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Photoelectric Properties of InAs/GaAs Quantum

Dot Photoconductive Antenna Wafers
Andrei Gorodetsky, Amit Yadav, Eugene Avrutin Member, IEEE, Ksenia A. Fedorova Member, IEEE, and

Edik U. Rafailov Senior Member, IEEE

Abstract—In this paper, the study of the photoconductivity in
self-assembled InAs/GaAs quantum dot photoconductive antenna
in the wavelength region between 1140 nm and 1250 nm at
temperatures ranging from 13 K to 400 K is reported. These
antennas are aimed to work in conjunction with quantum dot
semiconductor lasers to effectively generate pulsed and CW
terahertz radiation. For the efficient operation, laser wavelengths
providing the highest photocurrent should be determined. To
study the interband photoconductivity of quantum dot photo-
conductive antennas, at room and cryogenic temperatures, we
employed a broadly-tunable InAs/GaAs quantum dot based laser
providing a coherent pump with power exceeding 20 mW over
a 100 nm tunability range. The quantum dot antenna structure
revealed sharp temperature-dependent photoconductivity peaks
in the vicinity of wavelengths, corresponding to the ground
and excited states of InAs/GaAs quantum dots. The ground
state photoconductivity peak vanishes with a temperature drop,
whereas the excited state peak persists. We associate this effect
with different mechanisms of photoexcited carriers extraction
from quantum dots.

Index Terms—Quantum dots, semiconductors, photoconduc-
tivity

I. INTRODUCTION

THE generation of broadband terahertz (THz) radiation,

which is strongly desired for spectroscopic, imaging and

security applications, particularly in a form of compact and

easily transportable devices, is a major task for research and

industry nowadays [1]. In this respect, photoconductive anten-

nas (PCAs) are the most promising sources [2]. These antennas

are compact, do not require high-power laser pumps and can

operate in both ultrabroadband pulse and tunable continuous

wave (CW) regimes of THz generation at room temperatures.

Previously, when only low temperature grown gallium arsenide

(LT-GaAs) was used as a PCA semiconductor substrate, bulky,

mechanically-unstable and expensive Ti:Sapphire lasers were

required to provide a pump at ∼800 nm wavelength, thus

making the whole THz generating system large, unsteady and

expensive [3]. Thus alternatives such as design of materials
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with a smaller bandgap in conjunction with a fiber laser

pump [4], or the use of InAs/GaAs quantum dot based PCA

wafers with compact semiconductor lasers fabricated from

identical QD based superlattices [5], [6], have been proposed.

Materials containing InAs quantum dots (QDs) inside the

GaAs lattice are one of the most versatile media in semi-

conductor photonic devices [7]. They have been employed

as the gain medium in diode lasers [8], [9] and amplifiers

[10], [11], and to form integrated saturable absorbers in short

pulse in-plane diode laser emitters [12] and semiconductor sat-

urable absorber mirrors (SESAMs) [13], [14]. InAs/GaAs QD

based lasers have demonstrated sub-ps pulses at reasonably

high powers [15], [16]. The exploitation of the photocurrent

generation in QD based wafers resulted in their use in infrared

(IR) photodetectors [17] and photovoltaic devices [18], [19].

Recently, QD based PCAs have been demonstrated to suc-

cessfully generate coherent THz radiation in the pulsed [6],

[20] and CW [5], [6], [21] regimes. THz generation was

achieved both within a Ti:Sapphire (GaAs bandgap) and a

compact QD-based laser diode (QD bandgap) pumps. To

stimulate further progress in the quantum dot based PCA

THz systems, conversion-efficiency related properties of the

QD wafers, which are the key enabling element of the novel

system, should be systematically studied. In general, there

are two essential parameters of a PCA substrate that are

responsible for the efficiency of THz generation – the wafer

photoconductivity as a function of pump wavelength and the

lifetime of the photoexcited carriers.

Photoconductivity of the QD materials has been extensively

studied in the mid- [22]–[25] and even far- [26] IR spectral

range, where it occurs due to intersubband transitions at

lower temperatures, with the interest in using such materials

as mid-IR cryogenically cooled sensors. Also, QDs were

demonstrated to enhance the performance of solar cells [19]

by broadening their operational spectrum from visible to IR.

However, to the best of our knowledge there has been no

specific interest in interband photoconductivity studies. Some

works reporting research on IR QD photoconductivity, had

been published earlier [25], [27]–[31], but with a different

focus, on different samples and pump/bias conditions.

In this paper, we report a study of the InAs/GaAs QD PCA

photoconductivity spectral response in the operational band

of a compact broadly-tunable semiconductor laser utilising a

gain medium containing similar InAs/GaAs QDs. The choice

for the pump source used in the study was motivated by

the promising results of THz generation demonstrated from

a similar system [5].
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II. SAMPLE GROWTH AND ANTENNA FABRICATION

The InAs/GaAs QD PCA structures were grown by molec-

ular beam epitaxy (MBE) in the Stranski-Krastanow regime

on an undoped GaAs substrate. The general layout of QD

structures used for THz photoconductive antennas is shown

in the inset of Fig. 1(a). The structure contained 40 equally

spaced layers of InAs/GaAs QDs, and the QDs sizes were pre-

calculated to have the ground state, the first and the second

excited states at 1218 nm, 1158 nm, and 1141 nm, respectively.

The photoluminescence spectrum of the structure is shown in

Fig. 1(a).

To ensure the uniformity of the QD layers, each of them

was grown by deposition of 2.3 monolayer (ML) InAs at

500◦ C, capped by 4 nm of In0.15Ga0.85As, and 6 nm GaAs

afterwards. Then the temperature was raised to 580◦ C in order

to desorb segregated In, and only after that, the subsequent

30 nm GaAs spacer layer was grown. Prior to the growth of

each QD layer, the GaAs surface was annealed under an As2

flux for 5 minutes to flatten the surface. The Atomic Force

Microscope (AFM) analysis of the structure gave an estimate

of the QD density of about 3× 1010 cm−2 per layer.

The operating wavelengths of the QD active part of the PCA

were selected to fall into the operation band of previously

demonstrated compact ultrafast semiconductor lasers [9]. The

PCA wafer structure also had a 30 nm top layer of LT-GaAs.

This layer is very thin (in comparison with the ∼ 1.4 µm

thick active region), and thus its influence on the conductivity

and lifetimes of the sample is negligible. The purpose of this

layer is to increase the dark resistance and allow for better

contact with metallic PCA electrodes. An extra spacer layer

of GaAs was grown under the active photoconductive region

on an AlAs/GaAs Distributed Bragg Reflector (DBR) of 30

layers. The need for the DBR is two-fold: to reflect the pump

beam thus reducing the IR power at the antenna output, and to

allow the possibility for full optical cavity-type optimization

of the structure [20].

The fabrication of a metallic antenna over a semiconductor

substrate was done using a standard UV photolithography and

wet etching of the surface Ni/Au (40-nm/200-nm, respectively)

features, and a post-process annealing to increase Ohmic

contact between the antenna metal and the LT-GaAs surface.

The antenna used in this experiment had a coplanar stripline

design with a photoconductive gap of 50 µm and an overall

contact thickness of 240 nm (Fig. 1 (b)). Similar PCAs were

previously used for the generation of pulsed [6] and CW [5]

THz radiation.

III. EXPERIMENTAL SETUP

In this work, InAs/GaAs self-assembled QD structures

similar to those described in ref. [15], [32] were used for

the fabrication of a laser chip. The experimental setup layout

is shown in Fig. 1 (b). The core element of the laser pump

source consisted of an InAs/GaAs QD laser diode with an

active region containing 10 non-identical layers of InAs QDs

grown on a GaAs substrate by MBE in the Stranski-Krastanow

mode. The laser chip ridge waveguide had a width of 5 µm

and a length of 4 mm, and was angled at 5◦ with respect

Fig. 1. (a) Normalized photoluminescence spectrum with the ground state
(GS), the first excited state (ES1) and the second excited state (ES2) indicated;
(b) the simplified schematic of the experimental setup. Inset: QD PCA
substrate layout.

to the normal of the back facet. Both laser chip facets had

conventional anti-reflective (AR) coatings with total estimated

reflectivity of 10−2 for the front facet and less than 10−5 for

the angled facet. The laser chip was mounted on a copper

heatsink with its temperature controlled by a thermo-electric

cooler. The laser was set up in a quasi-Littrow configuration,

similar to that reported in [32]. In this configuration, the

radiation emitted from the back facet of the laser chip was

collected with an AR-coated 40x aspheric lens (numerical

aperture of 0.55) and coupled onto a diffraction grating (1200

grooves/mm), which reflected the first order diffraction beams

back to the laser chip. Wavelength tuning was achieved by

rotating the diffraction grating to select the wavelength of the

light reflected back to the laser chip. The laser output was

monitored using an optical spectral analyzer (OSA Advantest

Q8383) with the resolution of 0.1 nm and a broadband

thermopile power meter. With this laser, broad tunability of

182 nm (between 1128 nm and 1310 nm), at room temperature

(20◦ C) and an operation current of 1.7 A giving a maximum

output power of 435 mW, was achieved [5].

This broadly-tunable laser was used for pumping the

InAs/GaAs QD PCA in CW single wavelength regime to ex-

cite photocarriers and study the wavelength dependence of this

process. Due to the use of a cryostat in our experiments which

affected the ambient temperature, the laser tunability range
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was limited on the shorter wavelength side. Nevertheless, the

laser operating range covered the wavelengths of interest – the

InAs/GaAs QD ground state (GS) and excited states (ESs). The

laser was tuned in the range between 1140 nm and 1250 nm,

with its bias current adjusted between 0.9 A and 1.6 A to

keep the output laser optical power within the same order of

magnitude for all wavelengths (20 mW – 100 mW).

To investigate the photoconductivity of the QD antenna at

temperatures ranging from 13 K to 400 K under high vacuum

(∼ 10−7 torr), the antenna was mounted on a copper holder

inside a closed cycle Helium based cryostat ”Janis CCS-450”.

Portable probes were used to make an electrical connection

with the bond pads of the QD antenna. Next, to record the

photo current at all excitation wavelengths, a semiconductor

charaterization system ”Keithley 4200 SCS” was used to apply

a DC voltage sweep from –20 V to +20 V at all temperatures

corresponding to the field values of –4 kV/cm to +4 kV/cm

inside the antenna gap.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

During the experiment, at all temperatures the PCA was kept

at similar pressure conditions under vacuum in the cryostat

at all temperatures. The cryostat had a quartz window that

allowed for the 90% transmission of the laser pump.The

pump radiation was collected into the PCA gap with an AR-

coated plano-convex lens with the focal length of 100 mm,

and the resulting spot fully covered the gap, resulting in the

optical power density not higher than 8 kW · cm−2. Position

of the pump spot was tuned to achieve the minimum antenna

resistance.

At each temperature under the investigation, the laser was

gradually tuned within the 1140 nm – 1250 nm spectral

range, with its bias current adjusted to keep the output power

within the specified limits as mentioned above. The I-V curves

from the laser pumped PCA were recorded for every pump

laser wavelength. To distinguish photoinduced currents from

thermally excited ones, similar I-V curves were recorded for

the unpumped antenna and subsequently subtracted from the

photoconductivity curves.

Photoconductivity spectra of the QD based PCA at different

temperatures are shown in Fig. 2 The presented spectra corre-

spond to the antenna biased with 20V DC, which corresponds

to the electric field of 4kV/cm across the gap. All spectra

reveal distinct peaks, clearly corresponding to the GS, ES1,

and, for higher temperatures, when the energy falls within

the laser operational range, the ES2.

Analyzing the dependence of the ground and first excited

state photocurrent peaks on temperature (Fig. 3 (a)), we find

that, while neither of them can be described perfectly by

a single activation energy (which is not surprising, since

the photocurrent is governed by interrelated processes of

interlevel relaxation and carrier escape, and the energy sep-

arations between levels are themselves somewhat temperature

dependent), the ground state peak amplitude can be fitted

reasonably well by an activation type curve with an activation

energy of ∼ 65 meV. This value is greater than the energy

separation between the ground state and the first excited state

Fig. 2. Photoconductivity spectra of PCA biased with 20V DC, at various
temperatures. Solid curves represent fitting with three (two for lower temper-
atures) gaussians, corresponding to GS and ES QD PCA photoconductivity
peaks.

(∼ 52 meV at room temperature) but appears to be quite

close to that between the ground state and the second excited

state (∼ 68 meV at room temperature), particularly given the

significant error bar in extracting the activation energy. This

indicates that thermal activation from the ground state to the

excited states (particularly the upper one), with subsequent fast

escape, plays a significant part in the carrier kinetics deter-

mining the photocurrent. The temperature dependence of the

lower excited state peak can be reasonably well described by a

thermal activation energy of ∼ 55 meV down to temperatures

of ∼ 80 K. Below that, the temperature dependence saturates,

indicating direct tunneling of carriers in the applied electric

field from this relatively shallow level as the main escape

mechanism at low temperatures.

The rising photocurrent at higher temperatures and even

more pronounced peaks suggest that, in accordance with

previous measurements of THz generation from similar PCAs,

these antennas can operate without saturation up to the highest

pump intensities studied here, and further research is needed

to reveal the limitations and intensity levels leading to sat-
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Fig. 3. (a) GS and ES1 Photoconductivity dependence on inverse temperature.
(b) Temperature dependence of GS, ES1 and ES2 photoconductivity peaks.
Dashed lines show Varshni relation approximation for the data.

uration. Similarly, an application of higher external electric

fields yields higher, yet resonantly dependent on the pump

photon energy, photocurrent, and the precise pump wavelength

selection is still the key enabling factor for the efficient

carrier excitation. However, significantly higher electric fields,

potentially available by using dielectric substrates instead of

SI-GaAs under an active region [33], may result in Stark shifts

of conductivity peaks, previously reported even at elevated

temperatures [29].

A blue shift in the GS photoconductivity peak with tempera-

ture, similar to the one observed by us, was previously reported

in [29], [34]. As can be seen from Fig. 3 (b), the temperature

dependence curves of the GS, ES1 and ES2 photoconductivity

peaks cross the room-temperature PL values at (ES1, ES2),

or below (GS curve), the room temperature and follow the

Varshni relation for bandgap [35]. Taking into account the

similar temperature dependence of PL peaks [36], one can

expect the temperature-dependent positions of the PL and

photoconductivity peaks (in the absence of strong extrinsic or

intrinsic electric fields) to coincide reasonably closely. Hence,

the PL peaks can give a clue for the best operating pump

wavelengths for the PCA.

Persistent photoconductivity under pump wavelengths

longer than 1120 nm [37] has been reported at lower tem-

peratures, but to the best of our knowledge no investigation

of the nature of carrier extraction and its variation with

temperature has been reported. The results look promising

for THz applications. Indeed, carrier generation and capture

processes in these THz QD wafers at room temperatures are

known to be fast enough to allow for the efficient generation

of pulsed THz radiation [6], as carrier lifetimes below 1 ps

are needed and have previously been reported [13], [38].

Importantly, the picosecond photoconductivity may differ from

that under the CW pump [39], so further experimental and

theoretical work is in order.

V. CONCLUSION

In conclusion, we presented a detailed study of the IR

photoconductivity in self-assembled InAs/GaAs quantum dots.

A compact semiconductor QD laser was used as a narrowband

coherent pump source. We have demonstrated the temperature

dependence of the photoconductivity spectra. The positions

and strengths of the photoconductivity peaks were found to

depend only on temperature; no spectral shifts due to an

external electric field were observed. At temperatures below

80 K, the GS photoconductivity is gradually vanishing, but

the ES photoconductivity persists. This effect is qualitatively

explained by different dominating mechanisms of carrier ex-

traction for these pumping conditions. The measured photo-

conductivity peaks are slightly blue-shifted with respect to

the PL peaks at room temperature, and have no resemblance

to the latter as regards the amplitude ratio. The distinctive

peaks in the conductivity spectrum correspond to the same in

the sample PL spectrum, which makes it possible to rely on

the PL data when selecting the optimal pump laser source.

The presence of such peaks confirms the promise of such QD

based photoconductive wafers as substrates for efficient THz

generators in the 1 – 1.3 µm pump wavelength range. The

underlying carrier extraction mechanisms offer a plausible

explanation for the absence of THz generation at GS pump

wavelengths, reported earlier [6].
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H. Venghaus, and M. Schell, “All-fiber terahertz time-domain spectrom-
eter operating at 1.5 µm telecom wavelengths,” Opt. Express, vol. 16,
no. 13, p. 9565, 2008.



5

[5] K. A. Fedorova, A. Gorodetsky, and E. U. Rafailov, “Compact All-
Quantum-Dot-Based Tunable THz Laser Source,” IEEE J. Sel. Top.

Quantum Electron., vol. 23, no. 4, pp. 1–5, 2017.
[6] R. R. Leyman, A. Gorodetsky, N. Bazieva, G. Molis, A. Krotkus,

E. Clarke, and E. U. Rafailov, “Quantum dot materials for terahertz
generation applications,” Laser Photon. Rev., vol. 10, no. 5, pp. 772–
779, 2016.

[7] N. N. Ledentsov, V. M. Ustinov, V. A. Shchukin, P. S. Kop’ev, Z. I.
Alferov, and D. Bimberg, “Quantum dot heterostructures: Fabrication,
properties, lasers (Review),” Semiconductors, vol. 32, no. 4, pp. 343–
365, 1998.

[8] D. Bimberg, N. Ledentsov, M. Grundmann, N. Kirstaedter, O. Schmidt,
M. Mao, V. Ustinov, A. Egorov, A. Zhukov, P. Kopv, Z. Alferov,
S. Ruvimov, U. Gsele, and J. Heydenreich, “Inasgaas quantum pyramid
lasers: Insitu growth, radiative lifetimes and polarization properties,”
Japanese Journal of Applied Physics, vol. 35, no. 2S, p. 1311, 1996.

[9] K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U.
Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external
cavity diode lasers,” Opt. Express, vol. 18, no. 18, p. 19438, 2010.

[10] E. U. Rafailov, P. Loza-Alvarez, W. Sibbett, G. S. Sokolovskii, D. A.
Livshits, A. E. Zhukov, and V. M. Ustinov, “Amplification of fem-
tosecond pulses over by 18 db in a quantum-dot semiconductor optical
amplifier,” IEEE Photon. Technol. Lett., vol. 15, pp. 1023–1025, 2003.

[11] Y. Ding, A. Alhazime, D. Nikitichev, K. Fedorova, M. Ruiz, M. Tran,
Y. Robert, A. Kapsalis, H. Simos, C. Mesaritakis, T. Xu, P. Bardella,
M. Rossetti, I. Krestnikov, D. Livshits, I. Montrosset, D. Syvridis, M. A.
Cataluna, M. Krakowski, and E. Rafailov, “Tunable Master-Oscillator
Power-Amplifier Based on Chirped Quantum-Dot Structures,” IEEE

Photonics Technol. Lett., vol. 24, no. 20, pp. 1841–1844, 2012.
[12] D. I. Nikitichev, K. A. Fedorova, Y. Ding, A. Alhazime, A. Able,

W. Kaenders, I. Krestnikov, D. Livshits, and E. U. Rafailov, “Broad
wavelength tunability from external cavity quantum-dot mode-locked
laser,” Appl. Phys. Lett., vol. 101, no. 12, p. 121107, 2012.

[13] E. U. Rafailov, S. J. White, A. A. Lagatsky, A. Miller, W. Sibbett, D. A.
Livshits, A. E. Zhukov, and V. M. Ustinov, “Fast quantum-dot saturable
absorber for passive mode-locking of solid-state lasers,” IEEE Photon.

Technol. Lett., vol. 16, pp. 2439–2441, 2004.
[14] R. Akbari, H. Zhao, K. A. Fedorova, E. U. Rafailov, and A. Major,

“Quantum-dot saturable absorber and Kerr-lens mode-locked Yb:KGW
laser with >450 kW of peak power,” Opt. Lett., vol. 41, no. 16, p. 3771,
2016.

[15] E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-
dot lasers,” Nat. Photonics, vol. 1, no. 7, pp. 395–401, 2007.

[16] M. A. Gaafar, A. Rahimi-Iman, K. A. Fedorova, W. Stolz, E. U. Rafailov,
and M. Koch, “Mode-locked semiconductor disk lasers,” Adv. Opt.

Photonics, vol. 8, no. 3, p. 370, 2016.
[17] H. C. Liu, M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard,

“Quantum dot infrared photodetectors,” Appl. Phys. Lett., vol. 78, no. 1,
p. 79, 2001.

[18] S. A. Blokhin, A. V. Sakharov, A. M. Nadtochy, A. S. Pauysov, M. V.
Maximov, N. N. Ledentsov, A. R. Kovsh, S. S. Mikhrin, V. M. Lantratov,
S. A. Mintairov, N. A. Kaluzhniy, and M. Z. Shvarts, “AlGaAs/GaAs
photovoltaic cells with an array of InGaAs QDs,” Semiconductors,
vol. 43, no. 4, pp. 514–518, 2009.

[19] K. A. Sablon, J. W. Little, V. Mitin, A. Sergeev, N. Vagidov, and
K. Reinhardt, “Strong Enhancement of Solar Cell Efficiency Due to
Quantum Dots with Built-In Charge,” Nano Lett., vol. 11, no. 6, pp.
2311–2317, 2011.

[20] A. Gorodetsky, N. Bazieva, and E. U. Rafailov, “Quantum-dot based
ultrafast photoconductive antennae for efficient THz radiation,” in SPIE

Proc., vol. 9737, 2016, p. 97370C.
[21] T. Kruczek, R. Leyman, D. Carnegie, N. Bazieva, G. Erbert, S. Schulz,

C. Reardon, S. Reynolds, and E. U. Rafailov, “Continuous wave terahertz
radiation from an InAs/GaAs quantum-dot photomixer device,” Appl.

Phys. Lett., vol. 101, no. 8, p. 081114, 2012.
[22] S. Sauvage, P. Boucaud, F. H. Julien, J.-M. Gerard, and V. Thierry-Mieg,

“Intraband absorption in n-doped InAs/GaAs quantum dots,” Appl. Phys.

Lett., vol. 71, no. 19, p. 2785, 1997.
[23] K. W. Berryman, S. A. Lyon, and M. Segev, “Mid-infrared photocon-

ductivity in InAs quantum dots,” Appl. Phys. Lett., vol. 70, no. 14, p.
1861, 1997.

[24] S. Maimon, E. Finkman, G. Bahir, S. E. Schacham, J. M. Garcia, and
P. M. Petroff, “Intersublevel transitions in InAs/GaAs quantum dots
infrared photodetectors,” Appl. Phys. Lett., vol. 73, no. 14, p. 2003,
1998.

[25] G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford,
E. Klem, L. Levina, and E. H. Sargent, “Ultrasensitive solution-cast

quantum dot photodetectors,” Nature, vol. 442, no. 7099, pp. 180–183,
2006.

[26] J. Phillips, K. Kamath, and P. Bhattacharya, “Far-infrared photoconduc-
tivity in self-organized InAs quantum dots,” Appl. Phys. Lett., vol. 72,
no. 16, p. 2020, 1998.

[27] J. J. Finley, M. Skalitz, M. Arzberger, A. Zrenner, G. Bohm, and
G. Abstreiter, “Electrical detection of optically induced charge storage
in self-assembled InAs quantum dots,” Appl. Phys. Lett., vol. 73, no. 18,
p. 2618, 1998.

[28] C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann,
N. D. Zakharov, D. Bimberg, and P. Werner, “Electron escape from InAs
quantum dots,” Phys. Rev. B, vol. 60, no. 20, pp. 14 265–14 268, nov
1999.

[29] P. W. Fry, I. E. Itskevich, S. R. Parnell, J. J. Finley, L. R. Wilson,
K. L. Schumacher, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji,
A. G. Cullis, M. Hopkinson, J. C. Clark, and G. Hill, “Photocurrent
spectroscopy of InAs/GaAs self-assembled quantum dots,” Phys. Rev.

B, vol. 62, no. 24, pp. 16 784–16 791, 2000.
[30] C. A. Leatherdale, C. R. Kagan, N. Y. Morgan, S. A. Empedocles, M. A.

Kastner, and M. G. Bawendi, “Photoconductivity in CdSe quantum dot
solids,” Phys. Rev. B, vol. 62, no. 4, pp. 2669–2680, 2000.

[31] E. H. Sargent, “Infrared Quantum Dots,” Adv. Mater., vol. 17, no. 5, pp.
515–522, 2005.

[32] K. A. Fedorova, M. A. Cataluna, I. Krestnikov, D. Livshits, and E. U.
Rafailov, “Broadly tunable high-power InAs/GaAs quantum-dot external
cavity diode lasers,” Opt. Express, vol. 18, no. 18, p. 19438, 2010.

[33] D. R. Bacon, A. D. Burnett, M. Swithenbank, C. Russell, L. Li, C. D.
Wood, J. Cunningham, E. H. Linfield, A. G. Davies, P. Dean, and
J. R. Freeman, “Free-space terahertz radiation from a LT-GaAs-on-quartz
large-area photoconductive emitter,” Opt. Express, vol. 24, no. 23, p.
26986, 2016.

[34] A. M. Nadtochiy, N. A. Kalyuzhnyy, S. A. Mintairov, A. S. Payusov,
S. S. Rouvimov, M. V. Maximov, and A. E. Zhukov, “Optical properties
of hybrid quantum-confined structures with high absorbance,” Semicon-

ductors, vol. 50, no. 9, pp. 1180–1185, 2016.
[35] K. P. O’Donnell and X. Chen, “Temperature dependence of semicon-

ductor band gaps,” Appl. Phys. Lett., vol. 58, no. 25, pp. 2924–2926,
1991.
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