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Abstract

This paper explores the representation and estimation of mixed continuous time ARMA (au-
toregressive moving average) systems of orders p, q. Taking the general case of mixed stock
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of the mixed frequencies with which these data are available.
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1. Introduction

It seems entirely natural for economic modelling to reflect the fact that economic ac-

tivity is carried out more or less continuously through time. The advantages of so doing,

summarised in Bergstrom (1990), include: the efficient use of information; the accurate im-

position of a priori restrictions or hypotheses from economic theory on the parameters of

the underlying model; and, the ability to forecast the real time economic variables.

Since a continuous record of data is seldom available (and any that is may well suffer from

contamination by micro-structure noise) a variety of methods have been proposed enabling

the analyst to estimate the parameters of linear continuous time systems using data available

at regular, discrete intervals. An important feature of such methods is their ability to take

account of whether the data are: skip-sampled stock variables; time averaged flow variables;

or, a combination of the two.

The literature has concentrated on three broad methods for evaluating the pseudo-

likelihood that data were generated by a given vector of parameters. Spectral (or frequency

domain) representations, as in Robinson (1976, 1993) and Phillips (1991), match the pe-

riodogram of the observed data with the theoretical spectrum implied by the parameter

vector, accounting for the phenomenon of aliasing by folding frequencies ranging across

the real line into the range (−π, π]. Time domain techniques, based around translating a

stochastic differential transition equation into a stochastic difference transition equation,

making use of the matrix exponential, have, however, found more popularity. Provided

some linear combination of the resulting discrete time state vector is observable, perhaps

subject to observation noise, the pseudo-likelihood can be evaluated using the Kalman-Bucy

filter. Important contributions in this area include Harvey and Stock (1985, 1988, 1989),

who consider multivariate autoregressive (AR) models that can allow for stochastic trends,

and Zadrozny (1988), whose approach considers multivariate autoregressive moving average

(ARMA) models that can also allow for certain types of data irregularities such as mixed

observation frequencies and irregular sampling intervals.

An alternative time domain approach proceeds by solving out the unobservable elements

from the discrete time state vector using lags of the observable elements and disturbances

and by so doing defines a mapping from the continuous time parameters to a discrete time

model with identical first- and second-order moments. The resulting exact discrete time rep-

resentations of the model can then be used to evaluate the likelihood; see, in particular, the

contributions in Bergstrom (1990, 1997) and Bergstrom and Nowman (2007). As discussed

in Bergstrom (1985), the exact discrete model can be a computationally more efficient way

to evaluate the likelihood function at a given point in the parameter space, once the set-up

costs of deriving the discrete time model have been borne, taking advantage of the sparse

structure of the covariance matrix of the disturbances.

Our main contribution is to derive an exact discrete time representation for a contin-

uous time ARMA process with mixed stock-flow data. Much of the original work on the

exact discrete time representation of AR models, such as Bergstrom (1983, 1986, 1997) and

Chambers (1999), used a state space representation in which the state vector contained a

real-time vector of the variables and its derivatives, a property exploited for mixed stock-

flow processes, where representations featured both flow variables and the first difference

of the stock variables after integration over time. Continuous time processes with moving
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average disturbances were not considered. Recent work by Chambers and Thornton (2012),

however, was based on the state space form used by Zadrozny (1988), the structure of which

makes it possible to incorporate a moving average disturbance, but did not offer the same

route to handle mixed processes. This paper overcomes that hurdle by augmenting the

form in Chambers and Thornton (2012). We then show how to recover an exact discrete

representation from the resulting stochastic difference equation, taking account of the novel

feature that the dimension of the system is not an integer multiple of the number of vari-

ables under consideration. In doing so we show that the representations delivered by existing

methods are not unique and rely on an arbitrary identifying assumption (that the stocks

appear as first differences). We propose a more natural identification method, establishing

for the first time the existence and uniqueness of an exact discrete time ARMA(p, p) repre-

sentation for continuous time mixed stock-flow data, bringing it into line with well known

results for discrete time processes subject to high orders of temporal aggregation, such as in

Brewer (1973). In addition, our framework unifies the treatment of pure stock data, which

is identical to Chambers and Thornton (2012), and pure flow data, which previously relied

on double integration of the stochastic difference equation, giving an attractive alternative

calculation of the covariance matrix of discrete time flow data requiring the evaluation of

only one matrix exponential.

The two time domain techniques depart from a common platform and our analysis also

has potential uses in state-space estimation. Since an expression for unobservable compo-

nents of the state vector in terms of lagged observables and disturbances is an intermediate

step in the derivation of the exact discrete time distribution, a second contribution is to

provide an expression for the expectation and variance of the state vector conditional on

current and lagged data. Not only does this enable recovery of the state vector, in case this

is of interest, it also facilitates the calculation of the initial conditions for a Kalman itera-

tion, given p observations, in cases where the unconditional mean is not appropriate, such

as when the data are non-stationary; see, for example, Harvey and Stock (1985). Finally, we

extend the range of state space models capable of modelling continuous time ARMA process

with mixed stock-flow data beyond that in Zadrozny(1988), freeing the analyst to model

unobserved components in the state vector, if desired.

The paper is organised as follows. Section 2 outlines the continuous time ARMA(p, q)

model and discusses different state space forms. One of these forms, chosen for computational

advantage, underpins the derivation in section 3 of a class of exact discrete time ARMA

representations for mixed stock-flow data observed at an arbitrary frequency. The discrete

time ARMA(p, p) representation within this class forms the basis of discussion of time domain

methods to evaluate the likelihood in section 4. In section 5 we demonstrate the value of this

modelling approach with two applications: a univariate study of the yield curve at different

frequencies; and, a multivariate study of the relationship between US GDP and oil prices,

taking account of the differing frequencies with which these data are available. Section 6

concludes, and an Appendix contains proofs of the results stated in the main body of the

paper.

2. State space representations of linear continuous time mixed stock-flow pro-

cesses
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The continuous time ARMA(p, q) model for the n× 1 vector x(t) is given by

Dpx(t) = a0 +Ap−1D
p−1x(t) + . . .+A0x(t) + u(t) +Θ1Du(t) + . . .+ΘqD

qu(t), t > 0, (1)

where D denotes the mean square differential operator, u(t) is an n×1 continuous time white

noise process, a0 is an n × 1 vector and A0, . . . , Ap−1 and Θ1, . . . ,Θq are n × n matrices of

coefficients. More precisely, if x(t) is mean square differentiable then there exists a process

ξ(t) satisfying

lim
δ→0

E

{

x(t+ δ)− x(t)

δ
− ξ(t)

}2

= 0,

in which case Dx(t) = ξ(t). In addition the white noise process u(t) satisfies E[u(t)] = 0

and, for t2 > t1, has autocovariance properties

E

[∫ t2

t1

u(r)dr

∫ t2

t1

u(s)′ds

]

= Σ(t2 − t1) ,

E

[∫ t2

t1

u(r)dr

∫ t2

t1

u(τ + s)′ds

]

= 0, |τ | > t2 − t1.

The process x(t) is stationary if the roots of the polynomial |zp −Ap−1z
p−1 − . . .−A0| = 0

have negative real parts and is mini-phase or stable if the the roots of the polynomial

|I + Θ1z + . . . + Θqz
q| = 0 have negative real parts. The task is to estimate the matrices

A0, . . . , Ap−1 and Θ1, . . . ,Θq and the vector a0 of unknown, but assumed finite, coefficients,

plus the variance matrix Σ, not from a continuous record, but from a sequence of data

observed at or over discrete intervals of time.

In economic applications, the difficulty of this task is often compounded by an unavoid-

able heterogeneity in the way that the elements of x(t) are observed: data on prices, interest

rates or capital stocks are typically observed at a point in time; whereas measures of quan-

tity, activity or accumulation are observed as aggregates over time. Many economic models

feature both types of variable. Without loss of generality, we partition the vector of interest

as

x(t) =

[

xs(t)

xf (t)

]

,

where xs(t) (ns × 1) contains stock variables, xf (t) (nf × 1) contains flow variables, and

ns+nf = n. A pure stock (flow) process results when nf (ns) is zero. We suppose our data,

observed at intervals of length h > 0, take the form

xth =

[

xfth

xsth

]

=







h−1

∫ th

th−h

xf (r)dr

xs(th)






, t = 0, 1, 2, . . . , T.

The flow data1 are represented as time averages, corresponding to, say, the scaling of a

quarterly figure (when h = 1/4) as an annualised equivalent. This scaling is of minimal

consequence in stationary systems and a time aggregate is as easily constructed. The ef-

fect is to make the scale of the flow variables comparable in models estimated at different

1Flows are brought to the top of the observed vector to ease exposition of the partitioned matrices to
follow.
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frequencies.2 However, this scaling has been shown to be important in models containing

nonstationary and cointegrated variables by Chambers (2009, 2011) and so we proceed using

the scaled observations on flow variables. For the bulk of this paper we will assume that

h remains uniform across all elements of xth, although the second application in section 5

considers estimation when this is not the case.

Time domain methods involve transforming (1) into a first order stochastic differential

equation in a state vector, linear combinations of which correspond to the discretely ob-

served data after integration. Estimation proceeds either using the Kalman-Bucy filter or

by removal of unobservable (combinations of) components to reveal the discrete time dy-

namics. As with linear processes in discrete time, there is more than one viable state space

representation of (1), with some particularly suited to moving average errors and others to

modelling mixed stock-flow data.

Much of the work on linear continuous time systems in econometrics, such as Bergstrom

(1983, 1986), Harvey and Stock (1989) and Chambers (1999), used the representation

Dyb(t) = ā+Abyb(t) + Θbub(t), t > 0. (2)

where

ā =

















0

0
...

0

a0

















, Ab =

















0 I 0 . . . 0

0 0 I . . . 0
...

...

0 0 0 . . . I

A0 A1 A2 . . . Ap−1

















, Θb =

















0

0
...

0

I

















,

and yb(t) = [yb1(t)
′, Dyb1(t)

′, . . . , Dp−1yb1(t)
′]′. For equation (1), the disturbance is defined

by ub(t) = u(t) + Θ1Du(t) + . . . + ΘqD
qu(t). A discrete time representation is derived by

manipulations of the integral

yb(t) = eA
btyb(0) +

∫ t

0
e(t−r)Ab

[

ā+Θbub(r)
]

dr, t > 0,

which is unique in a mean square sense and where the matrix exponential is defined by

eAt = I +
∑∞

j=1(At)
j/j!. Associating x(t) = yb1(t) links (1) to (2) and places derivatives of

x(t) in the state vector. Bergstrom (1986) based his representation on the integral of the

state vector over (th − h, th], which contains the observable sub-vectors
∫ th

th−h
xf (r)dr and

∫ th

th−h
Dxs(r)dr = xs(th) − xs(th − h), enabling extraction of the observed variables in the

form3

xbth =







xs(th)− xs(th− h)
∫ th

th−h

xf (r)dr






, t = 1, 2, . . . , T.

The evaluation of the second moments of the weighted integral of ub(t), which are key

components in evaluating the likelihood, can be accomplished by methods in Chambers

2The measurement of stock variables is often independent of sampling frequency although some stock
variables, such as interest rates, may also need expressing as a particular rate of return.

3Note that Bergstrom normalised h to 1. Time averaging of the flow variables can accomplished by an
appropriate scaling of the relevant rows and columns of selection matrices.
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(1999), for the purely autoregressive case where Θ1 = . . . = Θq = 0. For CARMA processes,

however, the weighted integral of ub(t) is not tractable. A modification of (2) has been used

by Brockwell (2004, 2009) to model scalar CARMA processes, incorporating the moving

average disturbance via the observation equation x(th) = Sbyb(th) where

Sb = [I, Θ1, . . . , Θq] ,

and setting ub(t) = u(t). This avoids the problem of intractable derivatives in ub(t) at the

expense of maintaining derivatives of the observables in the state vector. Because x(t) 6= yb1(t)

unless Θ1 = . . . = Θq = 0, however, the integral of the state vector no longer contains both

stock and flow data.

Chambers and Thornton (2012) utilised the state space representation in Zadrozny

(1988) to derive the exact discrete time representation of a CARMA process, in which the

np× 1 state vector is defined as yc(t) = [y1(t)
′, . . . , yp(t)

′]′ and with y1(t) = x(t). The state

space form is based on the following set of p equations in the derivatives of the components

of yc(t), given by

Dy1(t) = Ap−1y1(t) + y2(t) + Θp−1u(t), (3)

Dy2(t) = Ap−2y1(t) + y3(t) + Θp−2u(t), (4)

...
...

Dyp−1(t) = A1y1(t) + yp(t) + Θ1u(t), (5)

Dyp(t) = a0 +A0y1(t) + u(t), (6)

in which we define Θj = 0 for j > q. Combining the expressions for Dy1(t), . . . , Dyp(t)

above, the state space form can be written

Dyc(t) = ā+Ayc(t) + Θcu(t), (7)

where

A =

















Ap−1 I 0 . . . 0

Ap−2 0 I . . . 0
...

...

A1 0 0 . . . I

A0 0 0 . . . 0

















, Θc =

















Θp−1

Θp−2

...

Θ1

I

















,

and the vector ā is defined following (2). Examination of equations (3)–(6) reveals that (7)

incorporates a moving average error seamlessly, but that the state vector, yc(t), does not

contain derivatives of x(t).4

This paper extends the method of Chambers and Thornton (2012) to mixed sample

processes. In doing so it also sheds new light on the exact discrete representation of purely

autoregressive continuous time processes and offers some computational efficiencies for the

modelling of pure flow data. It is well known that the effect of time aggregation on a

4The assertion underpinning the method in Chambers and Thornton (2012) for mixed processes was
therefore in error. This error does not, however, affect Corollaries 1 and 2 of Chambers and Thornton (2012)
that relate to pure stock and flow processes respectively which, along with the empirical applications in the
paper, remain valid.
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discrete time mixed VAR(p) produces a VARMA(p, p) once the order of time aggregation

becomes sufficiently large relative to the model order; see Brewer (1973). The discrete time

representation for the continuous time mixed VAR(p), developed in Bergstrom (1983) and in

Chambers (1999), produces an ARMA(p, p) in xbth, that is after the stock variables have been

differenced. Once the stock variables are re-integrated, these representations correspond to

an ARMA(p+1, p), which discrete time results would suggest is not the most parsimonious

form. We show that the differencing of the stock variables identifies the representation among

a wider class of ARMA(p + 1, p) processes and that the more parsimonious ARMA(p, p) is

also among this class.

The reasoning behind our method is very simple. We construct our system in such a way

that the integration transforming it from a stochastic differential equation to a stochastic

difference equation also produces the time-averaged flows. Let S0 =
[

Ss′
0 , S

f ′
0

]′
denote the

n× np matrix of rank n, such that

S0y
c(t) = x(t).

If x(t) contains only stock process then this may be considered the observation equation,

but not if any flow variables are present. To cover this case, define the nf × 1 vector, y0(t),

such that

Dy0(t) ≡ h−1Sf
0 y

c(t) = h−1xf (t),

which usefully implies that its integral,

∫ th

th−h

Dy0(r)dr = y0(th)− y0(th− h) = h−1

∫ th

th−h

xf (r)dr = xfth,

is the vector of observed flow variables. Now consider the augmented state vector, ỹ(t) =

[y0(t)
′, yc(t)′]′, which satisfies the system

Dỹ(t) = a+Hỹ(t) + Θu(t), (8)

where

a =

[

0

ā

]

, H =

[

0 h−1Sf
0

0 A

]

, Θ =

[

0

Θc

]

.

The integral of (8), conditional on ỹ(0), can be written

ỹ(t) = eHtỹ(0) +

∫ t

0
eH(t−s) [a+Θu(s)] ds, t > 0, (9)

from which it follows that

ỹ(th) = c+ eHhỹ(th− h) + ǫ(th), t = 1, 2, . . . , T, (10)

where

c =

[∫ th

th−h

eH(th−s)ds

]

a =

[∫ 1

0
eHhrdr

]

ah, ǫ(th) =

∫ th

th−h

eH(th−s)Θu(s)ds.
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It follows from the definition of the matrix exponential and the construction of H that the

first nf columns of eHh are [I, 0]′. Subtracting y0(th − h) from both sides of (10) leaves a

state vector y(th) = [xf ′th, y
c(th)′]′, with transition equation

y(th) = c+ Cy(th− h) + ǫ(th), t = 1, 2, . . . , T, (11)

where ǫ(th) is defined following (10). It can be shown (see the Appendix) that

C = eHh −

[

Inf×nf 0

0 0

]

=

[

0 Sf
0Φ

0 eAh

]

,

in which

Φ =

∫ 1

0
eAhsds =

∞
∑

j=1

(Ah)j−1/j!.

In cases where A is non-singular Φ = (A)−1 [eAh − I
]

but this is not essential for (11) to

hold.

By construction, H has nf zero roots. The first nf columns of both H and C are null,

reflecting the property that while the real time flow variables are influential within the system

their aggregates are not. In the case where A may be diagonalised, A = QΛQ−1, where Q

contains the eigenvectors of A and Λ is a diagonal matrix containing the corresponding

eigenvalues, we can write H = Q̃Λ̃Q̃−1, where

Λ̃ =

[

0 0

0 Λ

]

, Q̃ =

[

I h−1Sf
0QΛ−1

0 Q

]

,

from which it follows that we can calculate

eHh = Q̃eΛ̃hQ̃−1 =

[

I Sf
0Q[Λh]−1[eΛh − I]Q−1

0 QeΛhQ−1

]

.

The associated observation equation is

xth =

[

xfth
xsth

]

=

[

I 0

0 Ss′
0

]

y(th) ≡ S1y(th), t = 1, 2, . . . , T.

The advantage of the system in (7) is that the state vector, y(th), contains the observed

variables as a sub-vector; it is clear that the n×(np+nf ) observation matrix S1 = [I, 0] since

our infeasible observation matrix S0 = [I, 0]. In this case the system is a reordered version

of that in Zadrozny (1988), with our derivation showing that the discrete time transition

matrix, C, may be found from a single matrix exponential, avoiding calculation of the whole

np square matrix Φ.

In fact the arguments above may be applied to any suitable state space translation of

(1) or of any other linear continuous time model, that can be written in the form

Dya(t) = ā+Aya(t) + Θau(t), t > 0, (12)

x(t) = S0y
a(t), (13)
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where ya(t) is the state vector. When the form (2) is chosen our results translate arguments

used in modelling mixed cointegrated processes by Harvey and Stock (1989) to processes

with moving average errors through the choice of a different selection matrix. Other repre-

sentations are available and may be preferred in different contexts, for example, to populate

the state vector with unobserved but meaningful components. Our aim in the next section,

however, is to derive a discrete time ARMA process that is satisfied exactly by equally spaced

observations of xth.

3. Exact discrete ARMA representations of mixed stock-flow processes

We return to the transition equation (11), which has the simplifying advantage that

selection matrices

S1 = [In, 0n×r] , S2 = [0r×n, Ir] , (14)

where r = n(p− 1)+nf = np−ns have the property that S′
1S1+S

′
2S2 = I. Further reasons

for choosing this form will be discussed in the next section.5 As in Chambers (1999) we

define the n× 1 vector xth ≡ S1y(th) and the r× 1 vector wth ≡ S2y(th) (t = 1, 2, . . . , T ) of

unobservable variables and partition (11) as

xth = c1 + C11xth−h + C12wth−h + ǫ1,th, (15)

wth = c2 + C21xth−h + C22wth−h + ǫ2,th, (16)

where ǫth ≡ (ǫ′1,th, ǫ
′
2,th)

′ = ǫ(th), ci = Sic, Cij = SiCS
′
j (i, j = 1, 2) and the first nf columns

of both C11 and C21 are null.

The exact discrete time representation replaces the r×1 vector wth−h in (15) with terms

in x(t−j)h and ǫ(t−j)h. We introduce m as the number of times that equations (15) and (16)

are lagged in order to perform this replacement and write the resulting system

M̄w̄th = c+Nx̄th + eth, (17)

where w̄th = [w′
th−h, . . . , w

′
th−(m+1)h]

′ is the vector containing the lagged unobservable vari-

ables, x̄th = [x′th−h, . . . , x
′
th−(m+1)h]

′ is the vector containing the lagged observable variables,

eth = [ǫ′1,th−h, . . . , ǫ
′
1,th−mh, ǫ

′
2,th−h, . . . , ǫ

′
2,th−mh]

′ contains the lagged disturbances, the in-

tercept term is c =

[

im ⊗ c1
im ⊗ c2

]

and

M̄ =































0 −C12 0 . . . 0 0

0 0 −C12 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 −C12

Ir −C22 0 . . . 0 0

0 Ir −C22 . . . 0 0
...

...
...

...
...

0 0 0 . . . Ir −C22































, N =































−In C11 0 . . . 0 0

0 −In C11 . . . 0 0
...

...
...

...
...

0 0 0 . . . −In C11

0 C21 0 . . . 0 0

0 0 C21 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 C21































.

5To keep the stock variables at the top set S1 =

[

0ns×nf Ins 0ns×r

Inf 0nf×ns 0nf×r

]

.
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We further partition N ≡ [N1, . . . , Nm+1], Nj =
[

Nf
j , N

s
j

]

(j = 1, . . . ,m + 1), where N s
j

contains ns columns, and Nm+1 ≡
[

0, N s
m+1

]

.

The condition that m ≥ r/n ensures that (17) has at least as many equations as there

are elements in w̄th. In order to solve the system we maintain the following assumptions,

which correspond to the detectability and reconstructability of the state vector.

Assumption 1. The r × r matrix C22 is non-singular.

Assumption 2. The n× r matrix C12 has rank n.

Assumptions 1 and 2 are widely used in the exact discrete time representation literature

and guarantee that M̄ has full column rank, see Lemmas A1 and A2, which is essential for

Theorem 1 below. In the event that M̄ does not have full column rank then a transformation

of the system exists with the effect of reducing r, the dimension of the vector wth and

permitting construction of a smaller M̄ matrix retaining full column rank, see Lemma A3.

For convenience, we concentrate on the more commonly considered case that there are no

redundant elements in wth.

Theorem 1. Under Assumptions 1 and 2, for m ≥ r/n:

(a) there exists at least one matrix R such that RM̄ is non-singular; and,

(b) the observed vector xth of mixed stock and flow variables generated by the continuous

time ARMA(p, q) system (1) then satisfies the discrete time ARMA(m+ 1,m) system

xth = f + F1xth−h + . . .+ Fm+1xth−(m+1)h + ηth, t = m+ 2, . . . , T,

where f = c1 + C12M̂c, F1 = C11 + C12M̂N1, Fj = C12M̂Nj (j = 2, . . . ,m+ 1),

M̂ = [Ir, 0r×mr][RM̄ ]−1R = [M̂1, M̂2],

M̂1 = [M̂1,1, M̂1,2, . . . , M̂1,m],

M̂2 = [M̂2,1, M̂2,2, . . . , M̂2,m],

the matrices M̂1,i and M̂2,i (i = 1, . . . ,m) being r × n and r × r, respectively. Furthermore,

the autocovariance matrices of ηth are given by

Γh
j = E(ηthη

′
th−jh) =











m
∑

i=j

CiΩǫC
′
i−j , j = 0, . . . ,m,

0, j > m,

where C0 = S1, Cj = C12(M̂1,jS1 + M̂2,j+1S2) (j = 1, . . . ,m), and

Ωǫ = E(ǫ(th)ǫ(th)′) =

∫ 1

0
eHhrΘΣΘ′eHhrhdr.

Theorem 1 presents a general set of ARMA processes consistent with (1). Unlike dis-

9



crete time dynamic models, see Lütkepohl (1986) and Marcellino (1999), (1) is flexible in the

frequency of data collection, h, which does not change the orders of these discrete processes.

Once m ≥ r/n then M̄ has full column rank (see Lemma A1) and M̄ ′ is always a suitable

choice of R. Alternative choices of m and of R, up to pre-multiplication by a non-singular

(m+1)r square matrix, would provide different exact discrete time ARMA(m+1,m) repre-

sentations. The form of Nm+1 means that the coefficients on the first nf elements of xt−(m+1)

would always be zero. These representations are observationally equivalent in the sense of

corresponding to the same causal rational transfer function, given the parameters of (1),

xth =

∞
∑

j=0

S1C
j [c+ ǫ(t−j)h],

as a result of sharing a common state space representation (11); see, for example, Hannan

and Diestler (1988, p.17). Thus each representation would provide the same unconditional

likelihood for a given data set.

In practice interest is likely to centre on the most parsimonious representations, when

m is closest to r/n. When x(t) is a pure stock process then the smallest m ≥ r/n is p− 1.

The matrix M̄ is then square and invertible, and the results of Theorem 1 naturally become

those of Corollary 1 of Chambers and Thornton (2012) for any non-singular R, producing an

ARMA(p, p−1) representation. When x(t) is a pure flow process then the smallest m ≥ r/n

is p, but again M̄ is square and invertible. In this case the Np+1 matrix is null, producing

an ARMA(p, p) representation equivalent to that in Corollary 2 of Chambers and Thornton

(2012). It is worth noting that the evaluation of Γh
j simplifies existing methods, such as

as Bergstrom (1983) and Chambers (199), which treat pure flow processes as integrals of

pure stock processes. Such a treatment leads to a discrete time disturbance expressed using

a double integral, requiring the evaluation of integrals of Φ(r) =
∫ r

0 e
Ahsds, something our

augmented state equation avoids.

When x(t) is a mixed process then p remains the smallestm ≥ r/n. In this case, however,

the matrix M̄ has ns fewer columns than rows. Multiplying (17) by any (p+ 1)r× p(r+ n)

linear transformation, R, such that RM̄ is non-singular would give a possible ARMA(p+1, p)

representation with zero coefficients on p + 1 lags of the flow variables, due to the nf null

columns of Np+1. Different choices of R have the potential to produce different exact discrete

time representations. The representations in Bergstrom (1983) and Chambers (1999) result

from choosing R such that the last ns columns of the matrix [I − F1 − . . . − Fp+1] are

null, which is equivalent to differencing the stock variables. This is not the most natural

representation of the model, however. If R is chosen such that RNp+1 = 0 then the resulting

discrete time process would have an ARMA(p, p) representation. Theorem 2 establishes the

existence and uniqueness of such a discrete time representation for xt in this case.

Theorem 2. (a) There exists a (p+1)r× p(r+n) matrix R such that RNp+1 = 0 and RM̄

is non-singular.

(b) The observed vector xth of mixed stock and flow variables generated by the continuous time

ARMA(p, q) system (1) then satisfies a unique discrete time ARMA(p, p) with coefficients

given in Theorem 1.

Since (p − 1)(r + n) rows of Np+1 are null, R may take (p − 1)(r + n) rows from the

10



p(r + n) identity matrix alongside rows of the form

[

0r+nf×(p−1)n, T1, 0r+nf×(p−1)n, T2

]

,

where T1 and T2 are chosen so that T1C11 + T2C21 = 0. For processes without moving

averages the representation in Chambers (1999), which does not require the identification of

such a space, has computational advantages in estimation. Ours may still be used, however,

to translate the estimates of the parameters of a continuous time model into the most easily

comparable discrete time form.

4. Evaluation of the pseudo-likelihood

We now consider the evaluation of the log-likelihood function for given values of the

parameters of (1) (A0, . . . , Ap−1, Θ1, . . . ,Θq, a0, Σ) based on a sample of T observations,

xh, x2h, . . . , xTh, using both the exact discrete representation, outlined in Theorems 1 and

2, and the Kalman-Bucy filter applied to the stochastic difference equation (11). We focus

attention on estimation conditional on the first p of those observations, although both meth-

ods can be used to provide unconditional estimates, as demonstrated by Bergstrom (1990)

and Harvey and Stock (1985). The techniques differ in the order of conditioning applied to

the joint density of the sample, which can be decomposed as

f(xTh, . . . , x(p+1)h|xph, . . . , xh) =

T
∏

j=p+1

f(xjh|x(j−1)h, . . . , xh).

Through the repeated conditioning stated in the expression on the right, the prediction error

form of the Kalman-Bucy filter is based around uncorrelated errors resulting from optimal

forecasts produced at the expense of calculating the full state vector for each observation.

Gaussian estimation, on the other hand, reflects the joint distribution on the left using

knowledge about the effects of time aggregation to characterise the disturbance, ηth, with

a sparse (auto-)covariance matrix. The two methods have much in common, however, and

it is common practice in Gaussian estimation to calculate the likelihood via a normalised

residual vector that is, in effect, the standardised prediction error vector.

As in discrete-time systems with moving average errors, all mini-phase or stable systems

have observationally equivalent complements that are not stable. Given that these will

then have identical likelihoods, the analyst has a choice of approach towards a preferred

stable solution. Zadrozny (1988) suggests initialising the estimation in a stable region of the

parameter space and imposing a hefty penalty in the likelihood function in the event that

the algorithm strays beyond this region. Alternatively, it may be computationally easier

merely to extract the stable representation ex post using an eigenvalue decomposition as in

Zadrozny (1998, 2016).

4.1. Gaussian estimation using the exact discrete representation

Gaussian estimation uses the discrete time ARMA(p, qd) representation, where qd = p−1

for pure stock processes and qd = p if the data vector contains any flow variables, of equation

(1) derived in Theorems 1 and 2. Let η = (η′(p+1)h . . . , η
′
Th−h, η

′
Th)

′, denote the n(T − p)

11



vector of discrete time disturbances with

ηth = xth − f − F1xth−h − . . .− Fpxth−ph, t = p+ 1, . . . , T.

Its covariance matrix, E(ηη′) = Ωη, has a block Toeplitz structure with ij’th block denoted

by the n matrix

Ωη,ij =

{

Γh
i−j , |i− j| ≤ qd,

0, |i− j| > qd,

noting that Γh
−j = Γh′

j with Γh
j defined in Theorem 1. Under the assumption that η has a

multivariate normal distribution the likelihood may be evaluated as

logLG = −
n(T − p)

2
log(2π)−

1

2
log |Ωη| −

1

2
η′Ω−1

η η.

Two comments are worth making at this stage. The first is that the matrices A0, . . . , Ap−1

feature in both η, through the f vector and Fj matrices, and Ωη, through the Γh
i−j matrices,

a common result in temporally aggregated dynamic systems. The second is to highlight the

computational advantages of the representation (7), which maintains the selection matrices

S1 and S2 during the maximisation procedure and restricts the impact of the Θj parameters

to Ωη via Ωǫ. In contrast, the form in (2) in which S1 is a function Θ, requires repeated

recalculation of the matrix S2.

The sparse nature of Ωη makes it possible to accelerate the calculation of this likelihood.

Since Ωη is positive definite and symmetric we can find a lower triangular matrix, U , with

ij’th block denoted (for consistency with the Kalman-Bucy filter) Up+i,p+j , such that

UU ′ = Ωη,

with the sparse nature of Ωη reflected in the sparse nature of U . The matrix U , which has a

maximum of qd +1 non-zero blocks in each block row, can be calculated using the following

recursions

Up+1,p+1U
′
p+1,p+1 = Γh

0 ,

Uij =

[

Γh
i−j −

j−1
∑

k=1

UikU
′
jk

]

U−1′
jj , p+ 1 < i ≤ p+ qd + 1, p < j < i,

UiiU
′
ii = Γh

0 −
i−1
∑

k=1

UikU
′
ik, p+ 1 < i ≤ p+ qd + 1,

Uij = 0, i > p+ qd + 1, j < i− qd,

Uij =



Γh
i−j −

j−1
∑

k=i−qd

UikU
′
jk



U−1′
jj , i > p+ qd + 1, qd − i ≤ p < j < i,

UiiU
′
ii = Γh

0 −
i−1
∑

k=i−qd

UikU
′
ik, i > p+ qd + 1,

with Uii chosen to be lower triangular. Only this lower triangular matrix need be inverted,

12



firstly to find further block rows and secondly to calculate a vector of normalised residuals,

ζ = (ζ ′(p+1)h . . . , ζ
′
Th−h, ζ

′
Th)

′, satisfying Uζ = η. It follows straightforwardly that E(ζ) = 0

and E(ζζ ′) = In(T−p), the subvectors of ζ being computed using

ζ(p+1)h = U−1
p+1,p+1η(p+1)h,

ζth = U−1
tt



ηth −

min{t−p−1,qd}
∑

k=1

Ut,t−kη(t−k)h



 , t = p+ 2, . . . , T.

The log likelihood, conditional on xh, . . . , xph, can be evaluated as

logLG = −
n(T − p)

2
log(2π)−

1

2

T
∑

t=p+1

(

ζ ′thζth + 2 log(|Utt|)
)

,

where log(|Utt|) is easily calculated as the sum of the terms on the principle diagonal of

Utt. Calculation of U involves inverting a maximum of T − p lower triangular matrices of

dimension n, but in practice Uij and Ui+1,j+1 often converge quickly, removing the need to

calculate the rows of U further, see Bergstrom (1990, ch 7). The non-zero blocks in block

row i contain coefficient matrices for a moving average representation of ηih.

4.2. The Kalman prediction error

Letting x̂th|th−h denote the predicted value of the vector xth given information at time

th− h and Ωth|th−h = E[x̂th|th−h − xth][x̂th|th−h − xth]
′ denote the variance of the prediction

error, then the likelihood can be written in the form

logLK = −
n(T − p)

2
log(2π)−

1

2

T
∑

t=p+1

log
∣

∣Ωth|th−h

∣

∣

−
1

2

T
∑

t=p+1

(

xth − x̂th|th−h

)′
Ω−1
th|th−h

(

xth − x̂th|th−h

)

.

The one step ahead predictions and forecast variances can be calculated recursively using

the Kalman-Bucy filter, with

x̂th|th−h = S1ŷ(th|th− h), (18)

Ωth|th−h = S1Pth|th−hS
′
1, (19)

ŷ(th+ h|th) = c+ Cŷ(th|th− h) +Kth

[

xth − x̂th|th−h

]

, (20)

Kth = CPth|th−hS
′
1

[

Ωth|th−h

]−1
, (21)

Pth+h|th = [C −KthS1]Pth|th−h [C −KthS1]
′ +Ωǫ, (22)

ŷ(th|th−h) denoting the one step ahead prediction of the full state vector y(th), Pth|th−h its

covariance matrix and Kth the Kalman gain. Computation of the likelihood eases consider-

ably once changes in Pth+h|th become relatively small and it no longer becomes necessary to

compute equations (19), (21) or (22).

In the case that the time series are stationary, it is common to commence the Kalman
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iterations with the unconditional mean ŷ(h|0) = [I−C]−1c and with Ph|0 solving the discrete

time Lyapunov equation Ph|0 = CPh|0C
′ + Ωǫ; see, for example, Hamilton (1994, p.378). If

the analyst does not wish to evaluate the initial conditions in this way, or if the data are

non-stationary, Harvey and Stock (1985) suggest estimating the initial condition of the state

vector as a parameter in the model, which can be concentrated out of the likelihood func-

tion. The exact discrete representation, which concentrates wth out of the dynamics of xth,

provides an alternative method. Equation (A8) provides an expression for the unobserved

elements of the state vector that can be used to appraise wph|ph and its variance. We might

then chose to commence the recursions with

ŷph+h|ph = c+ Cŷ(ph|ph),

Pph+h|ph = CPph|phC
′ +Ωǫ,

ŷ(ph|ph) = (x′ph, ŵ
′
ph|ph)

′,

ŵph|ph = M̂ [c+Nx̄ph+h],

with

Pph|ph =

[

0 0

0 P̃ph|ph

]

, P̃ph|ph = M̂

[

I ⊗ Ω11 I ⊗ Ω12

I ⊗ Ω21 I ⊗ Ω22

]

M̂ ′,

where Ωij = SiΩǫS
′
j .

Comparing the two methods, it is clear that in Gaussian estimation the vector Uttζth
is the part of xth that is not explained by lagged values of xth or of ηth. This naturally

corresponds to the Kalman prediction error xth− x̂th|th−h. If the model is correctly specified

then ζth is a standard normal n vector and the variance of this error, UttU
′
tt corresponds to

Ωth|th−h.

5. Applications of the CARMA model

Beside being of interest in its own right, the exact discrete representation can be used to

estimate the parameters of the continuous time system, following the above procedure. Here

we consider two macroeconomic applications: the yield curve for short term interest rates;

and, the relationship between US GDP and oil prices, both of which exploit the property

that continuous time models are not tied to any particular frequency of data. In the first

application estimates of the same underlying model using monthly data are compared with

those using quarterly data. The second models mixed frequency data with a high frequency

stock variable alongside a low frequency flow variable.

5.1. Short-term Interest rates

Recent work, e.g. Andresen et al. (2014) and Thornton and Chambers (2016), has sug-

gested that CARMA models can provide suitable representations for short-term interest

rates, with the CARMA(2, 1) model performing well in empirical applications. It is of interest

to compare the robustness of the estimates of the CARMA parameters obtained across dif-

ferent sampling frequencies of data with the robustness of estimates of discrete time ARMA

models which either take the temporal aggregation into account or do not. Defining r(t) to
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be the interest rate under consideration, the CARMA(2, 1) model of interest is given by

D2r(t) = a0 +A1Dr(t) +A0r(t) + u(t) + Θ1Du(t), t > 0, (23)

where a0, A0, A1 and Θ1 are unknown scalar parameters, and u(t) is a mean zero uncorrelated

process with variance σ2u. It follows, from Corollary 1 of Chambers and Thornton (2012),

that the discrete time observations at sampling frequency h satisfy

rth = fh + F1,hrth−h + F2,hrth−2h + ηth, t = 1, . . . , T,

where rth = r(th), fh, F1,h and F2,h are scalar functions of the CARMA parameters that take

into account the temporal aggregation, and ηth is an MA(1) process. Given that, regardless

of sampling frequency, the same continuous time parameters are being estimated, one would

expect a reasonable amount of conformity of estimates obtained at different frequencies.

Another approach to temporal aggregation is to specify the underlying (fundamental)

model not in continuous time but at a pre-determined discrete time interval. The application

that follows uses monthly and quarterly data so we shall consider a model for rth at the

monthly frequency (h = 1/12) and then aggregate to the quarterly frequency by finding the

law of motion for the series consisting of every third monthly observation. Suppose that the

monthly data satisfy the discrete time ARMA(2, 1) model

rth = φ0 + φ1rth−h + φ2rth−2h + ǫth + ψǫth−h, t = 1, . . . , T,

where ǫth is white noise with variance σ2ǫ . Then, using results of Wei (1981), it is possible

to show that the quarterly series, r3th i.e. the series of every third monthly observation, also

satisfies an ARMA(2, 1) model whose parameters are known functions of those specifying the

monthly model. It is then possible to examine how close estimates of the ARMA parameters

are when the temporal aggregation is accounted for and when it is not.

Data on the Sterling one-month mean interbank lending rate6 were obtained from the

Bank of England for the period January 1978 to December 2016. As this period covers

the financial crisis that began in 2008 we use as our estimation period the 336 monthly

observations from January 1980 to December 2007; observations from the end of 1979 are

used as conditioning variables. As the data are sampled as stocks it is easy to derive the

corresponding quarterly series by taking every third monthly observation, which results in

112 quarterly systematically sampled observations.7

Estimation results for the CARMA(2, 1) model are given in Table 1. The parameter

estimates appear to be well determined (in terms of the ratios of estimates to standard

errors) at both data frequencies and show a broad degree of consistency across frequencies.

It should also be stressed that the estimates using monthly data are obtained with a sample

size that is three time larger than with quarterly data and so some differences are to be

expected.

Table 2 contains the estimation results when the underlying model is a discrete time

ARMA(2, 1) model. The column headed Quarterly1 takes into account the fact that the

6The observations are the end-of-month values so that the series is genuinely of the stock variety.
7The quarterly data are then end-of-quarter values.
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quarterly data are obtained from the monthly data by systematic sampling and also show a

broad degree of consistency across sampling frequencies. However, ignoring the systematic

sampling means, effectively, that different parameters are being estimated, and this is clear

in the column headed Quarterly2 in which the estimates are rather different from those at

the monthly frequency.

The results in Tables 1 and 2 are illustrative of two important features. The first shows

the importance of taking into account the systematic sampling (or temporal aggregation)

that is inherent when dealing with a variable observed at two or more frequencies. Whether

the fundamental dynamics are assumed to be in continuous time or at a pre-determined

discrete time interval it is the case that the lower frequency variables satisfy models whose

parameters depend on those characterising the model governing the fundamental process.

Such dependencies should be taken into account if knowledge of the fundamental dynamics

is to be obtained. Second, and conversely, ignoring the systematic sampling (or temporal

aggregation) can lead to rather different inferences about the dynamics of a variable being

drawn. In the interest rate examples examined here it would perhaps be difficult to justify

the fundamental dynamics evolving at a monthly frequency in view of the interest rate being

subject to frequent changes even within the period of a day, so a continuous time underlying

model may be deemed more appropriate here. But the effects of accounting for systematic

sampling can be seen even in the discrete time ARMA models.

5.2. Mixed-frequency Oil price and Economic output

We explore the relationship between US output, as measured by real GDP in trillions of

chained 2009 dollars, and the oil price, as measured by the price of West Texas Intermediate

in dollars per barrel, since the end of the great moderation. The data, from the Federal

Reserve bank of St Louis, range from the first quarter of 2008 to the third quarter of 2016.

While the oil price is available for most days, the price indices required to deflate them are

only available monthly and so we use the end-month price deflated by the CPI index for that

month. Data for real GDP are only available quarterly, expressed as an annual rate of flow.

In common with most authors who have examined these series, see for example Hamilton

(1996), we find that both time series showed strong evidence of unit root behaviour with

augmented Dickey Fuller test statistics that are insignificant at the 10 per cent level (and

significant at the 2 per cent level once differenced), but find no evidence of a cointegrating

relationship8. Non-stationary but not cointegrated data are consistent with the specification

in (1) with p = 2 and A0 = 0.

We define the 2× 1 vector x(t) = [Oil(t), GDP (t)]′ and consider two candidate models

nested within a continuous time ARMA(2, 1) model, the continuous time CARIMA(1, 1, 1)

and the continuous time CARIMA(1, 1, 0). Following the methods of Theorems 1 and 2,

both have an exact discrete representation

∆xt = f0 + F1∆xt−1 + ηt, t = 3, . . . , T, (24)

where xt = [Oil(t),
∫ t

t−1GDP (s)ds]
′ and ∆ = (1 − L) is the first difference operator. The

discrete time disturbance vector ηt = (η1,t, η2,t)
′ has a a second-order moving average repre-

8For example, using the end quarter figure for the oil price.
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sentation in both models, with the CARIMA(1, 1, 1) offering more flexibility in its autoco-

variance structure.

To account for the unavailability of GDP at the monthly frequency we modify Theorem

2 in Chambers (2016),9 which proposes a representation for mixed frequency flow data

following a continuous time AR(1) process. We set our model in terms of Xt = s(L)2∆xt,

where

s(z)2 =

(

1− z3

1− z

)2

= 1 + 2z + 3z2 + 2z3 + z4.

The first ‘dose’ of s(L) is required to capture the flow nature of the low frequency GDP

data while the second changes the differencing from the high to the low frequency. This

(differenced) data series then has the representation

Xt = 9f0 + F1Xt−1 + s(L)2ηt, t = 3, . . . , T, (25)

with the factor of 9 before f0 reflecting the impact of s(z)2 on the intercept. While the high

frequency oil price component of Xt =
∑2

j=0(xt−j−xt−3−j) is available for t = 1, 2, 3, . . . , T ,

the low frequency GDP component is only available for t = 3, 6, 9, . . . , T . Representations

for such mixed frequency data are available in equations (15–18) of Chambers (2016) but

require modification of the covariance structure of the disturbance for the higher power of

s(L) and the the second order moving average representation of ηt, see the appendix for

further details.

Table 3 contains the estimation results for both models. Given the short and relatively

turbulent period under consideration it is perhaps unsurprising that the drift term, a0 proved

to be insignificant and so was omitted from the final specifications. Both models have coeffi-

cients in the stationary region, after differencing, the eigenvalues of A1 are −2.9414, −0.6652

for the CARIMA(1, 1, 0) −0.4373,−0.1552 in the CARIMA(1, 1, 1) specification. It is worth

commenting that its higher eigenvalues indicate more persistence in the CARIMA(1, 1, 1)

specification, as shown by the fact that their exponentials are the eigenvalues of the discrete

representation AR matrices, F1. The likelihood ratio test statistic between the two model,

which is asymptotically chi-squared distributed with four degrees of freedom, is in excess

of 13, strongly suggesting the CARIMA(1, 1, 1) specification be preferred. Individually, the

elements of Θ on the principal diagonal are both significantly different from zero. For a

first order moving average, stability of the MA roots corresponds to the eigenvalues of Θ

having positive real parts. To ensure this property, the initial values for Θ were chosen to

be positive and a penalty imposed if its eigenvalues became negative. The eigenvalues of the

estimated Θ are 1.0746 and 5.0586.

6. Concluding comments

This paper has explored the structure of state space representations of continuous time

ARMA processes. Furthermore, it has provided exact discrete time representations for data

generated by a continuous time ARMA(p, q) system in the general case where the data may

be stocks, flows, or a combination of the two. We have demonstrated that, once flow variables

are used, an ARMA(p, p) without differencing the stock variables is an appropriate discrete

9As (24) describes the representation for mixed stock-flow data based on Theorem 1 above we do not need
to use Theorem 3 in Chambers (2016).
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time representation, in line with the results for higher orders of discrete time aggregation.

Intermediate results can be used to estimate the expectation and variance of the state vector

conditional on p observations. We have demonstrated the usefulness of this approach in

applications estimated over a range of frequencies and on mixed stock-flow mixed frequency

data.
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Table 1

Estimates of CARMA(2, 1)

for short-term interest rate

Monthly Quarterly

a0 10.1596 8.2617

(5.2681) (2.6236)

A0 −1.4951 −1.2012

(0.7395) (0.3697)

A1 −5.8521 −4.3776

(2.5278) (1.3153)

θ1 0.1611 0.1981

(0.0686) (0.0553)

σu 11.5877 8.9555

(5.3051) (3.0998)

Robust standard errors in

parentheses.

Table 2

Estimates of ARMA(2, 1)for short-term

interest rate

Monthly Quarterly1 Quarterly2

φ0 0.0558 0.0481 0.3120

(0.0333) (0.0262) (0.1664)

φ1 1.6054 1.6872 1.2894

(0.1281) (0.0819) (0.1679)

φ2 −0.6136 −0.6941 −0.3347

(0.1256) (0.0807) (0.1613)

ψ −0.5951 −0.6557 −0.2742

(0.3667) (0.0995) (0.1814)

σǫ 0.5694 0.7241 0.9654

(0.0634) (0.0316) (0.0323)

Robust standard errors in parentheses.
1 Takes account of temporal aggregation.
2 Does not take account of temporal

aggregation.
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Table 3. Estimates of CARIMA models for GDP and oil prices

CARIMA(1, 1, 0) CARIMA(1, 1, 1)

A1 A1 Θ

Continuous time model parameters

Oil price −2.9300 −0.0812 −0.5053 −0.9050 1.0836 −6.7083
(1.2457) (2.0592) (0.1890) (1.0404) (0.3814) (5.9868)

GDP −0.3204 −0.6767 0.0262 −0.0873 −0.0053 5.0496
(0.04577 (0.5392) (0.0612) (0.0526) (0.0084) (1.4457)

logL 227.2783 233.8070

Exact discrete time model parameters

F1 F1

Oil price 0.0626 −0.0114 0.5487 −0.6490

GDP −0.3896 0.5043 0.0255 0.9173

Robust standard errors in parentheses.

Appendix

The dimensions and forms of the vectors and matrices used in (17) are:

M̄ : m(r + n)× (m+ 1)r; R : (m+ 1)r ×m(r + n);

M̂ : r ×m(r + n); N : m(r + n)× (m+ 1)n;

Nj : m(r + n)× n (j = 1, . . . ,m+ 1); Ns
m+1 : m(r + n)× ns;

w̄t : (m+ 1)r × 1; x̄t : (m+ 1)n× 1;

et : m(r + n)× 1; c : m(r + n)× 1.

Partitions of matrix exponentials

The following partitions are needed to establish Theorems 1 and 2. Given the matrix A we can write,

for integer j,

[hH]j =

[

0 Sf
0

0 hA

]j

=

[

0 Sf
0 (hA)j−1

0 (hA)j

]

.

Applying the formula for the matrix exponential we see that

ehH =

















I Sf
0

(

I +
∞
∑

j=2

(Ah)j−1/j!

)

0 I +
∞
∑

j=1

(Ah)j/j!

















=

[

I Sf
0Φ

0 eAh

]

,

where Φ = I +
∑

∞

j=2(Ah)j−1/(j)! =
∫ 1

0
eAhsds. Since the first nf columns of Hj (for j > 0) contain only

zeros, the top left nf square of C is equal to the identity.
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The following sub-matrices constitute the partitions of C used in Theorems 1 and 2.

C11 =

[

0nf×nf Φ[ns + 1:n, 1:ns]

0ns×nf eAh[1 :ns, 1:ns]

]

≡

[

0 Cf
11

0 Cs
11

]

,

C12 =

[

Φ[ns + 1:n, ns + 1:np]

eAh[1 :ns, ns + 1:np]

]

≡

[

Cf
12

Cs
12

]

,

C21 =
[

0np×nf
, eAh[ns + 1:np, 1:ns]

]

≡ [0, Cs
21] ,

C22 = eAh[ns + 1:np, ns + 1:np],

where B[a :b, c :d] denotes the sub-matrix containing rows a to b and columns c to d of the matrix B. Defining

C̃11 = S1e
HhS′

1, the matrix

W = C̃11 − C12C
−1
22 C21 =

[

Inf Cf
11 − Cf

12C
−1
22 Cs

21

0ns×nf Cs
11 − Cs

12C
−1
22 Cs

21

]

≡

[

Inf W f

0ns×nf W s

]

(A1)

is the Schur complement of C22 in the matrix eHh. Since eHh is non-singular, Assumption 1 implies that

both W and W s are non-singular.

The following lemmas establish the ranks of the large partitioned matrices needed in Theorems 1 and

2. The proofs are well-known in the linear systems literature but are included for completeness. Lemma

A1 establishes the necessary and sufficient conditions for the Popov-Belevitch-Hautus eigenvector tests (see

Kailath, 1980, p.135), which are then deployed in Lemmas A2 and A4. Lemma A3 considers the elimination

of unobservable variables in the event that assumptions 1 and 2 do not hold.

Lemma A1. Under Assumptions 1 and 2, the nullspace of C12 does not contain any (non-trivial) eigenvectors

of C22.

Proof

Let d be an eigenvector of C22 such that C12d = 0. Then the n+ r vector q = (0′, d′)′ must be an eigenvector

of eH . Since this is an exponential, the associated eigenvalue, λ > 0, and [H − log λIr+n]q = 0. Using (8),

this gives

q[n+ 1:n+ nf ] = q[1 :nf ] log λ,

Ap−1q[n
f + 1:nf + n] + q[nf + n+ 1:nf + 2n] = q[nf + 1:nf + n] log λ,

Ap−2q[n
f + 1:nf + n] + q[nf + 2n+ 1:nf + 3n] = q[nf + n+ 1:nf + 2n] log λ,

...
...

...

A1q[n
f + 1:nf + n] + q[nf (p− 1)n+ 1:nf + pn] = q[nf (p− 2)n+ 1:nf + (p− 1)n+ 1] log λ,

A0q[n
f + 1:nf + n] = q[nf (p− 1)n+ 1:nf + pn] log λ.

Since q[1 : n] = 0 the top line implies that q[nf + 1 : nf + n] = 0. In the second line this implies that

q[nf + n+ 1:nf + 2n] = 0 and a recursive argument establishes that q = 0 and hence d = 0. �

Lemma A2. Under Assumptions 1 and 2, the matrix M̄ has full column rank for m ≥ r/n.

Proof

Suppose there were an (m+1)r non-null vector d = [d′1, d
′

2, . . . , d
′

m+1]
′ such that M̄d = 0. Given Assumption

1, it would have to be the case that C22di = di−1 and C12di = 0, for i = 2, 3, . . . ,m + 1, or equivalently, a

non-null r vector dm+1 such that























C12

C12C22

C12C
2
22

...

C12C
m
22























dm+1 ≡ M∗dm+1 = 0.
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Hence M̄ has full column rank provided the matrix M∗ does. The matrix M∗ has the form of the observability

matrix of a linear system with transition matrix C22 and observation matrix C12. It is well known from the

linear systems literature – see, for example, Theorems 6.4 and 6.5 of Szidarovsky and Bahill (1991) – that

Lemma A1 is necessary and sufficient forM∗ to have full column rank (and for such a system to be observable),

but the following is included for completeness.

Suppose that M∗ has rank k < r. Let the k× r matrix G1 consist of the k linearly independent rows of

M∗, spanning its rowspace, and let G2 be an r − k × r matrix spanning the rest of r space. Then the r × r

matrix

G =

[

G1

G2

]

,

is non-singular. Partition its inverse G−1 = [ B1 B2 ], where B2 is r×r−k, then it follows that G1B2 = 0.

Then M∗B2 = 0 as G1 spans the rowspace of M∗ and B2 spans the r − k dimensional nullspace of M∗. It

then follows that C12B2 = 0 and that G1C22B2 = 0 as space spanned by the columns of B2 is invariant under

C22. We can therefore write Given that

V = GC−1
22 G−1 =

[

V11 0

V12 V22

]

, Z = C12G
−1 = [Z1, 0] , (A2)

where V11 is k× k and Z1 has k columns. Let q 6= 0 be an arbitrary r− k eigenvector of V22 with associated

eigenvalue, λ, so that the r vector v = [0′, q′]′ is an eigenvector of V in the nullspace of Z. Let x = G−1v 6= 0.

Then

C−1
22 x = G−1GC−1

22 G−1Gx = G−1V v = G−1vλ = xλ, and C12x = Zv = 0.

As Lemma A1 shows that such no eigenvectors of C−1
22 lie in the nullspace of C12 then M̄ has full column

rank. �

Lemma A3. If the matrix M̄ is of rank k < m then the dimension of the unobservable state variables in

(15) and (16) can be reduced to k.

Proof

Suppose M∗ has rank k < r. Define a new unobservable variable w̃th = Gwth, and rewrite (15) and (16) as

xth = c1 + C11xth−h + C12G
−1w̃th−h + ǫ1,th, (A3)

w̃th = Gc2 +GC21xth−h +GC22G
−1w̃th−h +Gǫ2,th, (A4)

Partitioning w̃th = [w̃′

1,thw̃
′

2,th]
′, the expressions in (A2) mean that the columns of C12G

−1 relating the r− k

vector w̃′

2,th−h to xth in in (A3) and the block of GC22G
−1 relating it to the k vector w̃1,th, in (A4) are zero.

We may therefore write the system as

xth = c1 + C11xth−h + Z1w̃1,th−h + ǫ1,th, (A5)

w̃1,th = G1c2 +G1C21xth−h + V11T1w̃1,th−h +G1ǫ2,th, (A6)

w̃2,th = G2c2 +G2C21xth−h + V12w̃1,th−h + V22w̃2,th−h +G2ǫ2,th, (A7)

Since w̃2,th neither appears in, nor is not needed to remove w̃1,th−h from, (A5), we are free to ignore (A7)in

deriving the exact discrete time representation, reducing the dimension of the unobservable vector from r, to

k.

Lemma A4. Under Assumptions 1 and 2, with m = p and 0 < ns < n the matrix
[

M̄, Ns
p+1

]

is non-singular.

Proof

Suppose there were an (p+ 1)r non-null vector d = [d′1, d
′

2, . . . , d
′

p+1]
′ and a ns non-null vector z such that

M̄d + Ns
p+1z = 0. Following the argument used in Lemma A2, it must be that di = C−1

22 di−1, C12di = 0

(i = 2, 3, . . . , p), while dp = C22dp+1 − Cs
21z and C12dp+1 − Cs

11z = 0. Pre-multiplying the penultimate
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expression by C−1
22 and substituting in this is equivalent to a non-null pn vector, (d′1, z

′)′, such that

















C12C
−1
22 0

C12C
−2
22 0

...
...

C12C
−p
22 C12C

−1
22 Cs

21 − Cs
11

















[

d1
z

]

= 0.

Note that C12C
−1
22 Cs

21 − Cs
11 is (−1) times the final ns columns of W . Using (A1) the bottom block row

produces

−W sz = Cs
12C

−p
22 d1 ⇒ z = −(W s)−1Cs

12C
−p
22 d1,

−W fz = Cf
12C

−p
22 d1 ⇒ W f (W s)−1Cs

12C
−p
22 d1 = Cf

12C
p
22d1,

and hence an equivalent condition is the non-singularity of the r × r matrix,

W̄ =























C12C
−1
22

C12C
−2
22

...

C12C
−(p−1)
22

W ∗C
−(p−1)
22























,

where W ∗ =
[

Inf , −W f (W s)−1
]

C12C
−1
22 has full row rank and can be shown to contain the top nf rows of

S1e
−HhS′

2. The matrix [C′

12, W
∗′]

′

must also have full row rank, otherwise there would exist n vectors z1 6= 0

and z2 6= 0 such that z′1C12C
−i
22 + z′2C12C

−i−1
22 = 0 and M∗

p would have rank less than r, in contradiction to

Lemma A2. Identical arguments to Lemma A2 establish that the matrix







































(

C12

W ∗

)

C−1
22

(

C12

W ∗

)

C−2
22

...
(

C12

W ∗

)

C
−(p−1)
22







































,

has full column rank r. The rows of W ∗C−i
22 are not linearly independent of the rows of C12C

−(i+1)
22 (i =

1, . . . , p− 2) and can be withdrawn from the matrix without reducing its rank, leaving W̄ . �

Proof of Theorem 1

(a) The existence of an (m + 1)r ×m(r + n) matrix R such that RM̄ that is non-singular follows naturally

from Lemma A2. (b) Pre-multiplying (17) by R and solving leads to

wth−h = M̂ [c+Nx̄th + eth] , (A8)

where M̂ = [Ir, 0r×mr][RM̄ ]−1R. The matrices Fj (j = 1, . . . ,m + 1) and vector f follow directly from

substituting back into (15). The error process, ηth, can be written

ηth = ǫ1,th + C12M̂eth = ǫ1,th + C12

m
∑

i=1

[

M̂1,iǫ1,th−ih + M̂iǫ2,th−ih

]

=

∫ 1

0

{

S1C̃(r)Θ̃hu(r) + C12

m
∑

i=1

[

M̂1,iS1 + M̂iS2

]

C̃(r)Θ̃hu(r − i)

}

dr.

The covariance structure of ηth then follows from the properties of u(t). �
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Proof of Theorem 2

(a) The p(r + n)× ns matrix Ns
p+1, which contains ns columns of the non-singular matrix eHh, appended

with additional rows of zeros, has rank ns and the dimension of its left nullspace is p(r+ n)− ns = (p+ 1)r.

Let R denote any matrix whose rows span this space. RM̄ is non-singular provided the column space of M̄

and the nullspace of R are disjoint. Since, by construction, the nullspace of R is spanned by the columns of

Ns
p+1, this follows from Lemma A4. (b) Given this choice of R, theorem 1 then gives the coefficients of an

ARMA(p+1, p) process but with Fp+1 = 0. Since any matrix, R̃, whose rows span the left nullspace of Ns
p+1

can be written ΥR, where Υ is a (p+ 1)r invertible matrix, the representation is unique. �

Mixed Frequency CARIMA (1,1,1) process

In the main, the formulae in Theorem 2 of Chambers (2016) are easily adapted from the CARMA(1,0)

to the CARIMA(1,1,1) case by the replacement of s(L) with s(L)2 throughout, including in the construction

of the high-frequency data. The exception is the covariance structure of the disturbance term of the mixed

frequency process, denoted ut in that paper, which instead has a second order moving average representation

resulting from the higher orders of s(z)2 and the second order moving average structure of ηt. Taking these

in order, the matrix polynomial Fη(z) =
∑2

j=0 Fη,jz
j remains as defined on page 401 of Chambers (2016)

but the matrix polynomial H(z) discussed in lemma 1 of that paper becomes

H(z) =
6
∑

i=0

Hiz
i = Fη(z)s(z)

2

= Fη,0 + (2Fη,0 + Fη,1)z + (3Fη,0 + 2Fη,1 + Fη,2)z
2

+ (2Fη,0 + 3Fη,1 + 2Fη,2)z
3 + (Fη,0 + 2Fη,1 + 3Fη,2)z

4 + (Fη,1 + 2Fη,2)z
5 + Fη,2z

6.

The formulae for E
{

ηtη
′

t−j

}

≡ Γj , given in Theorem 1 above are non-zero for j = 0, 1, 2. The expressions for

Ωu,j ≡ E
{

utu
′

t−3j

}

follow from the convolution of this matrix polynomial with covariance structure of {ηt}

Ωu,0 = Ω00 +Ω01 +Ω′

01 +Ω02 +Ω′

02,

Ωu,1 = Ω10 +Ω11 +Ω12 +Ω13 +Ω14 +Ω15,

Ωu,2 = Ω20 +Ω21 +Ω22,

where,
Ω00 =

∑6
i=0 HiΓ0H

′

i, Ω01 =
∑5

i=0 HiΓ1H
′

i+1, Ω02 =
∑4

i=0 HiΓ2H
′

i+2,

Ω10 =
∑3

i=0 Hi+3Γ0H
′

i, Ω11 =
∑4

i=0 Hi+2Γ1H
′

i, Ω12 =
∑5

i=0 Hi+1Γ2H
′

i,

Ω13 =
∑2

i=0 Hi+4Γ
′

1H
′

i, Ω14 =
∑1

i=0 Hi+5Γ
′

2H
′

i,

Ω20 = H6Γ0H
′

0, Ω21 =
∑1

i=0 Hi+5Γ1H
′

i, Ω22 =
∑2

i=0 Hi+4Γ2H
′

i.
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