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Joint Contour Net analysis of lattice QCD data

Dean P. Thomas, Rita Borgo, Hamish Carr and Simon Hands

Abstract Lattice Quantum Chromodynamics (QCD) is an approach used by theo-
retical physicists to model the strong nuclear force. This works at thauslear

scale to bind quarks together into hadrons including the protoneartbn. One of

the long term goals in lattice QCD is to produce a phase diagram of QCD matter as
thermodynamic control parameters temperature and baryon chemical potential are
varied. The ability to predict critical points in the phase diagram, knovpihase
transitions, is one of the on-going challenges faced by domain sciehtistss

work we consider how multivariate topological visualisation techniques can be ap-
plied to simulation data to help domain scientists predict the location of phase tran
sitions. In the process it is intended that applying these techniqglegttidce QCD

will strengthen the interpretation of output from multivariate topological
algorithms, including the joint contour net. Lattice QCD presents an interesting
opportunity for using these techniques as it offers a rich arrayterficting scalar

fields for analysis; however, it also presents unique challenges duesiiaitse on
guantum mechanics to interpret the data.
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1 Introduction

Multivariate topology, in contrast to univariate topology, is a relatively recelit ad
tion to the set of visualisation and analysis tools available to scientists. fidksy
of science present scalar data obtained either from simulation or obseryation u
common sampling points. Whilst univariate topology can evaluate topoldgézal
tures in each field as unique entities, multivariate topology can further
understanding of correlations between scalar fields.

Several different approaches exist for computing features in multi-fiedtiedin
ing Jacobi Sets, Reeb graph comparison, Reeb spaces, and range tessellation. We
concentrate on the Joint Contour Net [1], which builds upon existiegydtical
and practical aspects of the Reeb graph to represent the Reeb space in a discrete
graph based format. The Reeb space [2] addresses the relation between multiple
sampled fields by contracting multivariate contours to singular points.

In this work we make the following contributions:

e Extend the use of the multivariate topological techniques to a new scientific do-
main, lattice Quantum Chromodynamics (QCD)

¢ Show how analysis of the Joint Contour Net using non-visual tesksigan
allow it to be used on large, complex data sets that are beyond the scope of
visual inspection

¢ Investigate the use of multivariate persistence for predicting properties of lattice
QCD data

2 Lattice Quantum Chromodynamics

Quantum Chromodynamics is the theory used to describmdtitms between sub-
nuclear particles that bind the hadron group of partidgsther. In its most basic
form it describes quark particles and how they interact with another via the
exchange of massless gluon particles (Fig. 1). Hadront iexisvo states; those
consisting of three quarks are known as baryons, aadk-@ntiquark configurations
make up the meson group. Protons and neutrons arefparsubset of the baryon
group called nucleons that combine with the electron patticcreate the atoms that
form the periodic table of elements.

The way in which quarks and gluons behave across a rangmpératures and
chemical potentials can be modelled using a phase diagram (Fig. 2). Theidesig
similar to that of water, and can be used to understand how states of imatige c
as chemical potential and temperature vary. A proposed model given mof8% s
that situations at neutron star cores are most similar to a system wititzeneo
chemical potential. In addition, the diagram shows output from real-veagdri-
ments, allowing a sense of how work in this area fits in witfegrents in nuclear
and particle physics.
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Fig. 1 Colour neutrality in a 3-quarksystem
(Baryon). Fig. 2 A proposed phase diagram for QCD [3].

Quarks and gluons appear impossible to observe in an unbound skiteyled
quark has never been observed and they are always found in oeldwal bound
states [4], held together by the exchange of gluons. This phenorisekioown as
colour confinement and unlike its electromagnetic force equivalent thgyener
needed to separate two or more bound particles increases indefinitelystaticd.
Hence, in order to test theories of the quark model computer simulations are
employed to model quark-gluon interactions. The process of compQtiagtum
Chromodynamics as discrete models is known as lattice QCD.

2.1 Lattice structure

Kenneth Wilson was the first physicist to suggest that @Gl be approximated
on a discrete lattice to model properties of quarkgiadn fields [5]. The structure of
the lattice is a hyper-torus in Euclidean space-time, ingahat the three spatial
dimensions and the time dimension are treated as equalaasthtionally-invariant
boundary conditions()’() = f(x - Lx) are used so that all sites in the lattice are
equivalent. As the lattice exists in four dimensions it @odnvenient to think of the
lattice of being made up of hyper-cubic cells, as shovigigare 3.

Quarks are placed onto the lattice at positions with integer indicesgteferas
sites. In the remainder of this work we will label sites on the lattice ubimg
notation L(X) where X € Z% In Lattice QCD data is not placed on these sites,
instead they represent the starting point for computations with a giggm. ¢-rom
each lattice site four link variables are used to model the glatamtial in the yy,z
and t directions between neighbouring sites. Link variables are represented as
U,(X), i.e. the variable defined on the link emerging from theXitethe direction
,- When traversing the lattice, the relatioz(XJ) = U,(X- A,)# allows us to define
movements in the reverse direction using the adjoint (2) fétmkovariables.

Each link variable is a member of the special unitapugrof matrices (1), iden-
tified using the notation;u(n). The value ofn represents the number of charge
colours used in the gauge theory, with true QCD definddrw# 3. However, in
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Fig. 4 Placement of data is on the four ladtic
Fig. 3 Arrangement of lattice sites for one 4D links from each sitel((X)).
cell (dashed line representdimension).

this work we use a simplified two colour model of the theory usio§2) matri-
ces. Colour is used in this context to parametrise the concept of caotrality,
required to explain confinement (see Figure 1), rather than a parametgreaf-ap
ance. One of the primary reasons for using a simplified modeaidtthllows us
the freedom to vary the chemical potential of the system.

{la—] }

su(2) = ‘a,bEC,a? + bz = 1,det=1 (1)
b a
where X represents the complex conjugate
a—ibe—if~ atibctid~
Ui = with U = (2)
c—idg—ih etifg+tih

3 Topological Analysis

Topological analysis, in particular for univariate dategrisestablished technique of
forming models of data for indirect volume rendering. ¥sualisation purposes it
allows scalar fields to be presented in the contextoohected regions, which can
also be used to optimise the rendering process. Infunmaegarding internal

structure can also be relayed back to the user allowitigefuinsights to be made
about the data. It is this use of topology that is obtmioterest in the context of



forming insights into large data sets. This section intedihe most relevant topo-
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logical structures to this work; first in the setting of univariate data, thendede
to multivariate inputs.

3.1 Univariate Topology

The Reeb graph and closely associated contour tree are methods forgeHecin
topology of a scalar field to a graph structure. Topological events are mapped
vertices of a directed graph, with edges representing a continual deformfagion o
manifold between two critical vertices. Following the path of the gafiws
tracking of splits and joins in the topology as the function ejabr isovalue, is
varied. In [6] the contour tree is used as the underlying data s&uoctgitore and
generate object meshes using path seeds.

Whilst being quicker to compute than the Reeb graph, a limitatidreafdntour
tree algorithm [7] is that it can only be applied to data without periodindaies.
This limitation can be avoided by making symbolic cuts in the topofogyhe
purposes of computing the contour tree. These cuts can then be dtitgbtker to
form the Reeb graph of a periodic domain using a technique usgg] it
accelerate Reeb graph computations.

Persistence

Univariate persistence is typically used in two scenattiesfirst is an aid to simplify
the Reeb graph (and contour tree) using geometrasuanes to determine noise from
features [9]. The second is to provide additional informatabout distinct
topological objects in a scalar volume. In this work weufoon the second approach
as domain scientists have their own noise removal method@ool

The contour spectrum [10] was introduced as a metligdlaying quantitative
information about individual contours in scalar dataridates that could be com-
puted included surface area and volume of contoufd.1llnsosurface statistics were
directly compared against raw histograms of scalar data farmber of data sets.
Measurements evaluated included the cell intersection ctiamigle count and
isosurface area. It was found that using these measuresradistribution of the
scalar field could be computed. An improvement was givgidh using concepts
from geometric measure theory that minimised the effect ok rmisthe observed
distributions. The key to this improvement was introdu@ngormalisation of the
individual contour statistics to the domain average.

3.2 Multivariate Topology

The Reeb space is a generalisation of the Reeb graph for multivariate oralempo
data. The first discussion of using the Reeb space to compute toposbigicaire



6 Dean P. Thomas, Rita Borgo, Hamish Carr and Sidemds

of multiple functions appears in [2]. Here it is suggested that the Raeb san be
modelled mathematically in the forfn: M 7— RX whereM represents the
domain and the output ok scalar functions. For the simple case, wherel, this
is directly comparable to the Reeb graph. The Reeb space extendsnthikafion
to situations wherk 2 2.

Joint Contour Net

Carr et al. [1] presented the first discrete representation of the Reeb spadbeising
Joint Contour Net (JCN). The algorithm computes the Reeb Space as a ofimber
multi-variate contours, named slabs, representing connected regions ofrtaie do
with respect to multiple functions. In comparison to the contourtiiee]CN lends
itself to parallelisation significantly more easily as each slab is constrfrcted
smaller discrete regions labelled fragments [13].

In nuclear physics the Joint Contour Net has previously beed to visualise and
analyse scission datasets, where it was used to identifyplittehg of an atomic
nucleus into multiple parts [14]. It was found that fleent Contour Net was well
suited to capturing this divergent behaviour, using protahreautron density fields
as inputs. This experiment was initially performed at a singl@desture [15], but
later repeated at multiple temperatures [16] due tditisyeto capture the splittingfo
the compound nucleus as a forking in the multi-field togpl&Vhilst performing the
analysis a number of other events were captured and liokibe scission theory. It
was found that starburst-like features in the graplttstre of the JCN likely equated
to well formed fragments [15]. A zippering effect wasedbat large temperatures that
was determined to represent a spatial connectivity betwiséinct regions in the
multi-field. In terms of the underlying physical phenomemdmain experts
interpreted it as de-localisation of quasi-particles at high temperatures.

More recently the joint contour net was used to visuallyyaeadata from hur-
ricane Isabel [17], allowing vertices in the Joint @amtNet to be mapped to their
spatial co-ordinates. An interactive environment was dgeel that allowed users to
relate interactions in the temperature, pressure andpjtagicin fields to physical
phenomena such as rain bands and the eye of the hurricanability to relate
properties of the joint contour net to known physfealtures helped to increase un-
derstanding of how the joint contour net is able to ¢aptwilti-field interactions.

Persistence

Persistence in multivariate data sets is a more difficult problem to definentteen i
univariate case. Simplification and persistence metrics can be defined obarnum
of structures present within the multi-field topology. It is also possibéxtend the
concept of isosurface statistics [11], [12] to multi-field inputetigh the use of
Continuous Scatterplots [18]. These can be defined to show relationsebeatw
dimensional inputs wittm scalar fields; in the case wheme= 3 andm = 1 the
output approximates to the output of [12].
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The Jacobi set defines the set of points where the gradient of multiple fisnctio
align or have a gradient of zero [19]. When the multi-field is teadpresent time
dependent data this can be used to augment the univariate notiosistepee with
a lifetime parameter. This approach was used in [20] to compute persistehee
context of the Morse-Smale complex. However, when generalised ttemporal
functions,defining persistence as a feature of the Jacobi set becomedraialo
task [21]. The Reeb skeleton relies on an extended Jacobi set, thé Stawcture
primarily to aid multi-dimensional simplification [22]. This is a slified graph
structure that allows measures of persistence to be assigned to itdpaprsining
techniques, similar to the leaf pruning method of simplification founghiuariate
topological structures [9] can then be applied to progressiggipve noisy features
in the multi-field.

4 L attice QCD data analysis

Lattice QCD simulations, despite their relatively small space-time size, are ex-
tremely complex due to the ability to compute a rich set of obsenabld lattice.
Furthermore, the method of noise reduction used in this skiyyn as cooling,
generates a unique lattice for each iteration. Due to the quantum nktatéce

QCD each experiment must be computed multiple times as physical observables a
defined as averages or expectation values. This results in an ensdrshiébly
weighted configurations that are representative of the Feynman path iegral
every possible state of the system. The ensemble emerges from & letaakowith
updates generated by an algorithm, such as hybrid Monte Ca}JdHat respects a
physical condition known as detailed balance.

Each of these experiments are conducted as part of mudtinbtes studies [24]; in
our particular work each ensemble is generated with aridiféevel of chemical
potential {1). This takes the form of computing around fifty separait@ jcontour
nets for each ensemble; measures from the joint contouameteen computed and
averaged to produce an ensemble average. Typically dsuiaintists would then
present this information with regard to chemical potential histogram or line graph
to look for signals of phase changes in the simulated egladn matter.

The experiments were carried out on a Dell cluster made up of four hoousgen
compute nodes each with access to 16GB RAM and a separate dedicateddront-en
node. Each compute node contains four AMD Opteron 6376 CPUs, eactighith
physical cores (16 logical cores) running 64-bit Debian 8.6. The softwdreilt
using VTK 6.1 [25] with extensions from the Multi-field ExtensioinTopological
Analysis (META) project [26] in C++11. Quantisation parameters ofitiiet Con-
tour Net were chosen to best suit the available resources in terms of mewhory an
number of parallel processes.



4.1 Joint Contour Net comparison of data under cooling

The cooling algorithm is an established method of iteratikemnoving noise from
lattice QCD configurations whilst respecting the underlying physieadry. How-
ever, the process is not without pitfalls; in particular, fgassible for over-cooling
to remove the actual intended observables. As a physical noisgioedtechnique
is available we are restricted in our use of using persis@s@enoise reduction
technique. Instead we use it to evaluate the effect opllgsical process on the
data.

Overview of input scalar fields

The Polyakov loop, otherwise known as the Wilson line operatorbearsed as a
method for computing the symmetry of a lattice. Breaking of symngEig. 5) is

one signal that can indicate a transition to a de-confined state, achievedihy var
ensemble parameters such as temperature or chemical potential. This method of
locating critical temperatures is well establisheds(2) and SU(3) lattice gauge
theories [27, 28, 29, 30].

x8
[ x9 X7
‘ a1y ®0 O B *
sttt o @
AT HITS *1) - X9
lidd Nl ¢ <
it X
il Q12 “ O
[!' = el i %13 L
{ x ~— X1 W 2) ,-/U
1 S (X, 1) = =
———9
U(X) X7

Fig. 5 By graphing the scalar values makingig. 6 The Polyakov loop is a scalar fildR4

up the Polyakov loop observable it is possible R® computed by visiting each site in a given
to see the breaking of symmetry at higspace-time direction. It most cases we loop
chemical potentialg)) in un-cooled data. over the time axis.

From a computational poimfview the Polyakov loop presents a convenient
method for reducing th&* lattice to aR® salar field. In order to compute the
Polyakov loop, we take the product of all time-like link variables fimgiven
lattice site in three dimensions (see Eq. 3). On a lattice defined with a pdirnaslic
axis, as is the case in lattice QCD, the effect is a closed straight line, alssetsu
in Fig. 6. Thus the Polyakov loop represents an attractive métnadentifying
de-confinement in a form that can easily be visualised and analyseg exgsting



methods.
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l Lt
f(x) = 29(Tr(f._Jl Ui(x+n i) 3)
wherei = 0, x € Z3

Previous studies using univariate topological measures calculatedthsiReeb
graph [31] suggest that the Polyakov loop observable may lodailitg @ identify
de-confinement under cooling. We are interested to see if thisl @glnomena can
be identified using multivariate topology. For this study we calculsePolyakov
loop lattice observable for each configuration in an ensembleading iterations
zero to twenty. Joint contour nets are computed for each neighggair of cool-
ing iterations and their structure analysed.

4.2 Results and analysis

Below we present a selection of the most promising results gatheredlygiag
different aspects of the Joint Contour Net.

Joint contour net vertex connectivity

We present the output from multiple ensembles by considering the coitgeamti
vertices in the JCN, focusing upon highly connected vertices. Thesmg@atuses
of the starburst effect present in the JCN study on nuclear scissior-ft6].the
perspective of the scalar data, this corresponds to two regionghty bbrrelated
geometric features. A high correlation is expected for cooled data as each slice
should be a smoothed version of its proceeding configuration.

When considering the distributions for multiple ensembles we founcestireg
behaviour as the level of cooling was increased. For uncooled data (Figre)s
very little difference between lattice sizes and levels of chemical poteijtial (
meaning all ensembles are roughly similar using this measurerhenever, as
cooling takes effect we notice a distinct banding in the distributions (Jig.h&s
appears to not only make a distinction between differing chemical potebtials,
also the hot and cold lattice. We are currently in the process of evaluating-the ou
put visually with the domain experts, to better understand whatafypeent this
phenomena might be linked to at the level of the lattice QCD simulation.

Multivariate persistence

Results from analysis of the graph structure of the JCijestigd that the algorithm
was able to distinguish between different thermodynamitr@loparameters. It also
revealed a banding effect in the closely correlated regiothe enulti-field geome-
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vertex connectivity in J CN (0-1 cools)
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Fig. 7 Degree of connectivity of vertices in the Joint @om Net as an average distribution for
uncooled data. All ensembles, when uncooled, seasliibit the same connectivity distribution.
Fig. 8 Degree of connectivity of vertices in the Joint @um Net as an average distribution for
data cooled for 10 iterations. A distinct bandirffe@ can be observed, separating the hot and
cold lattices and differing chemical potentials.



try. In order to further examine this we next considered measureslabf
persistence for multiple ensembles.

The Joint Contour Net allows the Reeb space to be séggnieto regions or Joint
Contour Slabs. Each slab is associated with an n-t@jdewalue, whera represents
the number of fields, with each slab corresponding tertex in the JCN. Using this
segmentation of the Reeb space we compute measures lofjtoplopersistence by
guerying properties of the slabs. In Figure 9 we hasealised this within the data
domain by rendering the slabs using colour to highlighsiptence.

In order to understand the effect of cooling we createdeiplots of the persis-
tence measures against the chemical poteptjarfd number of cooling iterations.
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Fig. 9 Left: Quantised contours generated from Polyakaplat 19 cooling iterations. Centre:
Joint contour slabs are a union of the quantisedocms at 19 and 20 cooling iterations. Right:
Quantised contours generated from Polyakov lodMatooling iterations. Red regions represent
most persistent slabs, measured by counting tesngl

polyakov cooling landscape (normalised triangle count)
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Fig. 10 Bivariate persistence, measured as the averageeanunfifriangles per slab, computed
using the Polyakov loop across the cooling range.

Persistence measures have been averaged in each case by dividing thg to&als
number of slabs. In Fig. 10 we present a cooling landscape generatedriiyng

the average number of triangles per slab on the hot and cold lattices. An upward
trend is shown in the averages as the number of cooling iterationsdased and
number of distinct topological objects decreases, representing the simplification ef
fect the algorithm has on the input field and associated Reeb spacenientresad

is visible when comparing with other persistence measures includingverage

surface area.
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Fig. 11 Comparing the average number ofFig. 12 Comparing the average surface
triangles per slab on the two lattices atarea per slab on the two lattices at cools 19

cools 19 and 20. and 20.
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In Fig. 11 we show a direct comparison of the persistence as a meh#uee o
number of triangles on the two lattices at the maximum number of cauils.|&-
tices feature similar trends in the data; an initial largely flat region at low vafues
i, followed by a global peak. A second peak follows higher in thenitad po-
tential () range following a region with a downward trend in persistence before
both distributions begin to plateau at high values bfitial examination of the two
distributions suggest that on the hotter lattiee=(16) the trend is shifted towards
the lower end of chemical potentials. This result seems to agree edémtr
evidence produced from statistical physics [32] that see a shift cordfarement
on hotter lattices. While this is an encouraging result, it should be notetlthd
a limited number of configurations available for the analysis data exltbiie
error bars. Consultation with physicists suggested that availability of arlarg
number of configurations will reduce the level of uncertainty.

Fig. 13 A direct comparison of the multivariate persistenwasures. Left: measuring persistence
as the number of triangles per slab. Right: meagyersistence as the surface area of each slab.

We were also able to compute a more sophisticated measure ofanmatiéivper-
sistence by computing the surface meshes for each slab (Fig. 12)s ahssower
process to compute, requiring the computation of the areailliddn of triangles
using Herons formula but encouragingly converges to a similarbdigtm. There
are some subtle differences in the two persistence measures; most evident in th
hotter (t= 16) lattice. In particular there is a difference in the size of #akpat
= 0.45 andi = 0.65. Figure 13 demonstrates the difference between the two
persistence measures in a visual form. The triangle count measbie tie pick-out
boundaries between regions in the multi-field, whereas the surieadighlights is
able to pick out additional structure. Collection of further damwould allow us to
confirm which of the two measures is more expressive with respect to theisuadly
the Reeb space structure.

Other computed observables
Besides the two topological measures we have discussedve also analysed other

aspects of the JCN graph structure. We found that etingpthe ratio of Jacobi
Nodes to JCN vertices gave an interesting overview aéfthet of the cooling
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algorithm, with the ratio tending towards0las the level of cooling reached it’s

peak. This confirmed expectations as it would indicate an overall converigeace
stable configuration with minor changes between cooling iterations. The effect
wasn’t exactly constant across the chemical potential range however, with ensem-
bles at higher chemical potentials seemingly taking longer to convergeptimel

level of cooling.

5 Conclusions and future work

We have presented a number of uses of the Joint Contour Net foriagalgsa
from lattice QCD ensemble data sets. Due to the quantity of data anatysied
because of the quantum mechanics involved, visual inspection is nosibleea
method for analysing the data. Instead we have proposed a numieasures
taken directly from the multi-field topology that can then be displagedrding to
a number of domain specific parameters. Through the use of ensamtdges it
is then possible to understand if patterns present in the multi-field topshegy a
correlation with existing statistical physics predictions. Existing results sugest
some measurements, in particular the multi-field persistence, could comelhte
with physical observations.

In this work we have concentrated on a single lattice observable, the Polyakov
loop. However, lattice QCD presents many other observables that can be analysed
for hints of de-confinement, many of which are defined on ftirensional space-
time fields. We are currently in the process of analysing this ddtekdor corre-
lations between different lattice fields.
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