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Abstract

We propose two semiparametric model averaging schemes for nonlinear dynamic time series

regression models with a very large number of covariates including exogenous regressors and auto-

regressive lags. Our objective is to obtain more accurate estimates and forecasts of time series by using

a large number of conditioning variables in a nonparametric way. In the first scheme, we introduce a

Kernel Sure Independence Screening (KSIS) technique to screen out the regressors whose marginal

regression (or auto-regression) functions do not make a significant contribution to estimating the

joint multivariate regression function; we then propose a semiparametric penalized method of Model

Averaging MArginal Regression (MAMAR) for the regressors and auto-regressors that survive the

screening procedure, to further select the regressors that have significant effects on estimating the

multivariate regression function and predicting the future values of the response variable. In the

second scheme, we impose an approximate factor modelling structure on the ultra-high dimensional

exogenous regressors and use the principal component analysis to estimate the latent common factors;

we then apply the penalized MAMAR method to select the estimated common factors and the

lags of the response variable that are significant. In each of the two schemes, we construct the

optimal combination of the significant marginal regression and auto-regression functions. Asymptotic

properties for these two schemes are derived under some regularity conditions. Numerical studies

including both simulation and an empirical application to forecasting inflation are given to illustrate

the proposed methodology.
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1 Introduction

Nonlinear time series modelling taking account of both dynamic lags of response variable and exogenous

regressors is of wide interest in applications. We suppose that Yt, t = 1, . . . , n, are n observations

collected from a stationary time series process, and often we are interested in the multivariate dynamic

regression function

m(x) = E(Yt

∣∣Xt = x), (1.1)

where Yt is the response variable, and Xt = (Z
⊺

t ,Y
⊺

t−1)
⊺

with Zt =
(
Zt1, Zt2, . . . , Ztpn

)⊺

and Yt−1 =

(Yt−1, Yt−2, . . . , Yt−dn)
⊺

being a pn-dimensional vector consisting of exogenous regressors and a vector

of dn lags of Yt, respectively. Here the superscript ⊺ stands for the transpose of a vector (or a matrix).

We allow that both pn and dn could increase with the sample size n, and that Zt could include lags of

the exogenous regressors and has a large dimension pn, allowed to be even larger than the sample

size n. Such an ultra-high dimensional time series setting poses a great challenge in estimating the

regression function m(x) and the subsequent forecast of the response.

When the dimension of Xt is low (say 1 or 2), it is well known that the conditional regression

function m(x) can be well estimated by using some commonly-used nonparametric methods such as

the kernel method, the local polynomial method, and the spline method (c.f., Green and Silverman,

1994; Wand and Jones, 1995; Fan and Gijbels, 1996). However, if Xt is of large dimension, owing to

the so-called “curse of dimensionality”, a direct use of nonparametric methods leads to a very poor

estimation and forecasting result. Hence, various nonparametric and semiparametric models, such

as additive models, varying coefficient models and partially linear models, have been proposed to

deal with the curse of dimensionality (c.f., Teräsvirta et al, 2010). A recent paper by Li et al (2015)

develops a flexible semiparametric forecasting model, termed “Model Averaging MArginal Regression”

(MAMAR). It seeks to optimally combine nonparametric low-dimensional marginal regressions, which

helps to improve the accuracy of predicting future values of the nonlinear time series.

The idea of the model averaging approach is to combine several candidate models by assigning

higher weights to better candidate models. Under the linear regression setting with the dimension

of covariates smaller than the sample size, there has been an extensive literature on various model

averaging methods, see, for example, the AIC and BIC model averaging (Akaike, 1979; Raftery et al,

1997; Claeskens and Hjort, 2008), the Mallows Cp model averaging (Hansen, 2007; Wan et al, 2010),

and the jackknife model averaging (Hansen and Racine, 2012). However, in the case of ultra-high

dimensional time series, these methods may not perform well and the associated asymptotic theory

fails. To address this issue, Ando and Li (2014) propose a two-step model averaging method for a

high-dimensional linear regression with the dimension of the covariates larger than the sample size

and show that such a method works well both theoretically and numerically. Recently Cheng and

Hansen (2015) study the model averaging of the factor-augmented linear regression by applying the

principal component analysis on the high-dimensional covariates to estimate the unobservable factor

regressors.
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In this paper, our main objective is to propose semiparametric ultra-high dimensional model

averaging schemes for studying the nonlinear dynamic regression structure for (1.1), which generalizes

the existing approaches. On the one hand, we relax the restriction of linear modelling assumed in

Ando and Li (2014) and Cheng and Hansen (2015), and on the other hand, we extend the recent

work of Li et al (2015) to the ultra high dimensional case, thereby providing a much more flexible

framework for nonlinear dynamic time series forecasting.

Throughout the paper, we assume that the dimension of the exogenous variables Zt, pn, may

diverge at an exponential rate of n, which implies that the potential explanatory variables Xt have

the dimension of pn + dn diverging at an exponential rate, i.e., pn + dn = O(exp{nδ0}) for some

positive constant δ0. To ensure that our semiparametric model averaging scheme is feasible both

theoretically and numerically, we need to reduce the dimension of the potential covariates Xt and

select those variables that make a significant contribution to predicting the response. In this paper we

propose two schemes to achieve the purpose of dimension reduction. The first scheme is called as the

“KSIS+PMAMAR” method. It reduces the dimension of the potential covariates by first using the

approach of Kernel Sure Independence Screening (KSIS), motivated by Fan and Lv (2008), to screen

out the unimportant marginal regression (or auto-regression) functions, and then apply the so-called

Penalized Model Averaging MArginal Regression (PMAMAR) to further select the most relevant

regression functions. The second scheme is called the “PCA+PMAMAR”method. In this scheme,

we assume that the ultra-high dimensional exogenous regressors Zt satisfy an approximate factor

model which has been popular in many fields including economics and finance (c.f., Chamberlain and

Rothschild, 1983; Fama and French, 1992; Stock and Watson, 2002; Bai and Ng, 2002, 2006), and

estimate the factor regressors using the Principal Component Analysis (PCA). Then, similarly to

the second step in the first scheme, the PMAMAR method is applied to further select the significant

estimated factor regressors and auto-regressors.

Under some regularity conditions, we develop the asymptotic properties of the proposed methods.

For the KSIS procedure, we establish the sure screening property, indicating that the covariates whose

marginal regression functions make a truly significant contribution to estimating the multivariate

regression function m(x) would be selected with probability approaching to one to form a set of

the regressors that would undergo a further selection in the PMAMAR procedure. The optimal

weight estimation obtained in the PMAMAR procedure is proved to have the well-known sparsity

and oracle property that the estimated values of the true zero weights are forced to be zero. For the

PCA approach, we show that the estimated latent factors are uniformly consistent at a convergence

rate that depends on both n and pn, and the kernel estimation of the marginal regression with the

estimated factor regressors is asymptotically equivalent to the same procedure with the rotated true

factor regressors. Furthermore, extensions of the proposed semiparametric approaches such as an

iterative KSIS+PMAMAR procedure will be discussed. In the simulation studies, we find that our

methods outperform some existing methods in terms of forecasting accuracy. We finally apply our

methods to forecasting quarterly inflation in the UK.

The rest of the paper is organized as follows. The two semiparametric model averaging schemes
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are proposed in Section 2. The asymptotic theory for them is then developed in Section 3. Section

4 discusses some extensions when the methods are implemented in practice. Numerical studies are

reported in Section 5 including two simulated examples and one empirical data example. Section 6

concludes. Proofs of the asymptotic results are given in a supplemental document.

2 Semiparametric model averaging

In this section, we propose two semiparametric model averaging approaches, which are named as the

KSIS+PMAMAR and the PCA+PMAMAR in Sections 2.1 and 2.2, respectively.

2.1 KSIS+PMAMAR method

As mentioned in Section 1, the KSIS+PMAMAR method is a two-step procedure. We first generalize

the Sure Independence Screening (SIS) method introduced by Fan and Lv (2008) to the ultra-high

dimensional dynamic time series and general nonparametric setting to screen out covariates whose

nonparametric marginal regression functions have low correlations with the response. Then, for the

covariates that have survived the screening, we propose a PMAMAR method with first-stage kernel

smoothing to further select the exogenous regressors and the lags of the response variable which

make significant contribution to estimating the multivariate regression function, and to determine an

optimal linear combination of the significant marginal regression and auto-regression functions.

Step one: KSIS. For notational simplicity, we let

Xtj =

{
Ztj, j = 1, . . . , pn,

Yt−(j−pn), j = pn + 1, . . . , pn + dn.

To measure the contribution made by the univariate covariate Xtj to estimating the multivariate

regression function m(x) = E(Yt

∣∣Xt = x), we consider the marginal regression function defined by

mj(xj) = E
(
Yt|Xtj = xj

)
, j = 1, . . . , pn + dn,

which is the projection of Yt onto the univariate component space spanned by Xtj. This function

can also be seen as the solution to the following nonparametric optimization problem (c.f., Fan et al,

2011):

min
gj∈L2(P)

E
[
Yt − gj(Xtj)

]2
,

where L2(P) is the class of square integrable functions under the probability measure P. We estimate

the functions mj(·) by the commonly-used kernel smoothing method, although other nonparametric

estimation methods such as the local polynomial smoothing and smoothing spline method are also
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applicable. The kernel smoother of mj(xj) is

m̂j(xj) =

∑n
t=1 YtKtj(xj)∑n
t=1 Ktj(xj)

, Ktj(xj) = K
(Xtj − xj

h1

)
, j = 1, . . . , pn + dn, (2.1)

where K(·) is a kernel function and h1 is a bandwidth. To make the above kernel estimation method

feasible, we assume that the initial observations, Y0, Y−1, . . . , Y−dn+1, of the response are available.

When the observations are independent and the response variable has zero mean, the paper of

Fan et al (2011) ranks the importance of the covariates by calculating the L2-norm of m̂j(·), and
chooses those covariates whose corresponding norms are larger than a pre-determined threshold that

usually tends to zero. However, in our time series setting, for j such that j − pn > 0, Xtj becomes

the lag of the response variable Yt−(j−pn) and mj(·) = E
(
Yt|Yt−(j−pn) = ·

)
. For time series that are

stationary and weakly dependent, it is often reasonable to assume that E
(
Yt|Yt−(j−pn)

) P→ E(Yt) when

j − pn → ∞. On the other hand, under some regularity conditions, using the uniform consistency

result for the kernel smoothing method (c.f., Li et al, 2012), we have m̂j(xj)
P→ mj(xj) uniformly for

xj in a compact set. Combining the above arguments, we may show that as j − pn → ∞

m̂j(xj)
P→ mj(xj) → E(Yt)

uniformly for xj in a compact set. When E(Yt) is non-zero, the norm of m̂j(·) would tend to a non-zero

quantity when j − pn → ∞. As a consequence, if covariates are chosen according to the L2-norm of

their corresponding marginal regression functions, quite a few unimportant lags might be chosen. To

address this issue, we consider ranking the importance of the covariates by calculating the correlation

between the response variable and marginal regression

cor(j) =
cov(j)√
v(Y ) · v(j)

=
[ v(j)
v(Y )

]1/2
, (2.2)

where v(Y ) = var(Yt), v(j) = var(mj(Xtj)) and cov(j) = cov(Yt,mj(Xtj)) = var(mj(Xtj)) = v(j).

Equation (2.2) indicates that the value of cor(j) is non-negative for all j and the ranking of cor(j) is

equivalent to the ranking of v(j) as v(Y ) is positive and invariant across j. The sample version of

cor(j) can be constructed as

ˆcor(j) =
ˆcov(j)√

v̂(Y ) · v̂(j)
=

[ v̂(j)
v̂(Y )

]1/2
, (2.3)
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where:

v̂(Y ) =
1

n

n∑

t=1

Y 2
t −

( 1
n

n∑

t=1

Yt

)2

,

ˆcov(j) = v̂(j) =
1

n

n∑

t=1

m̂2
j(Xtj)−

[ 1
n

n∑

t=1

m̂j(Xtj)
]2
, j = 1, 2, . . . , pn + dn.

The screened sub-model can be determined by

Ŝ =
{
j ∈ {1, 2, . . . , pn + dn} : v̂(j) ≥ ρn

}
, (2.4)

where ρn is a pre-determined positive number. By (2.3), the criterion in (2.4) is equivalent to

Ŝ =
{
j ∈ {1, 2, . . . , pn + dn} : ˆcor(j) ≥ ρ⋄n

}
,

where ρ⋄n = ρ
1/2
n /

√
v̂(Y ). We let X∗

t =
(
X∗

t1, X
∗
t2, . . . , X

∗
tqn

)⊺

be the covariates chosen according to the

criterion (2.4).

The above model selection procedure can be seen as the nonparametric kernel extension of the SIS

method introduced by Fan and Lv (2008) in the context of linear regression models. Recent extensions

to nonparametric additive models and varying coefficient models can be found in Fan et al (2011),

Fan et al (2014) and Liu et al (2014). However, the existing literature usually considers the case

where the observations are either independent or collected from correlated and sparse longitudinal

data (c.f., Cheng et al, 2014), which rules out the nonlinear dynamic time series setting (over a long

time span). In this paper, we relax such a restriction and show that the KSIS approach works well in

the ultra-high dimensional time series and semiparametric setting. Also, differently from Fan et al

(2011) using the B-splines method, our paper applies the kernel smoothing method to estimate the

marginal regression functions, with different mathematical tool required to derive our asymptotic

theory.

Step two: PMAMAR. In the second step, we propose using a semiparametric method of model

averaging lower dimensional regression functions to estimate

m∗(x) = E(Yt|X∗
t = x), (2.5)

where x = (x1, x2, . . . , xqn)
⊺

. Specifically, we approximate the conditional regression function m∗(x)

by an affine combination of one-dimensional conditional component regressions

m∗
j(xj) = E(Yt|X∗

tj = xj), j = 1, . . . , qn.

Each marginal regression m∗
j(·) can be treated as a “nonlinear candidate model” and the number of

such nonlinear candidate models is qn. A weighted average of m∗
j(xj) is then used to approximate
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m∗(x), i.e.,

m∗(x) ≈ w0 +

qn∑

j=1

wjm
∗
j(xj), (2.6)

where wj, j = 0, 1, . . . , qn, are to be determined later and can be seen as the weights for different

candidate models. The linear combination in (2.6) is called as Model Averaging MArginal Regressions

or MAMAR (c.f., Li et al, 2015) and is applied by Chen et al (2016) in the dynamic portfolio choice

with many conditioning variables. As the conditional component regressions m∗
j(X

∗
tj) = E(Yt|X∗

tj),

j = 1, . . . , qn, are unknown but univariate, in practice, they can be well estimated by various

nonparametric approaches that would not suffer from the curse of dimensionality problem. Hence,

the first stage in the semiparametric PMAMAR procedure is to estimate the marginal regression

functions m∗
j(·) by the kernel smoothing method

m̂∗
j(xj) =

∑n
t=1 YtKtj(xj)∑n
t=1 Ktj(xj)

, Ktj(xj) = K
(X∗

tj − xj

h2

)
, j = 1, . . . , qn, (2.7)

where h2 is a bandwidth. Let

M̂(j) =
[
m̂∗

j(X
∗
1j), . . . , m̂

∗
j(X

∗
nj)

]⊺

be the estimated values of

M(j) =
[
m∗

j(X
∗
1j), . . . ,mj(X

∗
nj)

]⊺

for j = 1, . . . , qn. By using (2.7), we have

M̂(j) = Sn(j)Yn, j = 1, . . . , qn,

where Sn(j) is the n × n smoothing matrix whose (k, l)-component is K lj(X
∗
kj)/

[∑n
t=1 Ktj(X

∗
kj)

]
,

and Yn = (Y1, . . . , Yn)
⊺

.

The second stage of PMAMAR is to replace m∗
j(X

∗
tj), j = 1, . . . , qn, by their corresponding

nonparametric estimates m̂∗
j(X

∗
tj), and use the penalized approach to select the significant marginal

regression functions in the following “approximate linear model”:

Yt ≈ w0 +

qn∑

j=1

wjm̂
∗
j(X

∗
tj). (2.8)

Without loss of generality, we further assume that E(Yt) = 0, otherwise, we can simply replace Yt by

Yt − Y = Yt − 1
n

∑n
s=1 Ys. It is easy to show that the intercept term w0 in (2.6) is zero under this

assumption. In the sequel, we let wo := won = (wo1, . . . , woqn) be the optimal values of the weights

in the model averaging defined as in Li et al (2015). Based on the approximate linear modelling
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framework (2.8), for given wn = (w1, . . . , wqn)
⊺

, we define the objective function by

Qn(wn) =
[
Yn − M̂(wn)

]⊺[
Yn − M̂(wn)

]
+ n

qn∑

j=1

pλ(|wj|), (2.9)

where

M̂(wn) =
[
w1Sn(1) + . . .+ wqnSn(qn)

]
Yn = Sn(Y)wn,

Sn(Y) =
[
Sn(1)Yn, . . . ,Sn(qn)Yn

]
, and pλ(·) is a penalty function with a tuning parameter λ. The

vector M̂(wn) in (2.6) can be seen as the kernel estimate of

M(wn) =
[ qn∑

j=1

wjm
∗
j(X

∗
1j), . . . ,

qn∑

j=1

wjm
∗
j(X

∗
nj)

]⊺

for given wn. Our semiparametric estimator of the optimal weights wo can be obtained through

minimizing the objective function Qn(wn):

ŵn = argmin
wn

Qn(wn). (2.10)

There has been extensive discussion on the choice of the penalty function for parametric linear and

nonlinear models. Many popular variable selection criteria, such as AIC and BIC, correspond to the

penalized estimation method with pλ(|z|) = 0.5λ2I(|z| 6= 0) with different values of λ. However, as

mentioned by Fan and Li (2001), such traditional penalized approaches are expensive in computational

cost when qn is large. To avoid the computational burden and the lack of stability, some other penalty

functions have been introduced in recent years. For example, the LASSO penalty pλ(|z|) = λ|z| has
been extensively studied by many authors (c.f., Tibshirani, 1996, 1997); Frank and Friedman (1993)

consider the Lq-penalty pλ(|z|) = λ|z|q for 0 < q < 1; Fan and Li (2001) suggest using the SCAD

penalty function whose derivative is defined by

p′λ(z) = λ

[
I(z ≤ λ) +

a0λ− z

(a0 − 1)λ
I(z > λ)

]

with pλ(0) = 0, where a0 > 2, λ > 0 and I(·) is the indicator function.

2.2 PCA+PMAMAR method

Because of dependence within the exogenous variables in Zt, sparsity may be an issue when its

dimension is high. It is well known that we may also achieve dimension reduction through the use of

factor models when analyzing high-dimensional time series data. In this subsection, we assume that
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the high-dimensional exogenous variables Zt follow the approximate factor model:

Ztk = (b0
k)

⊺

f0t + utk, k = 1, . . . , pn, (2.11)

where b0
k is an r-dimensional vector of factor loadings, f0t is an r-dimensional vector of common

factors, and utk is called an idiosyncratic error. The number of the common factors, r, is assumed to

be fixed throughout the paper, but it is usually unknown in practice and its determination method

will be discussed in Section 4 below.

From the approximate factor model (2.11), we can find that the main information in the exogenous

regressors may be summarized in the common factors f0t that have a much lower dimension. The aim

of dimension reduction can thus be achieved, and it may be reasonable to replace Zt with an ultra-high

dimension by the unobservable ft with a fixed dimension in estimating the conditional multivariate

regression function and predicting the future value of the response variable Yt. In the framework of

linear regression or autoregression, such an idea has been frequently used in the literature since Stock

and Watson (2002) and Bernanke et al (2005). However, so far as we know, there is virtually no

work on combining the factor model (2.11) with the nonparametric nonlinear regression. The only

exception is the paper by Härdle and Tsybakov (1995), which considers the additive regression model

on principal components when the observations are independent and the dimension of the potential

regressors is fixed. The latter restriction is relaxed in this paper.

Instead of directly studying the multivariate regression function m(x) defined in (1.1), we next

consider the multivariate regression function defined by

mf (x1,x2) = E
(
Yt|f0t = x1,Yt−1 = x2

)
, (2.12)

where Yt−1 is defined as in Section 1, x1 is r-dimensional and x2 is dn-dimensional. In order to

develop a feasible estimation approach for the factor augmented nonlinear regression function in

(2.12), we need to estimate the unobservable factor regressors f0t in the first step. This will be done

through the PCA approach and we denote

X̂∗
t,f =

(
f̂
⊺

t ,Y
⊺

t−1

)⊺

=
(
f̂t1, . . . , f̂tr, . . . ,Y

⊺

t−1

)⊺

as a combination of the estimated factor regressors and lags of response variables, where f̂t is the

estimated factor via PCA and f̂tk is the k-th element of f̂t, k = 1, . . . , r. In the second step, we use

the PMAMAR method to conduct a further selection among the (r + dn)-dimensional regressors and

determine an optimal combination of the significant marginal regressions. This PCA+PMAMAR

method substantially generalizes the framework of factor-augmented linear regression or autoregression

(c.f., Stock and Watson, 2002; Bernanke et al, 2005; Bai and Ng, 2006; Pesaran et al, 2011; Cheng

and Hansen, 2015) to the general semiparametric framework.
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Step one: PCA on the exogenous regressors. Letting

B0
n = (b0

1, . . . ,b
0
pn)

⊺

and Ut = (ut1, . . . , utpn)
⊺

,

we may rewrite the approximate factor model (2.11) as

Zt = B0
nf

0
t +Ut. (2.13)

We next apply the PCA approach to obtain the estimation of the common factors f0t . Denote

Zn = (Z1, . . . ,Zn)
⊺

, the n × pn matrix of the observations of the exogenous variables. We then

construct F̂n =
(
f̂1, . . . , f̂n

)⊺

as the n× r matrix consisting of the r eigenvectors (multiplied by
√
n)

associated with the r largest eigenvalues of the n× n matrix ZnZ⊺

n/(npn). Furthermore, the estimate

of the factor loading matrix (with rotation) is defined as

B̂n =
(
b̂1, . . . , b̂pn

)⊺

= Z⊺

nF̂n/n,

by noting that F̂ ⊺

nF̂n/n = Ir.

As shown in the literature (see also Theorem 3 in Section 3.2 below), f̂t is a consistent estimator

of the rotated common factor Hf0t , where

H = V̂−1
(
F̂ ⊺

nF0
n/n

) [
(B0

n)
⊺

B0
n/pn

]
, F0

n =
(
f01 , . . . , f

0
n

)⊺

,

and V̂ is the r × r diagonal matrix of the first r largest eigenvalues of ZnZ⊺

n/(npn) arranged in

descending order. Consequently, we may consider the following multivariate regression function with

rotated latent factors:

m∗
f (x1,x2) = E

(
Yt|Hf0t = x1,Yt−1 = x2

)
. (2.14)

In the subsequent PMAMAR step, we can use f̂t to replace Hf0t in the semiparametric procedure.

The factor modelling and PCA estimation ensure that most of the useful information contained in

the exogenous variables Zt can be extracted before the second step of PMAMAR, which may lead to

possible good performance in forecasting Yt through the use of the estimated common factors. In

contrast, as discussed in some existing literature such as Fan and Lv (2008), when irrelevant exogenous

variables are highly correlated with some relevant ones, they might be selected into a model by the

SIS or KSIS procedure with higher priority than some other relevant exogenous variables, which

results in high false positive rates and low true positive rates and leads to loss of useful information

in the potential covariates, see, for example, the discussion in Section 4.1.

Step two: PMAMAR using estimated factor regressors. Recall that

X̂∗
t,f =

(
f̂
⊺

t ,Y
⊺

t−1

)⊺

=
(
f̂t1, . . . , f̂tr,Y

⊺

t−1

)⊺

,

10



where f̂tk is the k-th element of f̂t, k = 1, . . . , r. We may apply the two-stage semiparametric

PMAMAR procedure, which is exactly the same as that in Section 2.1 to the process
(
Yt, X̂

∗
t,f

)
,

t = 1, . . . , n, and then obtain the estimation of the optimal weights ŵn,f . To save space, we next only

sketch the kernel estimation of the marginal regression function with the estimated factor regressors

obtained via PCA.

For k = 1, . . . , r, define

m∗
k,f (zk) = E

[
Yt|f̃ 0

tk = zk

]
, f̃ 0

tk = e
⊺

r(k)Hf0t ,

where er(k) is an r-dimensional column vector with the k-th element being one and zeros elsewhere,

k = 1, . . . , r. As in Section 2.1, we estimate m∗
k,f (zk) by the kernel smoothing method:

m̂∗
k,f (zk) =

∑n
t=1 YtK̃tk(zk)∑n
t=1 K̃tk(zk)

, K̃tk(zk) = K
( f̂tk − zk

h3

)
, j = 1, . . . r, (2.15)

where h3 is a bandwidth. In Section 3.2 below, we will show that m̂∗
k,f (zk) is asymptotically equivalent

to m̃∗
k,f(zk), which is defined as in (2.15) but with f̂tk replaced by f̃ 0

tk. The latter kernel estimation

is infeasible in practice as the factor regressor involved is unobservable. As we may show that the

asymptotic order of m̂∗
k,f(zk)− m̃∗

k,f(zk) is oP (n
−1/2) under some mild conditions (c.f., Theorem 3),

the influence of replacing f̃ 0
tk by the estimated factor regressors f̂tk in the PMAMAR procedure is

asymptotically negligible.

3 The main theoretical results

In this section, we establish the asymptotic properties for the methodologies developed in Section 2

above. The asymptotic theory for the KSIS+PMAMAR method is given in Section 3.1 and that for

the PCA+PMAMAR method is given in Section 3.2.

3.1 Asymptotic theory for KSIS+PMAMAR

In this subsection, we first derive the sure screening property for the developed KSIS method, which

implies that the covariates whose marginal regression functions make significant contribution to

estimating the multivariate regression function m(x) would be chosen in the screening with probability

approaching one. The following regularity conditions are needed in the proof of this property.

A1. The process {(Yt,Xt)} is stationary and α-mixing with the mixing coefficient decaying at a

geometric rate: α(k) ∼ cαθ
k
0 , where 0 < cα < ∞ and 0 < θ0 < 1.

A2. Let fj(·) be the marginal density function of Xtj, the j-th element of Xt. Assume that fj(·)

11



has continuous derivatives up to the second order and

0 < c ≤ inf
j

inf
xj∈Cj

fj(xj) ≤ sup
j

sup
xj∈Cj

fj(xj) ≤ c < ∞,

where Cj is the compact support of Xtj. For each j, the conditional density functions of Yt for

given Xtj exists and satisfies the Lipschitz continuous condition. Furthermore, the length of Cj
is uniformly bounded by a positive constant.

A3. The kernel function K(·) is a Lipschitz continuous, symmetric and bounded probability density

function with a compact support. Let the bandwidth satisfy h1 ∼ n−θ1 with 1/6 < θ1 < 1.

A4. The marginal regression function mj(·) has continuous derivatives up to the second order and

there exists a positive constant cm such that supj supxj∈Cj

[
|mj(xj)|+ |m′

j(xj)|+ |m′′
j (xj)|

]
≤ cm.

A5. The response variable Yt satisfies E[exp{ς|Yt|}] < ∞, where ς is a positive constant.

Remark 1. The condition A1 imposes the stationary α-mixing dependence structure on the

observations, which is not uncommon in the time series literature (c.f., Bosq, 1998). It might be

possible to consider a more general dependence structure such as the near epoch dependence studied

in Lu and Linton (2007) and Li et al (2012), however, the technical proofs would be more involved.

Hence, we impose the mixing dependence structure and focus on the ideas proposed. The restriction

of geometric decaying rate on the mixing coefficient is due to the ultra-high dimensional setting and

it may be relaxed if the dimension of the covariates diverges at a polynomial rate. The conditions A2

and A4 give some smoothness restrictions on the marginal density functions and marginal regression

functions. To simplify the discussion, we assume that all of the marginal density functions have

compact support. Such an assumption might be too restrictive for time series data, but it could be

relaxed by slightly modifying our methodology. For example, if the marginal density function of Xtj

is the standard normal density which does not have a compact support, we can truncate the tail of

Xtj in the KSIS procedure by replacing Xtj with XtjI
(
|Xtj| ≤ ζn

)
and ζn divergent to infinity at

a slow rate. The condition A3 is a commonly-used condition on the kernel function as well as the

bandwidth. The strong moment condition on Yt in A5 is also quite common in the SIS literature

such as Fan et al (2011) and Liu et al (2014).

Define the index set of “true” candidate models as

S =
{
j = 1, 2, . . . , pn + dn : v(j) 6= 0

}
.

The following theorem gives the sure screening property for the KSIS procedure.

Theorem 1. Suppose that the conditions A1–A5 are satisfied.

12



(i) For any small δ1 > 0, there exists a positive constant δ2 such that

P

(
max

1≤j≤pn+dn

∣∣∣v̂(j)− v(j)
∣∣∣ > δ1n

−2(1−θ1)/5

)
= O

(
M(n) exp

{
−δ2n

(1−θ1)/5
})

, (3.1)

where M(n) = (pn + dn)n
(17+18θ1)/10 and θ1 is defined in the condition A3.

(ii) If we choose the pre-determined tuning parameter ρn = δ1n
−2(1−θ1)/5 and assume

min
j∈S

v(j) ≥ 2δ1n
−2(1−θ1)/5, (3.2)

then we have

P
(
S ⊂ Ŝ

)
≥ 1−O

(
MS(n) exp

{
−δ2n

(1−θ1)/5
})

, (3.3)

where MS(n) = |S|n(17+18θ1)/10 with |S| being the cardinality of S.
Remark 2. The above theorem shows that the covariates whose marginal regressions have not too

small positive correlations with the response variable would be included in the screened model with

probability approaching one at a possible exponential rate of n. The condition (3.2) guarantees that

the correlations between the response and the marginal regression functions for covariates whose

indices belong to S are bounded away from zero, but the lower bound may converge to zero. As

pn + dn = O(exp{nδ0}), in order to ensure the validity of Theorem 1(i), we need to impose the

restriction δ0 < (1− θ1)/5, which reduces to δ0 < 4/25 if the order of the optimal bandwidth in kernel

smoothing (i.e., θ1 = 1/5) is used. Our theorem generalizes the results in Fan et al (2011) and Liu et

al (2014) to dynamic time series case and those in Ando and Li (2014) to the flexible nonparametric

setting.

We next study the asymptotic properties for the PMAMAR method including the well-known

sparsity and oracle property. Recall that qn = |Ŝ| and the dimension of the potential covariates is

reduced from pn + dn to qn after implementing the KSIS procedure. As above, we let X∗
t be the

KSIS-chosen covariates, which may include both the exogenous regressors and lags of Yt. Define

an = max
1≤j≤qn

{
|p′λ(|woj|)|, |woj| 6= 0

}

and

bn = max
1≤j≤qn

{
|p′′λ(|woj|)|, |woj| 6= 0

}
.

We need to introduce some additional conditions to derive the asymptotic theory.

A6. The matrix

Λn :=




E
[
m∗

1(X
∗
t1)m

∗
1(X

∗
t1)

]
. . . E

[
m∗

1(Xt1)m
∗
qn(X

∗
tqn)

]
...

...
...

E
[
m∗

qn(X
∗
tqn)m

∗
1(Xt1)

]
. . . E

[
mqn(X

∗
tqn)mqn(X

∗
tqn)

]
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is positive definite with the eigenvalues bounded away from zero and infinity. In particular, the

smallest eigenvalue of Λn is larger than χ, a small positive constant.

A7. The bandwidth h2 satisfies

s2nnh
4
2 → 0, n

1

2
−ξh2 → ∞, q2n(τn + h2

2) = o(1) (3.4)

as n → ∞, where sn is the number of non-zero elements in the optimal weight vector, ξ is

positive but arbitrarily small, and τn =
(

logn
nh2

)1/2

.

A8. Let an = O(n−1/2), bn = o(1), pλ(0) = 0, and there exit two positive constants C1 and C2 such

that
∣∣p′′λ(w1)− p′′λ(w2)

∣∣ ≤ C2|w1 − w2| when w1, w2 > C1λ.

Remark 3. The conditionA6 gives some regularity conditions on the eigenvalues of the qn×qn positive

definite matrix Λn, which are similar to those in the existing literature dealing with independent

observations (c.f., Fan and Peng, 2004). We may relax these conditions by allowing that some

eigenvalues tend to zero at certain rates and slightly modifying the conditions A7 and A8, and as

a consequence, the convergence rate in Theorem 2(i) below would be slightly different (c.f., Chen

et al, 2015). The restrictions in the condition A7 imply that undersmoothing is needed in our

semiparametric procedure and qn can only be divergent at a polynomial rate of n. The condition A8

is a commonly-used condition on the penalty function pλ(·), similar to that in Fan and Peng (2004).

Without loss of generality, we define the vector of the optimal weights

wo = (wo1, . . . , woqn)
⊺

=
[
w

⊺

o(1), w
⊺

o(2)
]⊺
,

where wo(1) is composed of non-zero weights with dimension sn and wo(2) is composed of zero weights

with dimension (qn − sn), and assume that the observations X∗
tj are in the interior of the respective

support (which is to avoid the kernel boundary effect in the asymptotic analysis). In order to give the

asymptotic normality for ŵn(1), the estimator of wo(1), we need to introduce some further notation.

Define

η∗t = Yt −
qn∑

j=1

wojm
∗
j(X

∗
tj), η∗tj = Yt −m∗

j(X
∗
tj)

and ξt = (ξt1, . . . , ξtsn)
⊺

with ξtj = η∗tj − η̃∗tj, η
∗
tj = m∗

j(X
∗
tj)η

∗
t ,

η̃∗tj =

qn∑

k=1

wokη
∗
tkβjk(X

∗
tk) =

sn∑

k=1

wokη
∗
tkβjk(X

∗
tk), βjk(xk) = E

[
m∗

j(X
∗
tj)|X∗

tk = xk

]
.

Obviously, the mean of ξt is zero, and we define Σn =
∑∞

t=−∞
E
(
ξ0ξ

⊺

t

)
and Λn1 as the top-left sn× sn

submatrix of Λn. Let

ωn = [p′λ(|wo1|)sgn(wo1), . . . , p
′
λ(|wosn |)sgn(wosn)]

⊺
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and

Ωn = diag {p′′λ(|wo1|), . . . , p′′λ(|wosn |)} ,

where sgn(·) is the sign function. In the following theorem, we give the asymptotic theory of ŵn

obtained by the PMAMAR method.

Theorem 2. Suppose that the conditions A1–A8 are satisfied.

(i) There exists a local minimizer ŵn of the objective function Qn(·) defined in (2.9) such that

‖ŵn −wo‖ = OP

(√
qn(n

−1/2 + an)
)
= OP

(√
qn/n

)
, (3.5)

where an is defined in the condition A8 and ‖ · ‖ denotes the Euclidean norm.

(ii) Let ŵn(2) be the estimator of wo(2) and further assume that

λ → 0,

√
nλ√
qn

→ ∞, lim inf
n→∞

lim inf
w→0+

p′λ(w)

λ
> 0. (3.6)

Then, the local minimizer ŵn of the objective function Qn(·) satisfies ŵn(2) = 0 with probability

approaching one.

(iii) Letting ŵn(1) be the estimator of wo(1),

√
nAnΣ

−1/2
n

(
Λn1 +Ωn

)[
ŵn(1)−wo(1)−

(
Λn1 +Ωn

)−1
ωn

]
d−→ N

(
0,A0

)
, (3.7)

where 0 is a null vector whose dimension may change from line to line, An is an s× sn matrix such

that E
[∥∥AnΣ

−1/2
n ξt

∥∥2+δ⋆
]
< ∞ for some δ⋆ > 0 and AnA

⊺

n → A0 in which A0 is an s× s symmetric

and non-negative definite matrix and s is a fixed positive integer.

Remark 4. Theorem 2(i) shows that the convergence rate of the estimator ŵn is the same as that in

Theorem 1 of Fan and Peng (2004) who consider the case of independent observations. Furthermore,

when qn is fixed and an = O(n−1/2), we could derive the root-n convergence rate for ŵn as in Theorem

3.1 of Li et al (2015). Theorem 2(ii) shows that the estimator of wo(2) is equal to zero with probability

approaching one, which indicates that the PMAMAR procedure possesses the well known sparsity

property, and thus can be used as a model selector. Theorem 2(ii) and (iii) above shows that the

proposed estimator of the optimal weights enjoy the oracle property, which takes wo(2) = 0 as a

prerequisite. Furthermore, when n is large enough and λ tends to zero sufficiently fast for some

penalty functions (such as the SCAD penalty), the asymptotic distribution in (3.7) would reduce to

√
nAnΣ

−1/2
n Λn1

[
ŵn(1)−wo(1)

] d−→ N
(
0,A0

)
, (3.8)

which is exactly the same as that in Theorem 3.3 of Li et al (2015).
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3.2 Asymptotic theory for PCA+PMAMAR

In this subsection, we show that the estimated common factors consistently estimate the true common

factors (with rotation), and the asymptotic order of the difference between m̂∗
k,f (zk) defined in (2.15)

and the infeasible kernel estimation m̃∗
k,f (zk) is oP (n

−1/2) uniformly. We start with some regularity

conditions that are used when proving the asymptotic results.

B1. Given the rotation matrix H, the process {(Yt, ft,Ut) : t = 1, . . . , n} is stationary and α-mixing

with the mixing coefficient decaying at a geometric rate.

B2. The random common factors satisfy the conditions that E(f0t ) = 0, maxt ‖f0t ‖ = OP (1), the

r × r matrix ΛF := E
[
f0t (f

0
t )

⊺
]
is positive definite and E

[
‖f0t ‖4+τ

]
< ∞ for some 0 < τ < ∞.

B3. The matrix (B0
n)

⊺

B0
n/pn is positive definite with the smallest eigenvalue bounded away from

zero and maxk ‖b0
k‖ is bounded.

B4. The idiosyncratic error satisfies E(utk) = 0, E(utkf
0
t ) = 0 and maxk E [|utk|16] < ∞. Furthermore,

there exist two positive constants C3 and C4 such that

max
t

E



∥∥∥∥∥

pn∑

k=1

utkb
0
k

∥∥∥∥∥

4

 ≤ C3p

2
n (3.9)

and

max
t1,t2

E



∣∣∣∣∣

pn∑

k=1

{ut1kut2k − E[ut1kut2k]}
∣∣∣∣∣

8

 ≤ C4p

4
n, (3.10)

and maxk E[exp{ς‖utkf
0
t ‖}] < ∞ where ς is a positive constant as in the condition A5.

B5. (i) The kernel function K(·) is positive, symmetric and has continuous derivatives up to the

second order with a compact support. In addition, the derivative functions of K(·) are bounded.
(ii) There exists 1/7 < γ0 < 1/6 such that n1−γ0h3

3 → ∞. In addition, nh4
3 = O(1), pnh

9
3 → ∞,

and n = o(p2nh
13
3 ).

(iii) The marginal regression functions (corresponding to the factor regressors) m∗
k,f(·) have

continuous and bounded derivatives up to the second order.

Remark 5. Some of the above conditions have been commonly used in the literature. For example,

the conditions B2 and B3 are similar to Assumptions A and B in Bai and Ng (2002), whereas

the condition B4 is similar to the corresponding conditions in Assumption 3.4 in Fan et al (2013).

In particular, the exponential bound maxk E[exp{ς‖utkf
0
t ‖}] < ∞ in the condition B4 is crucial to

ensure that pn can diverge at an exponential rate of n. The conditional mixing condition in B1 seems

somehow restrictive, but may be replaced by some weaker (and high-level) conditions. The technical
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conditions in B5(ii) incidate that the dimension pn diverges to infinity at a faster rate than the time

series length n (a commonly-used setting in high-dimensional factor analysis), which are mainly used

for the proof of Theorem 3(ii) in Appendix B.

Theorem 3. Suppose that the conditions B1–B4 are satisfied, and

n = o(p2n), pn = O
(
exp{nδ∗}

)
, 0 ≤ δ∗ < 1/3. (3.11)

(i) For the PCA estimation f̂t, we have

max
t

∥∥∥f̂t −Hf0t

∥∥∥ = OP

(
n−1/2 + n1/4p−1/2

n

)
, (3.12)

where H is defined in Section 2.2.

(ii) In addition, suppose that the conditions A5 and B5 are satisfied and the latent factor f0t has a

compact support. Then we have

max
1≤k≤r

sup
zk∈F

∗

k

∣∣m̂∗
k,f (zk)− m̃∗

k,f (zk)
∣∣ = oP

(
n−1/2

)
, (3.13)

where F∗
k is the compact support of f̃ 0

tk.

Remark 6. Theorem 3(i) gives the uniform consistency result for the estimation of the common

factors, which is very similar to some existing results on PCA estimation of the high-dimensional

factor models such as Theorem 3.3 in Fan et al (2013). If we further assume that n3 = o(p2n), which

automatically holds when pn is divergent at an exponential rate of n, the uniform convergence rate

in (3.12) would be OP

(
n−1/2

)
. Theorem 3(ii) shows that we may replace m̂∗

k,f(·) by the infeasible

kernel estimation m̃∗
k,f (·) when deriving the asymptotic theory for the PMAMAR method introduced

in Section 3.2, and Theorem 2 in Section 3.1 may hold with some notational modifications (c.f., qn in

(3.5) needs to be replaced by dn). The restriction of compact support on f0t can be removed if we

slightly modify the methodology as discussed in Remark 1.

4 Some extensions

This section discusses some extensions by introducing an iterative KSIS+PMAMAR procedure when

the covariates are highly correlated, and an extended PCA+PMAMAR approach with selection of

the number of the latent factors in model (2.11).
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4.1 An iterative KSIS+PMAMAR procedure

When the covariates are highly correlated with each other, difficulties in variable selection arise. As

documented in Fan and Lv (2008), when the covariate dimension is large, even if the covariates are

mutually independent, the data generated from them may exhibit significant spurious correlation. Fan

and Lv (2008) notice that when irrelevant covariates are highly correlated with some relevant ones,

they might be selected into a model with higher priority than some other relevant covariates, which

results in high false positive rates and low true positive rates. Such a problem may become even worse

in this paper due to the time series nature of the data, where both the response Yt and the covariates

Xt are autocorrelated over time t. Since the covariates Xtj, j = pn + 1, . . . , pn + dn, are generated

from the lags of Yt, both temporal autocorrelation and the cross-sectional correlation among them

arise. Hence, if we try to estimate or predict Yt by running firstly the KSIS with all the potential

covariates, Xtj, j = 1, · · · , pn + dn, and secondly the PMAMAR with those that have survived the

screening procedure, the results could be unsatisfactory. It is especially so when pn + dn is much

larger than the sample size n. Due to the presence of autocorrelation in time series data, the iterative

sure independence screening procedure developed in Fan et al (2011) cannot be applied in our context.

This is because their iterative procedure involves a permutation step in which the observed data is

randomly permuted to obtain a data-driven screening threshold for each iteration. When the data are

autocorrelated, permutation would destroy the inherent serial dependence structure and hence may

lead to erroneous thresholds being obtained. To alleviate the problem, we provide an iterative version

of the KSIS+PMAMAR procedure in Appendix C of the supplementary document. This iterative

procedure can be seen as a greedy selection algorithm, since at most one variable is selected in each

iteration. The simulated Example 5.1 in Section 5 shows that, in general, the iterative procedure helps

reduce false positive rates and increase true positive rates, especially when the exogenous covariates

(i.e., the Z’s) are not correlated. This leads to the iterative procedure producing generally more

accurate estimation and prediction.

4.2 The PCA+KSIS+PMAMAR procedure

In reality, the number of common factors, r, in the approximate factor model (2.11) is usually

unknown. We hence need to select it from an eigenanalysis of the matrix ZnZ⊺

n/(npn). Two ways are

possible to address this issue. The first is to set a maximum number, say rmax (not too large usually),

for the factors. Since the factors extracted from the eigenanalysis are orthogonal to each other, the

over-extracted insignificant factors will be discarded in the PMAMAR step. Another approach is to

select the first few eigenvectors (corresponding to the first few largest eigenvalues) of ZnZ⊺

n/(npn) so

that a pre-determined amount, say 95%, of the total variation is accounted for. See Boneva et al

(2015) for more information on the selection of the number of common component functions. Other

selection criteria such as BIC can be found in Bai and Ng (2002) and Fan et al (2013).

In the second step of the PCA+PMAMAR procedure proposed in Section 2.2, the estimated
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factors and the dn candidate lags of Y undergo a PMAMAR regression. However, since the lags of Y

are often highly correlated, dn is usually large and the PMAMAR regression usually cannot produce

satisfactory results in selecting the truly significant lags. This may lead to poor performance of the

PCA+PMAMAR procedure predicting the future values of Y . In order to alleviate this problem,

a KSIS step can be added in between the PCA and PMAMAR steps so that the candidate lags of

Y first undergo a KSIS to preliminarily screen out some insignificant lags. The simulation results

in Example 5.2 below confirm that this PCA+KSIS+PMAMAR procedure improves the prediction

performance of the PCA+PMAMAR procedure.

5 Numerical studies

In this section, we report simulation studies (Examples 5.1 and 5.2) and an empirical application

(Example 5.3). Throughout this section the rule of thumb bandwidth is used as our methods do not

seem to be sensitive to the choice of bandwidth.

5.1 Simulation studies

Example 5.1. In this example, the sample size is set to be n = 100, and the numbers of candidate

exogenous covariates and lagged terms are (pn, dn) = (30, 10) and (pn, dn) = (150, 50). The data-

generating model is defined by

Yt = m1(Zt1) +m2(Zt2) +m3(Zt3) +m4(Zt4) +m5(Yt−1) +m6(Yt−2) +m7(Yt−3) + εt, (5.1)

for t ≥ 1, where we set

mi(x) = − sin(2x), i = 1, 5, 6, 7,

m2(x) = x2 − 25/12, m3(x) = x, m4(x) = e−x − 2

5
sinh(5/2),

the exogenous covariates Zt = (Zt1, Zt2, . . . , Ztpn)
⊺

are independently drawn from pn-dimensional

Gaussian distribution with zero mean and covariance matrix cov(Z) = Ipn or CZ, whose main-diagonal

entries are 1 and off-diagonal entries are 1/2; the error term εt are independently generated from the

N(0, 0.72) distribution. The additive functions mi(·) have been chosen to be the same as those in the

simulated example of Meier et al (2009), although they considered a static rather than a dynamic

model. The real size of exogenous regressors is 4 and the real lag length is 3. We generate 100 + n

observations from the process (5.1) with initial states Y−2 = Y−1 = Y0 = 0 and discard the first

100− dn observations.

The aim of this simulation is to compare the performance of the iterative KSIS+PMAMAR

(IKSIS+PMAMAR) procedure in Section 4.1 with the (non-iterative) KSIS+PMAMAR procedure

in Section 2.1. In order to further the comparison, we also employ the iterative sure independence
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screening (ISIS) method proposed in Fan and Lv (2008), the penalized method for high-dimensional

generalized additive models (penGAM) proposed in Meier et al (2009), and the oracle additive

modelling with backfitting algorithm (Oracle, in which the true relevant variables are known). For

the KSIS+PMAMAR, we choose [10n1/6] variables from the screening step, which then undergo a

PMAMAR with the SCAD penalty. The measures of performance considered are the true positive

(TP) and false positive (FP), defined, respectively, as the numbers of true and false relevant variables

selected, the mean squared estimation error (MSEE) defined as MSEE = 1
n

∑n
t=1(Yt − Ŷt)

2, where

Ŷt is the fitted value of Y at t obtained from a particular method. We also generate a prediction

test set of size n∗ = 10 and calculate 1-step-ahead forecasts for Y based on model selection and

estimation from the training data set of size n. In order to compare their prediction performance, we

calculate the mean squared prediction error (MSPE) of each of the methods. The MSPE is defined

as MSPE = 1
n∗

∑n∗

s=1(Yn+s − Ŷn+s)
2, where Ŷn+s is the forecast of Y for time n + s. The tuning

parameters in the penalized regressions are chosen by the cross-validation. The SCAD penalized

regression is implemented using the R package “ncvreg”, the ISIS method implemented using the

“SIS” R package, the penGAM method implemented using the “penGAM” package, and the oracle

additive modelling implemented using the R package of “gam”. The results in Table 5.1 are based on

200 simulation replications, and the numbers in the parentheses are the standard errors of TP, FP,

MSEE and MSPE over 200 replications.

It can be seen from Table 5.1 that when the number of candidate covariates (pn+dn = 150+50) is

much larger than the sample size, the iterative version of KSIS+PMAMAR increases the TP of the non-

iterative version, and it decreases the FP in all cases except when cov(Z) = CZ and (pn, dn) = (150, 50).

This results in a better performance of the IKSIS+PMAMAR than the KSIS+PMAMAR in estimation

when (pn, dn) = (150, 50) and in prediction in all cases but when cov(Z) = CZ and (pn, dn) = (150, 50).

Among the 4 variable selection procedures (i.e., IKSIS+PMAMAR, KSIS+PMAMAR, penGAM, and

ISIS), the penGAM has the highest TP as well as FP. This makes it the approach that has the lowest

MSEE, since within the same linear or nonlinear modelling framework it is generally the case that

the more variables are selected the smaller the MSEE is. This does not hold true with MSPE. The

ISIS, in contrast to the other approaches, assumes a linear modelling structure and hence is unable

to correctly select truly relevant variables when the underlying data generating process is nonlinear,

leading to it having the lowest TP among the 4 selection procedures. This poor performance of the

ISIS in variable selection also results in its poor estimation and prediction results. The prediction

performance of an approach largely depends on its accuracy in variable selection, and a low TP

and high FP will lead to a high MSPE. The estimation and prediction results for the Oracle serve

as a benchmark for those of the other approaches. The MSPEs from the IKSIS+PMAMAR and

KSIS+PMAMAR are the closest among all the approaches to those of the Oracle. It can also be

observed, by a comparison of the first two panels of Table 5.1 with the last two, that when the

correlation among the exogenous variables increases, the performance of all approaches worsens.

For a fuller comparison of the above methods in this example, we have also recorded the average

and median computation times for a single running of each of them. These results are presented in
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Table 5.1: Average results on variable selection and accuracy of estimation and prediction in Example
5.1 over 200 replications

Model Method TP FP MSEE MSPE
IKSIS+PMAMAR 6.215 (1.1983) 6.830 (4.9552) 0.9762 (0.5018) 4.1025 (2.4238)

Example 5.1 KSIS+PMAMAR 6.555 (0.6395) 10.350 (3.6281) 0.8559 (0.2420) 4.5385 (2.8624)
cov(Z) = Ipn

penGAM 6.875 (0.3315) 31.030 (1.1382) 5.6817× 10−4 8.1828 (6.5490)
(3.9801× 10−4)

(pn, dn) = (30, 10) ISIS 4.000 (1.0514) 8.690 (1.7113) 4.2819 (1.7572) 7.6240 (5.2296)
Oracle 7.000 (0.0000) 0.000 (0.0000) 1.2416 (0.2192) 2.4100 (1.3857)
IKSIS+PMAMAR 4.720 (1.4112) 10.770 (5.7727) 0.7320 (0.5010) 5.9095 (3.9042)

Example 5.1 KSIS+PMAMAR 4.060 (1.2015) 13.785 (3.5781) 0.9011 (0.3200) 6.8505 (4.5468)
cov(Z) = Ipn

penGAM 5.280 (0.8920) 56.975 (3.5180) 8.7218× 10−5 5.3088 (4.5147)
(5.4755× 10−5)

(pn, dn) = (150, 50) ISIS 2.980 (0.8795) 18.020 (0.8795) 2.4720 (0.9425) 9.7411 (8.2799)
Oracle 7.000 (0.0000) 0.000 (0.0000) 1.2709 (0.2002) 2.3877 (1.2261)
IKSIS+PMAMAR 4.710 (1.3547) 3.605 (3.6061) 1.4600 (0.5083) 4.7438 (3.3360)

Example 5.1 KSIS+PMAMAR 4.950 (1.2868) 6.010 (3.9213) 1.3742 (0.4836) 5.0431 (3.5053)
cov(Z) = CZ penGAM 6.940 (0.2381) 31.020 (1.2992) 9.2095× 10−4 12.3246 (18.4251)

(8.7475× 10−4)
(pn, dn) = (30, 10) ISIS 3.355 (1.1470) 8.280 (3.0641) 4.8761 (2.3018) 8.9032 (6.2870)

Oracle 7.000 (0.0000) 0.000 (0.0000) 1.1927 (0.1936) 2.5930 (1.5887)
IKSIS+PMAMAR 3.550 (1.2984) 8.600 (6.1005) 1.1042 (0.7769) 6.8042 (5.1926)

Example 5.1 KSIS+PMAMAR 3.115 (1.3193) 7.420 (5.5050) 1.6373 (1.0202) 6.6250 (5.6848)
cov(Z) = CZ penGAM 5.575 (0.9481) 57.100 (3.6132) 1.1801× 10−4 7.6057 (6.7228)

(1.0156× 10−4)
(pn, dn) = (150, 50) ISIS 2.425 (0.9428) 17.820 (3.5113) 3.5018 (4.4681) 13.0225 (10.4639)

Oracle 7.000 (0.0000) 0.000 (0.0000) 1.2428 (0.2256) 3.0629 (3.2616)
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Table D.1 in Appendix D of the supplementary document, and the interested reader is referred to it

for details.

Example 5.2. The exogenous variables Zt in this example are generated through an approximate

factor model:

Zt = Bf t + zt,

where the rows of the pn × r loadings matrix B and the common factors ft, t = 1, · · · , n, are
independently generated from the multivariate N(0, Ir) distribution, and the pn-dimensional error

terms zt, t = 1, · · · , n, from the 0.1N(0, Ipn) distribution. We set pn = 30 or 150, r = 3, and generate

the response variable via

Yt = m1(ft1) +m2(ft2) +m3(ft3) +m4(Yt−1) +m5(Yt−2) +m6(Yt−3) + εt,

where fti is the i-th component of ft, m1(x) = x2 − 25/12, m2(x) = x, m3(x) = e−x − 2
5
sinh(5/2),

m4(x) = m5(x) = m6(x) = − sin(2x) (these functions are the same as those in Example 5.1), and

εt, t = 1, · · · , n, are independently drawn from the N(0, 0.72) distribution. In this example, we set

the number of candidate lags of Y as dn = 10. We compare the performance, in terms of estimation

error and prediction error, of the following methods: PCA+PMAMAR, PCA+KSIS+PMAMAR,

KSIS+PMAMAR, penGAM, ISIS, and Oracle. Since in reality both r and the factors ft are

unobservable, the factors in the first two methods are estimated by the first r̂ eigenvectors of

ZnZ⊺

n/(npn), where Zn = (Z1, · · · ,Zn)
⊤, and r is estimated by r̂, where r̂ is chosen so that 95%

of the variation in Zn is accounted for. In the PCA+PMAMAR method, the estimated factors

and dn potential lags of Y directly undergo a PMAMAR with the SCAD penalty, while in the

PCA+KSIS+PMAMAR the potential lags of Y first undergo the KSIS and then the selected lags

together with the estimated factors undergo a PMAMAR. The KSIS+PMAMAR, penGAM and ISIS

deal directly with pn exogenous variables in Zt and dn lags of Y as in Example 5.1, and the Oracle

uses the 3 factors and the first 3 lags, as in the true data generating process.

As in Example 5.1, the sample size is set as n = 100 and the experiment is repeated for 200 times.

The results are summarized in Table 5.2. It can be seen from these results that as in Example 5.1,

the penGAM has the lowest MSEE but the highest MSPE as a result of it selecting a large number

of variables. When the number of exogenous variables pn is not so large compared with the sample

size n (i.e., 30 compared to 100), the KSIS+PMAMAR outperforms the two PCA based approaches

(i.e., PCA+PMAMAR and PCA+KSIS+PMAMAR), in terms of estimation and prediction accuracy.

However, when pn becomes larger than n, the PCA based approaches show their advantage in effective

dimension reduction of the exogenous covariates, which results in their lower MSEE and MSPE. The

PCA+PMAMAR has a lower MSEE but higher MSPE than the PCA+KSIS+PMAMAR. This is

due to the fact that without the screening step the PCA+PMAMAR selects more false lags of Y , and

the higher FP leads to a higher MSPE and lower MSEE under the same PMAMAR framework. The
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Table 5.2: Accuracy of estimation and prediction in Example 5.2 over 200 replications

Model Method MSEE MSPE
PCA+PMAMAR 1.0859 (0.3077) 5.0921 (5.5112)
PCA+KSIS+PMAMAR 1.3553 (0.3787) 4.9089 (5.5193)

Example 5.2 KSIS+PMAMAR 1.0843 (0.3223) 4.3456 (6.2688)
(pn, dn) = (30, 10) penGAM 0.0331 (0.0197) 21.7887 (41.1285)

ISIS 4.7583 (2.1901) 6.8222 (6.4181)
Oracle 1.2738 (0.2172) 2.7304 (3.3003)
PCA+PMAMAR 1.1465 (0.4328) 5.2313 (5.5279)
PCA+KSIS+PMAMAR 1.4344 (0.4798) 4.9135 (4.9762)

Example 5.2 KSIS+PMAMAR 1.7430 (0.5134) 5.4748 (7.5642)
(pn, dn) = (150, 10) penGAM 0.0053 (0.0030) 14.7217 (31.4825)

ISIS 3.8407 (2.1800) 7.9360 (5.9894)
Oracle 1.2753 (0.2041) 2.5206 (1.8409)

above suggests that if the focus of a study is to predict future values, there may be benefits in having

the KSIS step between the PCA and PMAMAR steps to screen out insignificant lags of Y .

The computation times of the methods considered in this example are given in Table D.2 in

Appendix D of the supplementary document. This table shows that the insertion of the KSIS step

between PCA and PMAMAR speeds up the following PMAMAR step (as less variables undergo the

PMAMAR step), leading to PCA+KSIS+PMAMAR being overall faster than PCA+PMAMAR. The

interested reader is referred to Table D.2 for details.

5.2 An empirical application

Example 5.3. We next apply the proposed semiparametric model averaging methods to forecast

inflation in the UK. The data were collected from the Office for National Statistics (ONS) and

the Bank of England (BoE) websites and included quarterly observations on CPI and some other

economics variables over the period Q1 1997 to Q4 2013. All the variables are seasonally adjusted.

We use 53 series measuring aggregate real activity and other economic indicators to forecast CPI.

Given the possible temporal persistence of CPI, we also add its 4 lags as predictors. Data from Q1

1997 to Q4 2012 are used as the training set and those in Q1–Q4 2013 are used for forecasting. As in

Stock and Watson (1998, 1999), we make 4 types of transformations on different variables, depending

on their nature: (i) logarithm, (ii) first difference of logarithms; (iii) first difference, and (iv) no

transformation. Logarithms are usually taken on positive series that are not in rates or percentages,

and first differences are taken of quantity series and of price indices. All series are standardized to

have mean zero and unit variance after these transformations. Figure 5.1 plots both the original and

transformed CPI series.
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We use the training set to select the significant variables among the 53 exogenous economic variables

and the 4 lags of CPI, as well as to estimate the model averaging weights or model coefficients. These

selected variables and estimated coefficients are then used to obtain the mean squared estimation

error (MSEE) and form forecasts of CPI in the four quarters of 2013. We compare the forecasting

capacity of the IKSIS+PMAMAR, KSIS+PMAMAR, PCA+PMAMAR, penGAM and ISIS methods

via the mean squared prediction error (MSPE) and the mean absolute prediction error (MAPE),

which are defined, respectively, as

MSPE =
1

4

4∑

s=1

(Yn+s − Ŷn+s)
2, MAPE =

1

4

4∑

s=1

∣∣∣Yn+s − Ŷn+s

∣∣∣ ,

where Ŷn+s is the 1-step-ahead forecast of Y at time n+ s calculated based on model selection and

estimation from the training data set of size n. In addition, we also compare the estimation accuracy

of the methods via the mean squared estimation error (MSEE) and the mean absolute estimation

error (MAEE), defined by

MSEE =
1

n

n∑

t=1

(Yt − Ŷt)
2, MAEE =

1

n

n∑

t=1

∣∣∣Yt − Ŷt

∣∣∣ ,

where Ŷt is the fitted value of Y at time t.

Due to the small number of candidate lags of the response (d = 4), there is not much necessity

to use the PCA+KSIS+PMAMAR approach in this example, and hence it is not included in the

comparison. Similarly to Stock and Watson (2002), in the PCA+PMAMAR approach, common

factors extracted from the exogenous variables together with lags of the response are used to forecast

the response. The difference with Stock and Watson (2002)’s approach is that the PCA+PMAMAR

allows these factors and lags to contribute to forecasting the response in a possibly nonlinear way.

We also calculate forecasts based on the Phillips curve specification

It+1 − It = α + β(L)Ut + γ(L)∆It + εt+1,

where It is the CPI in the t-th quarter, Ut is the unemployment rate, β(L) = β0 + β1L+ β2L
2 + β3L

3

and γ(L) = γ0 + γ1L + γ2L
2 + γ3L

3 are lag polynomials with L being the lag operator, and ∆ is

the first difference operator. We further employ some of the most commonly-used models from the

BoE’s suite of statistical forecasting models to model and forecast the CPI data. These include

the autoregressive (AR) model, the vector autoregressive (VAR) model consisting of output, CPI,

oil price, effective sterling exchange rate and BoE’s base interest rate, and the smooth transition

autoregressive (STAR) model. The order of autoregression in these models is selected by AIC, and

the number of regimes in the STAR model is selected based on an LM test.
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Table 5.3: Estimation and forecasting for UK inflation data

Method MSEE MSPE MAEE MAPE
IKSIS+PMAMAR 0.1251 0.0633 0.3019 0.2104
KSIS+PMAMAR 0.2932 0.0905 0.4476 0.2687
PCA+PMAMAR 0.1472 0.1220 0.3220 0.2434
penGAM 1.3559× 10−5 0.0830 0.0029 0.2666
ISIS 0.2714 0.1037 0.4317 0.3019
Phillips Curve 1.0225 1.1900 0.7655 1.0170
AR 1.0420 0.0767 0.8011 0.2338
VAR 1.0457 0.1027 0.8287 0.2456
STAR 1.0954 0.1558 0.8361 0.2962
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Figure 5.1: Plot of the UK CPI series. Left panel: the original UK CPI values from Q1 1997 to Q4 2013;

and right panel: the normalized ∆ log(CPI).

The MSEEs, MSPEs, MAEEs and MAPEs of the above approaches are summarized in Table 5.3,

which shows that the IKSIS+PMAMAR has the smallest MSPE followed by the AR and penGAM,

then KSIS+PMAMAR. The VAR and ISIS have comparable MSPEs, which are smaller than those

from PCA+PMAMAR and STAR. The Phillips curve forecasts are much worse than those of the

other methods. In terms of goodness of fit measured in either MSEE or MAEE, the Phillips curve,

the AR, the VAR, and the STAR provide a comparable fit that is worse than that obtained from the

PMAMAR based methods or the ISIS. As in the simulation studies, the penGAM gives the smallest

estimation error due to a relatively large number of variables being selected. Among the variable

selection/screening methods, the IKSIS+PMAMAR selects 8 exogenous variables and 2 lags of the

response; the KSIS+PMAMAR selects 3 exogenous and 2 lags of response; the PCA+PMAMAR

selects 14 common factors (which account for around 90% of the total variation) from the 53 exogenous

variables and 3 lags of response; the penGAM selects 31 exogenous variables and 2 lags; and the

ISIS selects 10 exogenous and 2 lags. Figure 5.2 provides the fitted values of the CPI observations in

the training set by using the methods described above, and Figure 5.3 provides the predicted values
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of the CPI from Q1 2013 to Q4 2013 using these methods. The findings from Figures 5.2 and 5.3

are consistent with those from Table 5.3. Appendix D of the supplementary document also lists the

estimated models from the above methods, and the interested reader is referred to it for details.
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Figure 5.2: Plot of Y (normalized ∆ log(CPI)), observed and fitted values from the methods considered.
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Figure 5.3: Plot of Y (normalized ∆ log(CPI)) from Q1 2013 to Q4 2013 and their forecasts from the methods

considered.
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6 Conclusion

In this paper, we have developed two types of semiparametric methods to achieve dimension reduction

on the candidate covariates and obtain good forecasting performance for the response variable. The

KSIS technique, as the first step of the KSIS+PMAMAR method and the generalization of the SIS

technique proposed by Fan and Lv (2008), screens out the regressors whose marginal regression

functions do not make significant contribution to estimating the joint regression function and reduces

the dimension of the regressors from an ultra large size to a moderately large size. The sure screening

property developed in Theorem 1 shows that, through KSIS, the covariates whose marginal regression

functions make truly significant contribution would be selected with probability approaching one.

An iterative version of the KSIS is further developed in Section 4.1 and it can be seen as a possible

solution to address the issue of false selection of some irrelevant covariates which are highly correlated

to the significant covariates. The PMAMAR approach, as the second step of the two semiparametric

dimension-reduction methods, is an extension of the MAMAR approximation introduced in Li et al

(2015). Theorem 2 proves that the PMAMAR enjoys some well-known properties in high-dimensional

variable selection such as the sparsity and oracle property. Both the simulated and empirical examples

in Section 5 show that the KSIS+PMAMAR and its iterative version perform reasonably well in

finite samples.

The second PCA+PMAMAR method is a generalization of the well-known factor-augmented

linear regression and auto-regression models (c.f., Stock and Watson, 2002; Bernanke et al, 2005; Bai

and Ng, 2006). By assuming an approximate factor structure on the ultra-high dimensional exogenous

regressors and implementing the PCA, we estimate the unobservable factor regressors and achieve

dimension reduction on the exogenous regressors. Our Theorem 3 shows that the estimated factor

regressors are uniformly consistent and the asymptotic properties for the subsequent PMAMAR

method (c.f., Theorem 2) remains valid for further selection of the estimated factor regressors and the

time series lags. Example 5.2 shows that the PCA+PMAMAR method performs well in predicting

the future value of the time series when the dimension of covariates is larger than the sample size.

Furthermore, we may extend the methodology and theory developed in this paper to the more general

case where some lags of the estimated factor regressors are included in the PMAMAR procedure.
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Supplemental document

The supplemental document contains the detailed proofs of the main asymptotic theorems given in

Section 3 and some related technical lemmas. It also includes two tables recording the average and

median computation times of the various methods considered in Examples 5.1 and 5.2, and lists the

estimated models from the methods used in Example 5.3.
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