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Shorter gate sequences for quantum computing by mixing unitaries

Earl Campbell1, ∗

1Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

Fault-tolerant quantum computers compose elements of a discrete gate set in order to approximate a target

unitary. The problem of minimising the number of gates is known as gate-synthesis. The approximation error

is a form of coherent noise, which can be significantly more damaging than comparable incoherent noise. We

show how mixing over different gate sequences can convert this coherent noise into an incoherent form. As

measured by diamond distance, the post-mixing noise is quadratically smaller than before mixing, without

increasing resource cost upper bounds. Equivalently, we can look for shorter gate sequences that achieve the

same precision as unitary gate-synthesis. For a broad class of problems this gives a factor 1/2 reduction in

worst-case resource-costs.

The constraints of fault-tolerant quantum computing mean

that the available quantum gates form a discrete set. Such a

gate set is said to be universal if it generates a group that gives

a dense cover over all unitaries. That is, any target unitary

can be approximated to any desired level of precision with a

sufficiently long sequence of gates. The Solovay-Kitaev [1–4]

theorem ensures that whenever we have a universal gate set,

we can achieve a circuit depth that is poly-logarithmic in the

inverse precision. The Solovay-Kitaev theorem is a very pow-

erful and general result, but in practice yields very long gate

sequences. Remarkable progress beyond Solovay-Kitaev has

been made in recent years by focusing on gate-sets that natu-

rally arise in fault-tolerant quantum computing, in particular

the Clifford+T gate set, with the flourishing topic becoming

known as gate-synthesis [5–8].

A common feature of both new and old approaches to gate-

synthesis is the approximation of the target unitary with a dif-

ferent unitary. Then the approximation error is a form of co-

herent noise, which has attracted attention as being especially

pernicious to quantum computations [9, 10]. It has, however,

been observed several times that mixing over equivalent cir-

cuits can average out coherent noise into less damaging in-

coherent noise [11–15]. For instance, when the individual

gates suffer from coherent noise, randomized compiling has

been shown to quadratically reduce this noise source [14]. In

the context of gate synthesis, the approximation error appears

even when the components of our gate set are perfect, and so

a different approach is required.

Here we give the first general set of tools for mixing out

the approximation errors in gate synthesis. Quantifying this

noise by the diamond norm, we find our approach reduces

noise from ǫ to O(ǫ2), without increasing the any worst-case

metric of resource cost. To be clear, by worst-case resource

cost we mean the tightest available upper bound on resource

cost. Alternatively, we can achieve O(ǫ) noise with reduced

worst-case resource cost. If the worst-case resource cost of

unitary gate-synthesis scales as Alog(ǫ−1)γ , then using quan-

tum channels ǫ noise can be attained with resource costs upper

bounded by A(1/2)γ log(ǫ−1)γ in the small ǫ limit. Many re-

cent gate-synthesis algorithms have γ = 1 scaling, and so in

these setting we cut worst-case costs in half. This is an exten-
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sion of the notion of magic state dilution in Ref. [16], but here

applied to synthesis of operations, rather than states. When

completing this work, some similar insights were reported by

Hastings [17], though without the explicit convex hull finding

algorithm provided here.

I. NOTATION

We use || . . . || throughout for the operator norm, so that

||X|| is the largest singular value of X . We also make use

of the Schatten 1 norm on operators denoted || . . . ||1, which

equals the sum of the singular values. Throughout we make

use of several norm properties discussed in standard texts [18,

19]. For a quantum channel we use the diamond norm || . . . ||⋄
where

||E||⋄ := sup{||(E ⊗ 1l)(X)||; ||X||1 ≤ 1}. (1)

The diamond norm induces the diamond distance between two

channels E and E ′, so that

d⋄(E , E ′) :=
1

2
||E − E ′||⋄, (2)

and is widely used [20] to quantify how well an imperfect

channel E ′ approximates an ideal, target channel E . The dia-

mond distance is well behaved under composition of channels,

allowing it to be used in rigorous proofs, including proofs

of the threshold theorem for fault-tolerant quantum comput-

ing [21]. Despite the average fidelity gaining popularity and

being easily measurable by randomised benchmarking [22–

25], various commentators have observed that average fidelity

is less meaningful than the diamond distance [9].

In inexact gate synthesis, a sequence of available gates are

composed to produce some U that gives a good approximation

to a target unitary V . Techniques for gate synthesis typically

report the precision of these approximations by taking U − V
and evaluating some norm. This prompts us to ask how this

notion of precision corresponds to the more versatile diamond

distance. Denoting, U and V as the channels corresponding to

U and V , we have

d⋄(U ,V) ≤ ||U − V ||, (3)

as shown in Refs. [26, 27]. In general, there is no simple lower

bound. For instance, if U = −V then ||U − V || = 2, but
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U = V and so d⋄(U ,V) = 0. However, these pathologies only

arise when ||U − V || is large, and many families of unitaries

are well behaved. Consider, for instance, unitaries of the form

U = eiθZ and V = eiθ
′Z , for small |θ−θ′| we find ||U−V || is

very close to the diamond distance (see App. B of Ref. [16] for

more a more detailed discussion). So while unitary precision

and diamond distance are very different measures, they often

coincide.

Throughout we will use G to denote the available gate set,

and C : G → R
+ for the associated cost function. To assess

the depth of a circuit we would use a constant cost function

C(V ) = 1 for all V ∈ G. However, for the Clifford+T gate

set the T gates can be significantly more expensive than Clif-

ford gates due to the resource overhead of magic state distil-

lation [28–31]. In this setting, one often takes C(T ) = 1 and

C(C) = 0 for all C in the Clifford group. The cost of a gate

sequence is then taken to be the numerical sum of the com-

posite gate costs. We also use 〈G〉 for the group generated by

set G. We say a gate set is finite when G contains a finite num-

ber of elements. Lastly, we will use Conv[. . .] to denote the

convex hull of a set of operators.

II. RESULTS

Here we present two main results of this paper

Theorem 1 Let L be some d dimensional Lie group, which is

a subgroup of a unitary group SU(D). Let G be a finite gate

set with cost function C : G → R
+, such that 〈G〉 is a dense

cover of L and 〈G〉 ⊂ L. Assume we have a unitary synthesis

algorithm: for every V ∈ L and all ǫ > 0 the algorithm

outputs a finite sequence U = W1W2 . . .WN ∈ 〈G〉, such

that

||U − V || ≤ ǫ, (4)

N
∑

j=1

C(Wj) ≤ f(ǫ), (5)

where f is the worst case cost of the unitary synthesis algo-

rithm. It follows that we can construct a channel of the form

E(ρ) =
n
∑

j=1

pjUjρU
†
j , (6)

where all Uj ∈ 〈G〉 and each have cost upper bounded by

f(ǫ), and provided ǫ < 0.01 the post-mixing noise satisfies

d⋄(E ,V) ≤ 10ǫ2. (7)

Therefore, O(ǫ2) error in the diamond norm.

The simplest setting is that L = SU(D), so d = D, but we

also allow for subgroups with d < D. Few gate-synthesis

techniques exist for multi-qubit or qudit problems, but our

results apply there also. It directly applies to the familiar

problem of performing general single-qubit rotations from the

Clifford+T gate set. The natural cost function of this gate set

is C(T ) = 1 and C(C) = 0 for all C in the Clifford group. For

such a cost function, Ross and Selinger [7] showed that effi-

cient gate synthesis of any single qubit gate is possible with

fRS(ǫ) = 9 log2(ǫ
−1) + O(log2(log2(ǫ))). Using quantum

channels, and no more gates, we can ensure 10ǫ2 precision in

diamond distance.

We use the terminology axial rotation for single qubit rota-

tions about the Z axis, and denote the group Lax. For such ro-

tations the above findings apply with the function fRS. How-

ever, the Ross and Selinger algorithm can generate axial rota-

tions at a slightly lower cost with leading order 3 log2(ǫ
−1),

and other algorithms have been tailored to this special case.

So one might anticipate that resource savings could be made

by tailoring our approach to axial rotations. We find this is

indeed the case, but we cannot blindly apply the above result

to algorithms for axial rotations. Note that Thm. 1 does not

apply in this setting since the generated group 〈G〉 contains

gates outside Lax. That is, with G as the Clifford+T set, the

generated group has gates outside the axial rotation group, so

〈G〉 6⊂ Lax. However, our techniques are straightforwardly

extended to such scenarios.

Theorem 2 Let Lax be the group of axial rotations. Let G be

a gate set with cost function C : G → R
+ with Pauli Z ∈ G

and C(Z)=0. Assume we have a unitary synthesis algorithm:

for every V ∈ Lax and all ǫ > 0 the algorithm outputs a finite

sequence U = W1W2 . . .Wn ∈ 〈G〉, such that

||U − V || ≤ ǫ, (8)

N
∑

j=1

C(Wj) ≤ fax(ǫ), (9)

where fax is the worst case cost of the unitary synthesis algo-

rithm. It follows that we can construct a channel of the form

E(ρ) =
4

∑

j=1

pjUjρU
†
j , (10)

where all Uj ∈ 〈G〉 and each have cost upper bounded by

fax(ǫ), and provided ǫ < 0.01 the post-mixing noise satisfies

d⋄(E ,V) ≤ 5ǫ2. (11)

Therefore, O(ǫ2) error in the diamond norm.

This result has a slightly better 5ǫ2 instead of 10ǫ2, but more

importantly benefits from using fax which gives a smaller re-

source overhead than for general qubit rotations.

Let us reflect on how this free error suppression can be

swapped in exchanged for cheaper gate sequences. We instead

run our protocol and use gate sequences of cost not exceeding

f(
√

ǫ/α), where α is 5 or 10 depending on which theorem

we employ. It follows that the post-mixing noise is bounded

by ǫ, but worst-case resource costs are reduced. However, in

a particular instance of a problem the resource cost could be

much less than the worst-case cost. As such, whenever a new

protocol offers a superior worst-case cost, there is no ironclad

promise that the protocol will have a lower resource cost in all
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FIG. 1. The resource savings of our approach over unitary gate-

synthesis is Cγ
α,ǫ and here we show Cα,ǫ (see Eq. (13)) for α = 5, 10

and a range of post-mixing error rates. The different α correspond to

different constant factors in Eq. (7) and Eq. (11).

problem instances, though such anomalies are probably quite

rare. We proceed on the mild assumption that improved worst-

case resource costs accurately reflect actual resource savings,

and next give a precise account of this saving.

The form of f for unitary gate-synthesis is typically f(ǫ) ∼
A log(ǫ−1)γ upto a small O{log[log(ǫ−1)} contribution. Our

reduced cost is then

f(
√

ǫ/α) ∼ A log((ǫ/α)−1/2)γ (12)

∼ A

(

log(ǫ−1) + log(α)

2

)γ

∼ A log(ǫ−1)γ
[(

1

2

)(

1 +
log(α)

log(ǫ−1)

)]γ

.

Therefore, our resource savings are a factor Cγ
α,ǫ where

Cα,ǫ =

(

1

2

)(

1 +
log(α)

log(ǫ−1)

)

(13)

collects the terms in the square bracket of Eq. (12). In the

small ǫ limit we have Cα,ǫ → 1/2. Typically, ǫ is very small

with many algorithms requiring ǫ ≪ 10−10 and so Cα,ǫ ∼
1/2 is a reasonable approximation. Convergence toward 1/2
is shown in Fig. 1, with the speed of convergence dictated by

α. When proving our theorems we focus on clarity rather than

minimising α and believe smaller α is plausible. Lastly, recall

that for single qubit problems known algorithms have γ = 1,

but in other settings different γ may appear.

III. THE MIXING LEMMA

Here we prove a Lemma that underpins both Thm. 1 and

Thm. 2, and may also enable further extensions.

Lemma 1 Let V be a target unitary, with associated channel

V(ρ) = V ρV †. Let a, b > 0 and {U1, U2, . . . , Un} be a set of

unitaries such that

1. for all j ∈ {1, . . . , n} we have ||Uj − V || ≤ a;

2. there exist positive numbers {pj} such that
∑n

j=1 pj =

1 and ||(
∑

j pjUj)− V || ≤ b.

It follows that E =
∑

j pjUj satisfies

||E − V||⋄ ≤ a2 + 2b. (14)

We will find constructions where a = O(ǫ) and b = O(ǫ2), so

that the diamond norm is upper bounded by O(ǫ2).
For now, we prove the above Lemma. We begin by defining

δj := Uj − V so that ||δj || ≤ a. We also have

∑

j

pjδj =





∑

j

pjUj



− V, (15)

with condition (2) of the lemma entailing that ||∑j pjδj || ≤
b. The channel E acts as

E(X) =
∑

j

pjUjXU †
j , (16)

=
∑

j

pj(V + δj)X(V † + δ†j ).

Since the diamond norm is unitarily invariant, we have

d⋄(E ,V) = d⋄(V† ◦ E , 1l) where

(V† ◦ E)(X) =
∑

j

pjV
†UjXU †

j V (17)

=
∑

j

pj(1l + δ̃j)X(1l + δ̃†j )

=
∑

j

pj(X + δ̃jX +Xδ̃†j + δ̃jXδ̃†j ),

where δ̃j := V †δj . Since the operator norm is unitarily in-

variant, we have ||
∑

j pj δ̃j || = ||
∑

j pjδj || ≤ b. Compared

to the identity channel 1l, and using
∑

j pj = 1, we have

(V† ◦ E − 1l)(X) =
∑

j

pj(δ̃jX +Xδ̃†j + δ̃jXδ̃†j ). (18)

Taking the 1-norm and using the triangle inequality, we have

||(V† ◦ E − 1l)(X)||1 ≤||
∑

j

pj δ̃jX||1 + ||
∑

j

pjXδ̃†j ||1

+
∑

j

pj ||δ̃jXδ̃†j ||1. (19)

Using the Hölder inequality and ||X||1 ≤ 1, we have

||(V† ◦ E − 1l)(X)||1 ≤ ||
∑

j

pj δ̃j ||+ ||
∑

j

pj δ̃
†
j || (20)

+
∑

j

pj ||δ̃j || · ||δ̃†j ||.

Noting the property ||M || = ||M†|| and condition (1) of

Lem. 1, we conclude that ||δ̃†j || = ||δ̃j || ≤ a. Therefore,
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the last sum of terms is upper bounded by a2. The first two

summations are likewise bounded by b by virtue of condition

(2). Therefore,

||(V† ◦ E − 1l)(X)||1 ≤ a2 + 2b, (21)

which is true for all X . If we tensor the channels with the

identity this does not affect the proof except to burden the

notation, and so

||((V† ◦ E − I)⊗ I)(X)||1 ≤ a2 + 2b. (22)

Since this is true for all X the diamond norm is also upper

bounded by a2 + 2b. This completes the proof.

IV. GENERAL ROTATIONS

We show here that Thm. 1 follows from Lem. 1. First, let

Gǫ be the subset of 〈G〉 such that they can be synthesized with

cost not exceeding f(ǫ). We have that Gǫ is an ǫ-cover of

L. That is, for all V ∈ L there exists a U ∈ Gǫ with ||U −
V || ≤ ǫ. Since we work with a unitarily invariant norm this

can be restated as ||V †U − 1l|| ≤ ǫ. We shift to a Hermitian

representation and define a H such that U = V eiH . Since

U ∼ V we can choose H to have small norm, which we verify

later. Our goal is to not just find a single U close to V but a

whole set {Uj}j that allows us to use the following

Lemma 2 Let {Hj}j be a set of bounded Hermitian oper-

ators ||Hj || ≤ c for all j. Assume, the origin lies within

the convex hull 0 ∈ Conv[{Hj}j ] with convex decomposition

0 =
∑

j pjHj . It follows that

1. ||eiHj − 1l|| ≤ c+ c2

2 for all j;

2. ||∑j pje
iHj − 1l|| ≤ c2

2 .

When Uj = V eiHj for some unitary V , this can be restated

as

1. ||Uj − V || ≤ c+ c2

2 for all j;

2. ||
∑

j pjUj − V || ≤ c2

2 .

Clearly, such a set of Hermitian operators would allow us to

use Lem. 1 with constants related by a = c + c2

2 and b = c2

2 ,

yielding an upperbound of a2 + 2b = O(c2). The lemma is

proved by expanding the exponentials into a power series and

using standard norm properties, as shown in App. A.

The key point is that we seek a set of Hermitian oper-

ators, such that the origin is contained within the convex

hull of these points. Next, we present an explicit method

for finding such a convex decomposition of Hermitian

operators. We assume access to an oracle performing the

relevant gate-synthesis decompositions. We outline the al-

gorithm for finding a suitable convex set containing the origin.

Convex hull finding algorithm

1. Call oracle to find U1 such that ||U1 − V || ≤ ǫ;

2. Find principle H1 such that U1 = V eiH1 ;

3. Set n = 2 and loop the following

(a) Find µn ∈ Conv[{Hj}1≤j≤n−1] with minimum

||µn||;
(b) If ||µn|| = 0 then EXIT LOOP;

(c) Define Wn = V eiτn where τn := −rǫµn/||µn||;
(d) Call oracle to find Un such that ||Un −Wn|| ≤ ǫ;

(e) Find principle Hn such that Un = V eiHn and ap-

pend to set {Hj}1≤j≤n−1;

(f) n → n+ 1 and return to start of loop.

The calculation in step 3(a) is a convex optimisation problem

and can be solved using standard interior-point methods. The

whole algorithm has two free parameters ǫ and r (see step 3b).

In our analysis we assume ǫ ≤ 0.01, and for all practical ap-

plications this is easily satisfied. We take r = 2 for simplicity,

and the exact constants in our bounds and convergence rates

depend on this choice. The algorithm behaves qualitatively

the same for different r settings, assuming ǫ−1 ≫ r > 1. The

algorithm has two important properties that we discuss below,

leaving technical details until the appendices. The basic geo-

metric intuition behind the algorithm is illustrated in Fig. 2.

First, for all Hj found by the algorithm we have

||Hj || ≤ 3ǫ+ 7ǫ2, (23)

which we show in App. B. This provides us with the value

c = 3ǫ+ 7ǫ2 to be substituted into Lem. 2, which traced back

leads to the diamond norm upper bound

d⋄(E ,U) ≤
1

2
(a2 + 2b) =

1

2

[

(

c+
1

2
c2
)2

+ c2

]

(24)

≤ 10ǫ2,

where the last line uses ǫ < 0.01 to simplify higher order

terms. This gives the upper bound stated in Thm. 1.

The second important property of the algorithm is that it

eventually terminates. Each Un is distinct, and in particular

its Hn falls outside the convex hull of previous points (see

App. C for proof). If we further assume that there are a finite

number of distinct points with bounded resource cost, then

there are only a finite number of possible Un for the algorithm

to output. Since each is distinct, the algorithm must terminate

in a finite number of steps. The additional assumption of a

finite number of suitable points is very mild, and is satisfied

both for the Clifford+T gate set and also any gate set where

all gates have non-zero cost. Furthermore, below we see that

the algorithm need not terminate, but that sufficient iterations

will work equally well.

A finite number of steps may still be very many, but we

have evidence the converge is very fast. First we note that in a

d-dimensional space, a simplex of d+1 will suffice to enclose

a nontrivial volume. Though the algorithm is not ensured to

converge in d+1 steps, it may often do so. Looking at Fig. 2,
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FIG. 2. The geometric intuition of the convex hull finding algorithm. The cross marks the origin corresponding to V . (a) We find a U1 = V eiH1

so that H1 is near the origin. (b) We extrapolate from µ2 = H1 through the origin to a point τ2. (c) We find a U2 = V eiH2 close to V eiτ2 , so

that H2 is near to τ2. (d) We form the convex hull of H1 and H2 and find the point µ3, which is closest to the origin. From here we extrapolate

out through the origin to the point τ3. (e) We find a U3 = V eiH3 close to V eiτ3 , so that H3 is near to τ3. (f) We form the convex hull of

H1, H2 and H3 and find the origin lies inside the hull, and so the algorithm terminates. Note that none of the Hj can stray far from the origin.

the analogous setup in Euclidean geometry hints that it will

always find an enclosing simplex in d + 1 iterations, though

it is unclear whether this carries over to the topology induced

by the operator norm. We can be more quantitative by consid-

ering the quantity ||µn||, which measures the distance from

the convex hull. Recall that the convex hull finding algorithm

halts when ||µn|| = 0. Further evidence of rapid convergence

is that ||µn|| decreases exponentially fast. Specifically, we

find there exists a w > 0.62 such that

||µn|| < 6ǫe−wn, (25)

so the convergence toward zero is exponentially fast. Even ex-

ponentially small ||µn|| may be nonzero, but once ||µn|| ≪ ǫ2

the preceding proofs can be adapted to account for nonzero

||µn|| with negligible influence on the upper bounds. All con-

vergence proof details are given in App. C.

V. AXIAL ROTATIONS

We now consider a setting where the target V is an axial

rotation of a single qubit. The only assumption we make about

the generating gate set is that it contains Pauli Z as a free

resource. Given a protocol for axial-synthesis, for all such

V = eiθZ and any ǫ > 0 there exists at least one U1 such that

||U1 − V || ≤ ǫ and where U1 has cost not exceeding fax(ǫ)
for some fax. Recall that fax is polylogarithmic in ǫ−1. For

instance, the Ross-Selinger algorithm satisfies the worst case

bound fax(ǫ) ≤ 4 log2(
1
ǫ ), and 3 log2(

1
ǫ ) on average. It will

prove useful to consider V †U1 and expand in the Pauli basis

V †U1 = α1l1l + iαXX + iαY Y + iαZZ. (26)

We say U1 is an over-rotation if αZ ≥ 0 and an under-rotation

if αZ < 0. We require a second unitary U2 such that the pair

{U1, U2} contains one over-rotation and one under-rotation.

We can assume αZ 6= 0 as otherwise the second rotation is

not needed. For the second rotation, we will use the Pauli

expansion

V †U2 = β1l1l + iβXX + iβY Y + iβZZ. (27)

Gate-synthesis only ensures one unitary such that ||U1−V || ≤
ǫ, but a suitable U2 can be found only slightly further away.

Specifically, there must exist a suitable U2 with cost below

f(ǫ). To verify this, one first constructs an axial rotation V ′

with ||V − V ′|| = ǫ and ||U1 − V ′|| > ǫ. Specifically, using

V = eiθZ and V ′ = ei(θ+δ)Z then the two values

δ = ±2 arcsin(
√
ǫ/2), (28)

both ensure that ||V − V ′|| = ǫ. Choosing the the sign of δ to

match the sign of αZ , it follows that ||U1−V ′|| > ||V−V ′|| =
ǫ. Unitary gate synthesis must then provide a U2 6= U1 within

ǫ of V ′, such that ||U2 − V || ≤ 2ǫ. Furthermore, within the

same cost budget we can synthesize unitaries U3 = ZU1Z
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and U4 = ZU2Z, with

V †U3 = α1l1l− iαXX − iαY Y + iαZZ, (29)

V †U4 = β1l1l− iβXX − iβY Y + iβZZ.

Considering the set {U1, U2, U3, U4} it follows immediately

that they satisfy condition (1) of Lem. 1 with a = 2ǫ. Next,

we assign them weights {pj} = { 1−q
2 , q

2 ,
1−q
2 , q

2} where 0 ≤
q ≤ 1 will be fixed later. The linear combination is

∑

j

pjV
†Uj =((1− q)α1l + qβ1l)1l (30)

+ i((1− q)αZ + qβZ)Z.

Subtracting the identity and taking the operator-norm squared,

||
∑

j

pjV
†Uj − 1l||2 =((1− q)α1l + qβ1l − 1)2 (31)

+ ((1− q)αZ + qβZ)
2.

We now fix q to eliminate the second term. Considering the

variables {αZ , βZ}, one is positive (an over-rotation) and the

other negative (an under-rotation), so zero sits within the con-

vex hull of these variables and suitable q can be found. Specif-

ically

q =
αZ

αZ − βZ
, (32)

satisfies 0 ≤ q ≤ 1. With the second term cancelled and

taking square roots we have

||
∑

j

pjV
†Uj − 1l|| = |q(β1l − α1l) + (1− α1l)| . (33)

By the triangle inequality and |q| ≤ 1, we have

||
∑

j

pjV
†Uj − 1l|| ≤ |β1l − α1l|+ |α1l − 1|. (34)

Inserting 1− 1 = 0, so that β1l − α1l = (β1l − 1) + (1− α1l),
and again using the triangle inequality, we arrive at

||
∑

j

pjV
†Uj − 1l|| ≤ |β1l − 1|+ 2|α1l − 1|. (35)

From ||V †U1 − 1l|| ≤ ǫ we can infer that

||(α1l − 1)1l + iαXX + iαY Y + iαZZ||2 ≤ ǫ2. (36)

Evaluating the left hand side, we obtain

(α1l − 1)2 + α2
X + α2

Y + α2
Z ≤ ǫ2. (37)

Unitarity of V †U1 entails that α2
1l + α2

X + α2
Y + α2

Z = 1 and

after some simplification, we find

(α1l − 1)2 + α2
X + α2

Y + α2
Z = (α1l − 1)2 + (1− α2

1l),

= 2(1− α1l) ≤ ǫ2. (38)

From which we infer |1 − α1l| ≤ ǫ2/2. Similarly, from

||V †U2 − 1l|| ≤ 2ǫ we can infer |1 − β1l| ≤ 2ǫ2. Substituting

into Eq. (35), we have

||
∑

j

pjV
†Uj − 1l|| ≤ 3ǫ2, (39)

Therefore, we have demonstrated both the necessary condi-

tions of Lem. 1 with a = 2ǫ and b = 3ǫ2. Applying the

Lemma, our channel satisfies

d⋄(E ,V) ≤
1

2
(a2 + 2b) ≤ 5ǫ5. (40)

A smaller factor than 5 is likely to be provable.

VI. CONCLUSIONS

We have seen that worst-case resource costs of fault-

tolerant quantum computing can be reduced by switching to

a randomised approach to gate-synthesis. It may seem coun-

terintuitive that a randomisation process can be advantageous.

However, convexity of the diamond distance naturally entails

that mixing over channels of similar noise levels can only re-

duce the noise.

We presented a convex hull finding algorithm for finding

the suitable mixing ratios. While this algorithm is exponen-

tially fast, it is plausible that a constant time algorithm exists.

We suspect that a variant of Delaunay triangulation could be

used to quickly identify a suitable simplex. However, our liter-

ature search on Delaunay triangulation has only found results

on Euclidean space and we have yet to ascertain if such tools

carry over to the operator norm topology.

This work has only considered mixing over unitary chan-

nels, which prompts the question whether more general quan-

tum channels might be useful. Probabilistic quantum circuits

with fallback [8] is an approach to gate-synthesis that is not

entirely unitary, though it makes use of an ancillary qubit and

works very differently to the approach presented here. As re-

marked earlier, mixing can be useful in preparation of differ-

ent magic states [16]. We ponder whether all these approaches

can be understood within a single framework of quantum

channel synthesis.
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Appendix A: Convex hull proof

This section will prove Lem. 2. We start by showing an-

other general result that we use in several places. Let M be a

Hermitian operator with eigenvalues λk, so that by definition
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|λk| ≤ ||M || for all k. We consider the operator

eiM − (1l + iM) =
∞
∑

n=2

1

n!
(iM)n. (A1)

This can be diagonalised in the eigenbasis of M and has

eigenvalues fM (λk) := eiλk − 1− iλk. Therefore, we have

||eiM − (1l + iM)|| = maxk|fM (λk)|. (A2)

On the interval |x| ≤ π, one can verify that |eix − 1 − ix| ≤
1
2x

2, and so provided ||M || ≤ π we have

||eiM − (1l + iM)|| ≤ 1

2
||M ||2. (A3)

Now turning specifically to Lem. 2, we have

||eiHj − 1l|| = ||
∞
∑

n=1

1

n!
(iHj)

n|| (A4)

≤ ||Hj ||+ ||
∞
∑

n=2

1

n!
(iHj)

n||. (A5)

Since we always choose the principle Hj , we have ||Hj || ≤ π
and we can use Eq. A3 to find

||eiHj − 1l|| ≤ ||Hj ||+
1

2
||Hj ||2 ≤ c+

1

2
c2. (A6)

Recall that in Lem. 2 we defined c so that ||Hj || ≤ c for

all Hj , which explains the second inequality. Therefore,

||eiHj || ≤ c + c2

2 . This shows property (1) of Lem. 2. Next

we consider the convex sum of unitaries,

∑

j

pje
iHj = 1l + (

∑

j

ipjHj) +
∑

j

pj

∞
∑

n=2

(iHj)
n

n!
, (A7)

which is split into zeroth, first and higher order terms. By

assumption the linear terms vanish. Therefore,

||
∑

j

pje
iHj − 1l|| =||

∑

j

pj

∞
∑

n=2

(iHj)
n

n!
||, (A8)

≤
∑

j

pj ||
∞
∑

n=2

(iHj)
n

n!
||

≤
∑

j

pj
c2

2
=

c2

2
.

Going from second to third line, we have again used Eq. A3.

This proves Lem. 2.

Appendix B: Bounding ||Hn||.

We wish to upper bound ||Hn|| in terms of ǫ, the preci-

sion to which gate synthesis is assessed. The operator Hn is

chosen so that eiHn provides a certain unitary, Un, and the

eigenvalues are chosen within the interval [−π, π). Further-

more, on this interval one has that all eigenvalues θ satisfy

|θ| ≤ |eiθ − 1|+ 1
2 |eiθ − 1|2. It follows that

||Hn|| ≤ ||eiHn − 1l||+ 1

2
||eiHn − 1l||2. (B1)

Next, we note that for each n > 1 we have

||eiHn − 1l|| = ||Un − V || (B2)

≤ ||Un −Wn||+ ||Wn − V ||
≤ ǫ+ ||eiτn − 1l||

≤ ǫ+ ||τn||+
||τn||2

2

≤ 3ǫ+ 2ǫ2.

The n = 1 case is similar but without the ||Wn − V || contri-

bution. Combining this with Eq. (B1) we have

||Hn|| ≤
(

3ǫ+ 2ǫ2
)

+
1

2

(

3ǫ+ 2ǫ2
)2

. (B3)

Assuming ǫ < 0.01 this can be simplified to

||Hn|| ≤ 3ǫ+ 7ǫ2, (B4)

as reported in the main text. This gives the value of c for

Lem. 2.

Appendix C: Convergence proof

Next we show that each Un is new by showing the strictly

monotonic decrease of ||µn||. Furthermore, we show expo-

nential decrease of ||µn|| with n. We begin by translating the

closeness of Un to Wn into the space of Hermitian operators.

We define

∆n := Hn − τn, (C1)

and later will find an upper bound on ||∆n||. First we use these

operators to construct a point in the new convex hull. Mixing

Hn and µn gives a point in the convex hull, which must have

norm no larger than ||µn+1||, so that

||µn+1|| ≤ ||λHn + (1− λ)µn|| (C2)

= ||µn

[

1− λ

(

1 + 2
ǫ

||µn||

)]

+ λ∆n||.

If we consider when

λ =

(

1 + 2
ǫ

||µn||

)−1

=
||µn||

||µn||+ 2ǫ
, (C3)

then it is easy to see 0 < λ < 1 and that the square bracket

vanishes so that

||µn+1|| ≤ λ||∆n|| =
||µn||

||µn||+ 2ǫ
||∆n||. (C4)
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This iteration begins with µ2 = H1. Further progress requires

an upper bound on ||∆n||, which we now take a lengthy detour

to find.

Adding several terms of the form 0 = (x − x) to ∆n, we

have

∆n =(−i1l +Hn + ieiHn) + (iV †Wn − ieiHn) (C5)

+
(

−iV †Wn + i1l− τn
)

.

Taking the norm and applying triangle inequality, we get

||∆n|| ≤||1l + iHn − eiHn ||+ ||V †Wn − eiHn || (C6)

+ ||1l + iτn − V †Wn||
=||1l + iHn − eiHn ||+ ||Wn − Un||
+ ||1l + iτn − eτn ||. (C7)

For the middle term we know ||Wn − Un|| ≤ ǫ, and for the

first and last terms we again use Eq. A3, so that

||∆n|| ≤
1

2
||Hn||2 + ǫ+

1

2
||τn||2 (C8)

≤ 1

2
(3ǫ+ 7ǫ2)2 + ǫ+

1

2
(2ǫ)2.

We can again use ǫ ≤ 0.01 to bound higher order terms to

obtain

||∆n|| ≤ ǫ+ 7ǫ2. (C9)

Plugging this in Eq. (C4), we have

||µn+1|| ≤ ||µn||
ǫ+ 7ǫ2

||µn||+ 2ǫ
(C10)

< ||µn||
1

2
(1 + 7ǫ) ,

where we have used that 0 < ||µn||. Iterating this argument n
times we find exponential behaviour

||µn+1|| < ||µ2||e−w(n−1), (C11)

where w = ln(2)− ln(1 + 7ǫ). Using our earlier assumption

that 0 < ǫ < 0.01 guarantees that 0.69315 > w > 0.62548.

In most instances convergence will be much faster than en-

sured by this proof, often jumping to ||µn+1|| = 0 within

only a few iterations. Last we note that µ1 = H1 and that

||H1|| ≤ ||V − U1||+ 1
2 ||V − U1||2 ≤ ǫ+ 1

2ǫ
2, which gives

||µn|| < ǫ

(

1 +
1

2
ǫ

)

e−w(n−2) (C12)

= ǫ

[(

1 +
1

2
ǫ

)

e2w
]

e−wn.

Since e−w > 1/2, we have e2w < 4. Combined with ǫ < 0.01
we know the square bracket cannot exceed 6, which leads to

Eq.(25).
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