the domain 
with respect to multiple functions. In comparison to the contour tree, the JCN lends 
itself to parallelisation significantly more easily as each slab is constructed from 
smaller discrete regions labelled fragments [13]. 

In nuclear physics the Joint Contour Net has previously been used to visualise and 
analyse scission datasets, where it was used to identify the splitting of an atomic 
nucleus into multiple parts [14]. It was found that the Joint Contour Net was well 
suited to capturing this divergent behaviour, using proton and neutron density fields 
as inputs. This experiment was initially performed at a single temperature [15], but 
later repeated at multiple temperatures [16] due to its ability to capture the splitting of 
the compound nucleus as a forking in the multi-field topology. Whilst performing the 
analysis a number of other events were captured and linked to the scission theory. It 
was found that starburst-like features in the graph structure of the JCN likely equated 
to well formed fragments [15]. A zippering effect was noted at large temperatures that 
was determined to represent a spatial connectivity between distinct regions in the 
multi-field. In terms of the underlying physical phenomena, domain experts 
interpreted it as a de-localisation of quasi-particles at high temperatures. 

More recently the joint contour net was used to visually analyse data from hur-
ricane Isabel [17], allowing vertices in the Joint Contour Net to be mapped to their 
spatial co-ordinates. An interactive environment was developed that allowed users to 
relate interactions in the temperature, pressure and precipitation fields to physical 
phenomena such as rain bands and the eye of the hurricane. The ability to relate 
properties of the joint contour net to known physical features helped to increase un-
derstanding of how the joint contour net is able to capture multi-field interactions. 

Persistence 

Persistence in multivariate data sets is a more difficult problem to define than in the 
univariate case. Simplification and persistence metrics can be defined on a number 
of structures present within the multi-field topology. It is also possible to extend the 
concept of isosurface statistics [11], [12] to multi-field inputs through the use of 
Continuous Scatterplots [18]. These can be defined to show relations between n 
dimensional inputs with m scalar fields; in the case where n = 3 and m = 1 the 
output approximates to the output of [12]. 
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The Jacobi set defines the set of points where the gradient of multiple functions 
align or have a gradient of zero [19]. When the multi-field is used to represent time 
dependent data this can be used to augment the univariate notion of persistence with 
a lifetime parameter. This approach was used in [20] to compute persistence in the 
context of the Morse-Smale complex. However, when generalised to non-temporal 
functions,defining persistence as a feature of the Jacobi set becomes a non-trivial 
task [21]. The Reeb skeleton relies on an extended Jacobi set, the Jacobi Structure 
primarily to aid multi-dimensional simplification [22]. This is a simplified graph 
structure that allows measures of persistence to be assigned to its arcs. Lip pruning 
techniques, similar to the leaf pruning method of simplification found in univariate 
topological structures [9] can then be applied to progressively remove noisy features 
in the multi-field. 

4 Lattice QCD data analysis 

Lattice QCD simulations, despite their relatively small space-time size, are ex-
tremely complex due to the ability to compute a rich set of observables on the lattice. 
Furthermore, the method of noise reduction used in this study, known as cooling, 
generates a unique lattice for each iteration. Due to the quantum nature of lattice 
QCD each experiment must be computed multiple times as physical observables are 
defined as averages or expectation values. This results in an ensemble of suitably 
weighted configurations that are representative of the Feynman path integral over 
every possible state of the system. The ensemble emerges from a Markov chain with 
updates generated by an algorithm, such as hybrid Monte Carlo [23], that respects a 
physical condition known as detailed balance. 

Each of these experiments are conducted as part of multi-ensemble studies [24]; in 
our particular work each ensemble is generated with a differing level of chemical 
potential (µ). This takes the form of computing around fifty separate joint contour 
nets for each ensemble; measures from the joint contour nets are then computed and 
averaged to produce an ensemble average. Typically domain scientists would then 
present this information with regard to chemical potential as a histogram or line graph 
to look for signals of phase changes in the simulated quark-gluon matter. 

The experiments were carried out on a Dell cluster made up of four homogenous 
compute nodes each with access to 16GB RAM and a separate dedicated front-end 
node. Each compute node contains four AMD Opteron 6376 CPUs, each with eight 
physical cores (16 logical cores) running 64-bit Debian 8.6. The software is built 
using VTK 6.1 [25] with extensions from the Multi-field Extension of Topological 
Analysis (META) project [26] in C++11. Quantisation parameters of the Joint Con-
tour Net were chosen to best suit the available resources in terms of memory and 
number of parallel processes. 
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4.1 Joint Contour Net comparison of data under cooling 

The cooling algorithm is an established method of iteratively removing noise from 
lattice QCD configurations whilst respecting the underlying physical theory. How-
ever, the process is not without pitfalls; in particular, it is possible for over-cooling 
to remove the actual intended observables. As a physical noise reduction technique 
is available we are restricted in our use of using persistence as a noise reduction 
technique. Instead we use it to evaluate the effect of the physical process on the 
data. 

Overview of input scalar fields 

The Polyakov loop, otherwise known as the Wilson line operator, can be used as a 
method for computing the symmetry of a lattice. Breaking of symmetry (Fig. 5) is 
one signal that can indicate a transition to a de-confined state, achieved by varying 
ensemble parameters such as temperature or chemical potential. This method of 
locating critical temperatures is well established in SU(2) and SU(3) lattice gauge 
theories [27, 28, 29, 30]. 

 
Fig. 5 By graphing the scalar values making 
up the Polyakov loop observable it is possible 
to see the breaking of symmetry at high 
chemical potentials (µ) in un-cooled data. 

Fig. 6 The Polyakov loop is a scalar field f : R4 

7ĺ R3 computed by visiting each site in a given 
space-time direction. It most cases we loop 
over the time axis. 

From a computational point-of-view the Polyakov loop presents a convenient 
method for reducing the R4 lattice to a R3 scalar field. In order to compute the 
Polyakov loop, we take the product of all time-like link variables from a given 
lattice site in three dimensions (see Eq. 3). On a lattice defined with a periodic time 
axis, as is the case in lattice QCD, the effect is a closed straight line, as visualised 
in Fig. 6. Thus the Polyakov loop represents an attractive method for identifying 
de-confinement in a form that can easily be visualised and analysed using existing 
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methods. 



 Lt 1 
f(x) = 2

9(Tr(fJ 
n=1 

Ui(x+n ̂ i))) (3) 

where i = 0, x א Z3 

Previous studies using univariate topological measures calculated using the Reeb 
graph [31] suggest that the Polyakov loop observable may lose its ability to identify 
de-confinement under cooling. We are interested to see if this could phenomena can 
be identified using multivariate topology. For this study we calculate the Polyakov 
loop lattice observable for each configuration in an ensemble at cooling iterations 
zero to twenty. Joint contour nets are computed for each neighbouring pair of cool-
ing iterations and their structure analysed. 

4.2 Results and analysis 

Below we present a selection of the most promising results gathered by analysing 
different aspects of the Joint Contour Net. 

Joint contour net vertex connectivity 

We present the output from multiple ensembles by considering the connectivity of 
vertices in the JCN, focusing upon highly connected vertices. These are signatures 
of the starburst effect present in the JCN study on nuclear scission [15]. From the 
perspective of the scalar data, this corresponds to two regions of highly correlated 
geometric features. A high correlation is expected for cooled data as each slice 
should be a smoothed version of its proceeding configuration. 

When considering the distributions for multiple ensembles we found interesting 
behaviour as the level of cooling was increased. For uncooled data (Fig. 7) there is 
very little difference between lattice sizes and levels of chemical potential (i), 
meaning all ensembles are roughly similar using this measurement. However, as 
cooling takes effect we notice a distinct banding in the distributions (Fig. 8). This 
appears to not only make a distinction between differing chemical potentials, but 
also the hot and cold lattice. We are currently in the process of evaluating the out-
put visually with the domain experts, to better understand what type of event this 
phenomena might be linked to at the level of the lattice QCD simulation. 

Multivariate persistence 

Results from analysis of the graph structure of the JCN suggested that the algorithm 
was able to distinguish between different thermodynamic control parameters. It also 
revealed a banding effect in the closely correlated regions of the multi-field geome- 
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Fig. 7 Degree of connectivity of vertices in the Joint Contour Net as an average distribution for 
uncooled data. All ensembles, when uncooled, seem to exhibit the same connectivity distribution. 
Fig. 8 Degree of connectivity of vertices in the Joint Contour Net as an average distribution for 
data cooled for 10 iterations. A distinct banding effect can be observed, separating the hot and 
cold lattices and differing chemical potentials. 
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try. In order to further examine this we next considered measures of slab 
persistence for multiple ensembles. 

The Joint Contour Net allows the Reeb space to be segmented into regions or Joint 
Contour Slabs. Each slab is associated with an n-tuple of isovalue, where n represents 
the number of fields, with each slab corresponding to a vertex in the JCN. Using this 
segmentation of the Reeb space we compute measures of topological persistence by 
querying properties of the slabs. In Figure 9 we have visualised this within the data 
domain by rendering the slabs using colour to highlight persistence. 

In order to understand the effect of cooling we created surface plots of the persis-
tence measures against the chemical potential (µ) and number of cooling iterations. 



 

 

 

Fig. 9 Left: Quantised contours generated from Polyakov loop at 19 cooling iterations. Centre: 
Joint contour slabs are a union of the quantised contours at 19 and 20 cooling iterations. Right: 
Quantised contours generated from Polyakov loop at 20 cooling iterations. Red regions represent 
most persistent slabs, measured by counting triangles. 

polyakov cooling landscape (normalised triangle count) 

 
Fig. 10 Bivariate persistence, measured as the average number of triangles per slab, computed 
using the Polyakov loop across the cooling range. 

Persistence measures have been averaged in each case by dividing the totals by the 
number of slabs. In Fig. 10 we present a cooling landscape generated by counting 
the average number of triangles per slab on the hot and cold lattices. An upward 
trend is shown in the averages as the number of cooling iterations is increased and 
number of distinct topological objects decreases, representing the simplification ef-
fect the algorithm has on the input field and associated Reeb space. The same trend 
is visible when comparing with other persistence measures including the average 
surface area. 

 
Fig. 11 Comparing the average number of 
triangles per slab on the two lattices at 
cools 19 and 20. 

Fig. 12 Comparing the average surface 
area per slab on the two lattices at cools 19 
and 20. 
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In Fig. 11 we show a direct comparison of the persistence as a measure of the 
number of triangles on the two lattices at the maximum number of cools. Both lat-
tices feature similar trends in the data; an initial largely flat region at low values of 
i, followed by a global peak. A second peak follows higher in the chemical po-
tential (i) range following a region with a downward trend in persistence before 
both distributions begin to plateau at high values of i. Initial examination of the two 
distributions suggest that on the hotter lattice (nt = 16) the trend is shifted towards 
the lower end of chemical potentials. This result seems to agree with recent 
evidence produced from statistical physics [32] that see a shift in de-confinement 
on hotter lattices. While this is an encouraging result, it should be noted that due to 
a limited number of configurations available for the analysis data exhibits large 
error bars. Consultation with physicists suggested that availability of a larger 
number of configurations will reduce the level of uncertainty. 

 

Fig. 13 A direct comparison of the multivariate persistence measures. Left: measuring persistence 
as the number of triangles per slab. Right: measuring persistence as the surface area of each slab. 

We were also able to compute a more sophisticated measure of multivariate per-
sistence by computing the surface meshes for each slab (Fig. 12). This is a slower 
process to compute, requiring the computation of the area of million of triangles 
using Herons formula but encouragingly converges to a similar distribution. There 
are some subtle differences in the two persistence measures; most evident in the 
hotter (nt = 16) lattice. In particular there is a difference in the size of the peaks at i 
= 0.45 and i = 0.65. Figure 13 demonstrates the difference between the two 
persistence measures in a visual form. The triangle count measure is able to pick-out 
boundaries between regions in the multi-field, whereas the surface area highlights is 
able to pick out additional structure. Collection of further samples would allow us to 
confirm which of the two measures is more expressive with respect to the analysis of 
the Reeb space structure. 

Other computed observables 

Besides the two topological measures we have discussed here we also analysed other 
aspects of the JCN graph structure. We found that computing the ratio of Jacobi 
Nodes to JCN vertices gave an interesting overview of the effect of the cooling 
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algorithm, with the ratio tending towards 1.0 as the level of cooling reached it’s 
peak. This confirmed expectations as it would indicate an overall convergence to a 
stable configuration with minor changes between cooling iterations. The effect 
wasn’t exactly constant across the chemical potential range however, with ensem-
bles at higher chemical potentials seemingly taking longer to converge on a optimal 
level of cooling. 

5 Conclusions and future work 

We have presented a number of uses of the Joint Contour Net for analysing data 
from lattice QCD ensemble data sets. Due to the quantity of data analysis required 
because of the quantum mechanics involved, visual inspection is not a feasible 
method for analysing the data. Instead we have proposed a number of measures 
taken directly from the multi-field topology that can then be displayed according to 
a number of domain specific parameters. Through the use of ensemble averages it 
is then possible to understand if patterns present in the multi-field topology share a 
correlation with existing statistical physics predictions. Existing results suggest that 
some measurements, in particular the multi-field persistence, could correlate well 
with physical observations. 

In this work we have concentrated on a single lattice observable, the Polyakov 
loop. However, lattice QCD presents many other observables that can be analysed 
for hints of de-confinement, many of which are defined on four dimensional space-
time fields. We are currently in the process of analysing this data to look for corre-
lations between different lattice fields. 
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